1
|
Li JJN, Liu G, Lok BH. Cell-Free DNA Hydroxymethylation in Cancer: Current and Emerging Detection Methods and Clinical Applications. Genes (Basel) 2024; 15:1160. [PMID: 39336751 PMCID: PMC11430939 DOI: 10.3390/genes15091160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
In the era of precision oncology, identifying abnormal genetic and epigenetic alterations has transformed the way cancer is diagnosed, managed, and treated. 5-hydroxymethylcytosine (5hmC) is an emerging epigenetic modification formed through the oxidation of 5-methylcytosine (5mC) by ten-eleven translocase (TET) enzymes. DNA hydroxymethylation exhibits tissue- and cancer-specific patterns and is essential in DNA demethylation and gene regulation. Recent advancements in 5hmC detection methods and the discovery of 5hmC in cell-free DNA (cfDNA) have highlighted the potential for cell-free 5hmC as a cancer biomarker. This review explores the current and emerging techniques and applications of DNA hydroxymethylation in cancer, particularly in the context of cfDNA.
Collapse
Affiliation(s)
- Janice J N Li
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Princess Margaret Cancer Research Tower, 101 College Street, Room 9-309, Toronto, ON M5G 1L7, Canada
| | - Geoffrey Liu
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Princess Margaret Cancer Research Tower, 101 College Street, Room 9-309, Toronto, ON M5G 1L7, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2C4, Canada
| | - Benjamin H Lok
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Princess Margaret Cancer Research Tower, 101 College Street, Room 9-309, Toronto, ON M5G 1L7, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
2
|
Skardžiūtė K, Kvederavičiūtė K, Pečiulienė I, Narmontė M, Gibas P, Ličytė J, Klimašauskas S, Kriukienė E. One-pot trimodal mapping of unmethylated, hydroxymethylated, and open chromatin sites unveils distinctive 5hmC roles at dynamic chromatin loci. Cell Chem Biol 2024; 31:607-621.e9. [PMID: 38154461 PMCID: PMC10962225 DOI: 10.1016/j.chembiol.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/19/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023]
Abstract
We present a method, named Mx-TOP, for profiling of three epigenetic regulatory layers-chromatin accessibility, general DNA modification, and DNA hydroxymethylation-from a single library. The approach is based on chemo-enzymatic covalent tagging of unmodified CG sites and hydroxymethylated cytosine (5hmC) along with GC sites in chromatin, which are then mapped using tag-selective base-resolution TOP-seq sequencing. Our in-depth validation of the approach revealed its sensitivity and informativity in evaluating chromatin accessibility and DNA modification interactions that drive transcriptional regulation. We employed the technology in a study of chromatin and DNA demethylation dynamics during in vitro neuronal differentiation. The study highlighted the involvement of gene body 5hmC in modulating an extensive decoupling between promoter accessibility and transcription. The importance of 5hmC in chromatin remodeling was further demonstrated by the observed resistance of the developmentally acquired open loci to the global 5hmC erasure in neuronal progenitors.
Collapse
Affiliation(s)
- Kotryna Skardžiūtė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Kotryna Kvederavičiūtė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Inga Pečiulienė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Milda Narmontė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Povilas Gibas
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Janina Ličytė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Saulius Klimašauskas
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Edita Kriukienė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania.
| |
Collapse
|
3
|
Kriukienė E, Tomkuvienė M, Klimašauskas S. 5-Hydroxymethylcytosine: the many faces of the sixth base of mammalian DNA. Chem Soc Rev 2024; 53:2264-2283. [PMID: 38205583 DOI: 10.1039/d3cs00858d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Epigenetic phenomena play a central role in cell regulatory processes and are important factors for understanding complex human disease. One of the best understood epigenetic mechanisms is DNA methylation. In the mammalian genome, cytosines (C) in CpG dinucleotides were long known to undergo methylation at the 5-position of the pyrimidine ring (mC). Later it was found that mC can be oxidized to 5-hydroxymethylcytosine (hmC) or even further to 5-formylcytosine (fC) and to 5-carboxylcytosine (caC) by the action of 2-oxoglutarate-dependent dioxygenases of the TET family. These findings unveiled a long elusive mechanism of active DNA demethylation and bolstered a wave of studies in the area of epigenetic regulation in mammals. This review is dedicated to critical assessment of recent data on biochemical and chemical aspects of the formation and conversion of hmC in DNA, analytical techniques used for detection and mapping of this nucleobase in mammalian genomes as well as epigenetic roles of hmC in DNA replication, transcription, cell differentiation and human disease.
Collapse
Affiliation(s)
- Edita Kriukienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Miglė Tomkuvienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Saulius Klimašauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
4
|
Erlitzki N, Kohli RM. An Overview of Global, Local, and Base-Resolution Methods for the Detection of 5-Hydroxymethylcytosine in Genomic DNA. Methods Mol Biol 2024; 2842:325-352. [PMID: 39012604 DOI: 10.1007/978-1-0716-4051-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The discovery of 5-hydroxymethylcytosine (5hmC) as a common DNA modification in mammalian genomes has ushered in new areas of inquiry regarding the dynamic epigenome. The balance between 5hmC and its precursor, 5-methylcytosine (5mC), has emerged as a determinant of key processes including cell fate specification, and alterations involving these bases have been implicated in the pathogenesis of various diseases. The identification of 5hmC separately from 5mC initially posed a challenge given that legacy epigenetic sequencing technologies could not discriminate between these two most abundant modifications, a significant blind spot considering their potentially functionally opposing roles. The growing interest in 5hmC, as well as in the Ten-Eleven Translocation (TET) family enzymes that catalyze its generation and further oxidation to 5-formylcytosine (5fC) and 5-carboxycytosine (5caC), has spurred the development of versatile methods for 5hmC detection. These methods enable the quantification and localization of 5hmC in diverse biological samples and, in some cases, at the resolution of individual nucleotides. However, navigating this growing toolbox of methods for 5hmC detection can be challenging. Here, we detail existing and emerging methods for the detection, quantification, and localization of 5hmC at global, locus-specific, and base resolution levels. These methods are discussed in the context of their advantages and limitations, with the goal of providing a framework to help guide researchers in choosing the level of resolution and the associated method that could be most suitable for specific needs.
Collapse
Affiliation(s)
- Noa Erlitzki
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rahul M Kohli
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Stankevičius V, Gibas P, Masiulionytė B, Gasiulė L, Masevičius V, Klimašauskas S, Vilkaitis G. Selective chemical tracking of Dnmt1 catalytic activity in live cells. Mol Cell 2022; 82:1053-1065.e8. [PMID: 35245449 PMCID: PMC8901439 DOI: 10.1016/j.molcel.2022.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/04/2021] [Accepted: 02/01/2022] [Indexed: 12/24/2022]
Abstract
Enzymatic methylation of cytosine to 5-methylcytosine in DNA is a fundamental epigenetic mechanism involved in mammalian development and disease. DNA methylation is brought about by collective action of three AdoMet-dependent DNA methyltransferases, whose catalytic interactions and temporal interplay are poorly understood. We used structure-guided engineering of the Dnmt1 methyltransferase to enable catalytic transfer of azide tags onto DNA from a synthetic cofactor analog, Ado-6-azide, in vitro. We then CRISPR-edited the Dnmt1 locus in mouse embryonic stem cells to install the engineered codon, which, following pulse internalization of the Ado-6-azide cofactor by electroporation, permitted selective azide tagging of Dnmt1-specific genomic targets in cellulo. The deposited covalent tags were exploited as "click" handles for reading adjoining sequences and precise genomic mapping of the methylation sites. The proposed approach, Dnmt-TOP-seq, enables high-resolution temporal tracking of the Dnmt1 catalysis in mammalian cells, paving the way to selective studies of other methylation pathways in eukaryotic systems.
Collapse
Affiliation(s)
- Vaidotas Stankevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| | - Povilas Gibas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| | - Bernadeta Masiulionytė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| | - Liepa Gasiulė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| | - Viktoras Masevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania; Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Vilnius 03225, Lithuania
| | - Saulius Klimašauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania.
| | - Giedrius Vilkaitis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania.
| |
Collapse
|
6
|
Ličytė J, Kvederavičiūtė K, Rukšėnaitė A, Godliauskaitė E, Gibas P, Tomkutė V, Petraitytė G, Masevičius V, Klimašauskas S, Kriukienė E. Distribution and regulatory roles of oxidized 5-methylcytosines in DNA and RNA of the basidiomycete fungi Laccaria bicolor and Coprinopsis cinerea. Open Biol 2022; 12:210302. [PMID: 35232254 PMCID: PMC8889193 DOI: 10.1098/rsob.210302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The formation of three oxidative DNA 5-methylcytosine (5mC) modifications (oxi-mCs)-5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC)-by the TET/JBP family of dioxygenases prompted intensive studies of their functional roles in mammalian cells. However, the functional interplay of these less abundant modified nucleotides in other eukaryotic lineages remains poorly understood. We carried out a systematic study of the content and distribution of oxi-mCs in the DNA and RNA of the basidiomycetes Laccaria bicolor and Coprinopsis cinerea, which are established models to study DNA methylation and developmental and symbiotic processes. Quantitative liquid chromatography-tandem mass spectrometry revealed persistent but uneven occurrences of 5hmC, 5fC and 5caC in the DNA and RNA of the two organisms, which could be upregulated by vitamin C. 5caC in RNA (5carC) was predominantly found in non-ribosomal RNA, which potentially includes non-coding, messenger and small RNA species. Genome-wide mapping of 5hmC and 5fC using the single CG analysis techniques hmTOP-seq and foTOP-seq pointed at involvement of oxi-mCs in the regulation of gene expression and silencing of transposable elements. The implicated diverse roles of 5mC and oxi-mCs in the two fungi highlight the epigenetic importance of the latter modifications, which are often neglected in standard whole-genome bisulfite analyses.
Collapse
Affiliation(s)
- Janina Ličytė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| | - Kotryna Kvederavičiūtė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| | - Audronė Rukšėnaitė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| | - Eglė Godliauskaitė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| | - Povilas Gibas
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| | - Vita Tomkutė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| | - Gražina Petraitytė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| | - Viktoras Masevičius
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| | - Saulius Klimašauskas
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| | - Edita Kriukienė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| |
Collapse
|
7
|
DNA Labeling Using DNA Methyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:535-562. [DOI: 10.1007/978-3-031-11454-0_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Li X, Shi X, Gong Y, Guo W, Liu Y, Peng C, Xu Y. Selective Chemical Labeling and Sequencing of 5-Hydroxymethylcytosine in DNA at Single-Base Resolution. Front Genet 2021; 12:749211. [PMID: 34868220 PMCID: PMC8635956 DOI: 10.3389/fgene.2021.749211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/08/2021] [Indexed: 11/24/2022] Open
Abstract
5-Hydroxymethylcytosine (5hmC), the oxidative product of 5-methylcytosine (5mC) catalyzed by ten-eleven translocation enzymes, plays an important role in many biological processes as an epigenetic mediator. Prior studies have shown that 5hmC can be selectively labeled with chemically modified glucose moieties and enriched using click chemistry with biotin affinity approaches. Besides, DNA deaminases of the AID/APOBEC family can discriminate modified 5hmC bases from cytosine (C) or 5mC. Herein, we developed a method based on embryonic stem cell (ESC) whole-genome analysis, which could enrich 5hmC-containing DNA by selective chemical labeling and locate 5hmC sites at single-base resolution with enzyme-based deamination. The combination experimental design is an extension of previous methods, and we hope that this cost-effective single-base resolution 5hmC sequencing method could be used to promote the mechanism and diagnosis research of 5hmC.
Collapse
Affiliation(s)
- Xiaogang Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Xinxin Shi
- Gastrointestinal Surgery Department of the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yin Gong
- School of Electronics Engineering and Computer Science, Peking University, Beijing, China
| | - Wenting Guo
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuanrui Liu
- Characteristic Medical Center of the Chinese People’s Armed Police Force, Tianjin, China
| | - Chunwei Peng
- Gastrointestinal Surgery Department of the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yingchun Xu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| |
Collapse
|
9
|
Narmontė M, Gibas P, Daniūnaitė K, Gordevičius J, Kriukienė E. Multiomics Analysis of Neuroblastoma Cells Reveals a Diversity of Malignant Transformations. Front Cell Dev Biol 2021; 9:727353. [PMID: 34557494 PMCID: PMC8452964 DOI: 10.3389/fcell.2021.727353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroblastoma (NB) is a pediatric cancer of the developing sympathetic nervous system that exhibits significant variation in the stage of differentiation and cell composition of tumors. Global loss of DNA methylation and genomic 5-hydroxymethylcytosine (5hmC) is a hallmark of human cancers. Here, we used our recently developed single-base resolution approaches, hmTOP-seq and uTOP-seq, for construction of 5hmC maps and identification of large partially methylated domains (PMDs) in different NB cell subpopulations. The 5hmC profiles revealed distinct signatures characteristic to different cell lineages and stages of malignant transformation of NB cells in a conventional and oxygen-depleted environment, which often occurs in tumors. The analysis of the cell-type-specific PMD distribution highlighted differences in global genome organization among NB cells that were ascribed to the same lineage identity by transcriptomic networks. Collectively, we demonstrated a high informativeness of the integrative epigenomic and transcriptomic research and large-scale genome structure in investigating the mechanisms that regulate cell identities and developmental stages of NB cells. Such multiomics analysis, as compared with mutational studies, open new ways for identification of novel disease-associated features which bring prognostic and therapeutic value in treating this aggressive pediatric disease.
Collapse
Affiliation(s)
- Milda Narmontė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Povilas Gibas
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Kristina Daniūnaitė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania.,Human Genome Research Group, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Juozas Gordevičius
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Edita Kriukienė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
10
|
Calculation of Fetal Fraction for Non-Invasive Prenatal Testing. BIOTECH 2021; 10:biotech10030017. [PMID: 35822771 PMCID: PMC9245487 DOI: 10.3390/biotech10030017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/05/2022] Open
Abstract
Estimating the fetal fraction of DNA in a pregnant mother’s blood is a risk-free, non-invasive way of predicting fetal aneuploidy. It is a rapidly developing field of study, offering researchers a plethora of different complementary methods. Such methods include examining the differences in methylation profiles between the fetus and the mother. Others include calculating the average allele frequency based on the difference in genotype of a number of single-nucleotide polymorphisms. Differences in the length distribution of DNA fragments between the mother and the fetus as well as measuring the proportion of DNA reads mapping to the Y chromosome also constitute fetal fraction estimation methods. The advantages and disadvantages of each of these main method types are discussed. Moreover, several well-known fetal fraction estimation methods, such as SeqFF, are described and compared with other methods. These methods are amenable to not only the estimation of fetal fraction but also paternity, cancer, and transplantation monitoring studies. NIPT is safe, and should aneuploidy be detected, this information can help parents prepare mentally and emotionally for the birth of a special needs child.
Collapse
|
11
|
Wang T, Loo CE, Kohli RM. Enzymatic approaches for profiling cytosine methylation and hydroxymethylation. Mol Metab 2021; 57:101314. [PMID: 34375743 PMCID: PMC8829811 DOI: 10.1016/j.molmet.2021.101314] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 12/20/2022] Open
Abstract
Background In mammals, modifications to cytosine bases, particularly in cytosine-guanine (CpG) dinucleotide contexts, play a major role in shaping the epigenome. The canonical epigenetic mark is 5-methylcytosine (5mC), but oxidized versions of 5mC, including 5-hydroxymethylcytosine (5hmC), are now known to be important players in epigenomic dynamics. Understanding the functional role of these modifications in gene regulation, normal development, and pathological conditions requires the ability to localize these modifications in genomic DNA. The classical approach for sequencing cytosine modifications has involved differential deamination via the chemical sodium bisulfite; however, bisulfite is destructive, limiting its utility in important biological or clinical settings where detection of low frequency populations is critical. Additionally, bisulfite fails to resolve 5mC from 5hmC. Scope of review To summarize how enzymatic rather than chemical approaches can be leveraged to localize and resolve different cytosine modifications in a non-destructive manner. Major conclusions Nature offers a suite of enzymes with biological roles in cytosine modification in organisms spanning from bacteriophages to mammals. These enzymatic activities include methylation by DNA methyltransferases, oxidation of 5mC by TET family enzymes, hypermodification of 5hmC by glucosyltransferases, and the generation of transition mutations from cytosine to uracil by DNA deaminases. Here, we describe how insights into the natural reactivities of these DNA-modifying enzymes can be leveraged to convert them into powerful biotechnological tools. Application of these enzymes in sequencing can be accomplished by relying on their natural activity, exploiting their ability to discriminate between cytosine modification states, reacting them with functionalized substrate analogs to introduce chemical handles, or engineering the DNA-modifying enzymes to take on new reactivities. We describe how these enzymatic reactions have been combined and permuted to localize DNA modifications with high specificity and without the destructive limitations posed by chemical methods for epigenetic sequencing. Chemical sequencing methods damage DNA and can confound cytosine modifications. DNA modifying enzymes offer non-destructive and selective biotechnological tools. DNA deaminases, methyltransferases, oxygenases and glucosyltransferases can be used. Permuting enzymes with various activities can reveal distinct cytosine states. Engineered enzymes utilizing unnatural co-substrates expand sequencing scope.
Collapse
Affiliation(s)
- Tong Wang
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian E Loo
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rahul M Kohli
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Methyltransferase-directed orthogonal tagging and sequencing of miRNAs and bacterial small RNAs. BMC Biol 2021; 19:129. [PMID: 34158037 PMCID: PMC8220740 DOI: 10.1186/s12915-021-01053-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Background Targeted installation of designer chemical moieties on biopolymers provides an orthogonal means for their visualisation, manipulation and sequence analysis. Although high-throughput RNA sequencing is a widely used method for transcriptome analysis, certain steps, such as 3′ adapter ligation in strand-specific RNA sequencing, remain challenging due to structure- and sequence-related biases introduced by RNA ligases, leading to misrepresentation of particular RNA species. Here, we remedy this limitation by adapting two RNA 2′-O-methyltransferases from the Hen1 family for orthogonal chemo-enzymatic click tethering of a 3′ sequencing adapter that supports cDNA production by reverse transcription of the tagged RNA. Results We showed that the ssRNA-specific DmHen1 and dsRNA-specific AtHEN1 can be used to efficiently append an oligonucleotide adapter to the 3′ end of target RNA for sequencing library preparation. Using this new chemo-enzymatic approach, we identified miRNAs and prokaryotic small non-coding sRNAs in probiotic Lactobacillus casei BL23. We found that compared to a reference conventional RNA library preparation, methyltransferase-Directed Orthogonal Tagging and RNA sequencing, mDOT-seq, avoids misdetection of unspecific highly-structured RNA species, thus providing better accuracy in identifying the groups of transcripts analysed. Our results suggest that mDOT-seq has the potential to advance analysis of eukaryotic and prokaryotic ssRNAs. Conclusions Our findings provide a valuable resource for studies of the RNA-centred regulatory networks in Lactobacilli and pave the way to developing novel transcriptome and epitranscriptome profiling approaches in vitro and inside living cells. As RNA methyltransferases share the structure of the AdoMet-binding domain and several specific cofactor binding features, the basic principles of our approach could be easily translated to other AdoMet-dependent enzymes for the development of modification-specific RNA-seq techniques. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01053-w.
Collapse
|
13
|
Gordevičius J, Narmontė M, Gibas P, Kvederavičiūtė K, Tomkutė V, Paluoja P, Krjutškov K, Salumets A, Kriukienė E. Identification of fetal unmodified and 5-hydroxymethylated CG sites in maternal cell-free DNA for non-invasive prenatal testing. Clin Epigenetics 2020; 12:153. [PMID: 33081811 PMCID: PMC7574562 DOI: 10.1186/s13148-020-00938-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Massively parallel sequencing of maternal cell-free DNA (cfDNA) is widely used to test fetal genetic abnormalities in non-invasive prenatal testing (NIPT). However, sequencing-based approaches are still of high cost. Building upon previous knowledge that placenta, the main source of fetal circulating DNA, is hypomethylated in comparison to maternal tissue counterparts of cfDNA, we propose that targeting either unmodified or 5-hydroxymethylated CG sites specifically enriches fetal genetic material and reduces numbers of required analytical sequencing reads thereby decreasing cost of a test. METHODS We employed uTOPseq and hmTOP-seq approaches which combine covalent derivatization of unmodified or hydroxymethylated CG sites, respectively, with next generation sequencing, or quantitative real-time PCR. RESULTS We detected increased 5-hydroxymethylcytosine (5hmC) levels in fetal chorionic villi (CV) tissue samples as compared with peripheral blood. Using our previously developed uTOP-seq and hmTOP-seq approaches we obtained whole-genome uCG and 5hmCG maps of 10 CV tissue and 38 cfDNA samples in total. Our results indicated that, in contrast to conventional whole genome sequencing, such epigenomic analysis highly specifically enriches fetal DNA fragments from maternal cfDNA. While both our approaches yielded 100% accuracy in detecting Down syndrome in fetuses, hmTOP-seq maintained such accuracy at ultra-low sequencing depths using only one million reads. We identified 2164 and 1589 placenta-specific differentially modified and 5-hydroxymethylated regions, respectively, in chromosome 21, as well as 3490 and 2002 Down syndrome-specific differentially modified and 5-hydroxymethylated regions, respectively, that can be used as biomarkers for identification of Down syndrome or other epigenetic diseases of a fetus. CONCLUSIONS uTOP-seq and hmTOP-seq approaches provide a cost-efficient and sensitive epigenetic analysis of fetal abnormalities in maternal cfDNA. The results demonstrated that T21 fetuses contain a perturbed epigenome and also indicated that fetal cfDNA might originate from fetal tissues other than placental chorionic villi. Robust covalent derivatization followed by targeted analysis of fetal DNA by sequencing or qPCR presents an attractive strategy that could help achieve superior sensitivity and specificity in prenatal diagnostics.
Collapse
Affiliation(s)
- Juozas Gordevičius
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, 10257, Vilnius, Lithuania
| | - Milda Narmontė
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, 10257, Vilnius, Lithuania
| | - Povilas Gibas
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, 10257, Vilnius, Lithuania
| | - Kotryna Kvederavičiūtė
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, 10257, Vilnius, Lithuania
| | - Vita Tomkutė
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, 10257, Vilnius, Lithuania
| | - Priit Paluoja
- Competence Centre On Health Technologies, Teaduspargi 13, 50411, Tartu, Estonia.,Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Kaarel Krjutškov
- Competence Centre On Health Technologies, Teaduspargi 13, 50411, Tartu, Estonia.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406, Tartu, Estonia
| | - Andres Salumets
- Competence Centre On Health Technologies, Teaduspargi 13, 50411, Tartu, Estonia.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406, Tartu, Estonia.,Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, HUS, PO Box 140, 00029, Helsinki, Finland.,Estonian Genome Center, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | - Edita Kriukienė
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, 10257, Vilnius, Lithuania. .,Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, 10257, Vilnius, Lithuania.
| |
Collapse
|
14
|
Ličytė J, Gibas P, Skardžiūtė K, Stankevičius V, Rukšėnaitė A, Kriukienė E. A Bisulfite-free Approach for Base-Resolution Analysis of Genomic 5-Carboxylcytosine. Cell Rep 2020; 32:108155. [DOI: 10.1016/j.celrep.2020.108155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/10/2020] [Accepted: 08/25/2020] [Indexed: 01/01/2023] Open
|
15
|
Li Y. Modern epigenetics methods in biological research. Methods 2020; 187:104-113. [PMID: 32645449 DOI: 10.1016/j.ymeth.2020.06.022] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 01/09/2023] Open
Abstract
The definition of epigenetics refers that molecular modifications on DNA that can regulate gene activity are independent of DNA sequence and mitotically stable. Notably, epigenetics studies have grown exponentially in the past few years. Recent progresses that lead to exciting discoveries and groundbreaking nature of this area demand thorough methodologies and advanced technologies to move epigenetics to the forefront of molecular biology. The most recognized epigenetic regulations are DNA methylation, histone modifications, and non-coding RNAs (ncRNAs). This review will discuss the modern techniques that are available to detect locus-specific and genome-wide changes for all epigenetic codes. Furthermore, updated analysis of technologies, newly developed methods, recent breakthroughs and bioinformatics pipelines in epigenetic analysis will be presented. These methods, as well as many others presented in this specific issue, provide comprehensive guidelines in the area of epigenetics that facilitate further developments in this promising and rapidly developing field.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Obstetrics, Gynecology & Women's Heath, University of Missouri, Columbia, MO 65212, USA; Department of Surgery, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|