1
|
Tadres D, Riedl J, Eden A, Bontempo AE, Lin J, Reid SF, Roehrich B, Williams K, Sepunaru L, Louis M. Sensation of electric fields in the Drosophila melanogaster larva. Curr Biol 2025; 35:1848-1860.e4. [PMID: 40174584 PMCID: PMC12040295 DOI: 10.1016/j.cub.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 04/04/2025]
Abstract
Electrosensation has emerged as a crucial sensory modality for social communication, foraging, and predation across the animal kingdom. However, its presence and functional role as well as the neural basis of electric field perception in Drosophila and other invertebrates remain unclear. In environments with controlled electric fields, we identified electrosensation as a new sense in the Drosophila melanogaster larva. We found that the Drosophila larva performs robust electrotaxis: when exposed to a uniform electric field, larvae migrate toward the cathode (negatively charged elecrode) and quickly respond to changes in the orientation of the field to maintain cathodal movement. Through a behavioral screen, we identified a subset of sensory neurons located at the tip of the larval head that are necessary for electrotaxis. Calcium imaging revealed that a pair of Gr66a-positive sensory neurons (one on each side of the head) encodes the strength and orientation of the electric field. Our results indicate that electric fields elicit robust behavioral and neural responses in the Drosophila larva, providing new evidence for the significance of electrosensation in invertebrates.
Collapse
Affiliation(s)
- David Tadres
- University of California, Santa Barbara, MCDB Department & Neuroscience Research Institute (NRI), Santa Barbara, CA 93106, USA; Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), 08003 Barcelona, Spain
| | - Julia Riedl
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), 08003 Barcelona, Spain; Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Alexander Eden
- University of California, Santa Barbara, Mechanical Engineering Department, Santa Barbara, CA 93106, USA
| | - Angela E Bontempo
- University of California, Santa Barbara, MCDB Department & Neuroscience Research Institute (NRI), Santa Barbara, CA 93106, USA
| | - Jingtong Lin
- University of California, Santa Barbara, MCDB Department & Neuroscience Research Institute (NRI), Santa Barbara, CA 93106, USA
| | - Samuel F Reid
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), 08003 Barcelona, Spain
| | - Brian Roehrich
- University of California, Santa Barbara, Department of Chemistry and Biochemistry, Santa Barbara, CA 93106, USA
| | - Kevin Williams
- University of California, Santa Barbara, MCDB Department & Neuroscience Research Institute (NRI), Santa Barbara, CA 93106, USA
| | - Lior Sepunaru
- University of California, Santa Barbara, Department of Chemistry and Biochemistry, Santa Barbara, CA 93106, USA
| | - Matthieu Louis
- University of California, Santa Barbara, MCDB Department & Neuroscience Research Institute (NRI), Santa Barbara, CA 93106, USA; Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), 08003 Barcelona, Spain; Universitat Pompeu Fabra, 08002 Barcelona, Spain.
| |
Collapse
|
2
|
Iwasaki K, Neuhauser C, Stokes C, Rayshubskiy A. The fruit fly, Drosophila melanogaster, as a microrobotics platform. Proc Natl Acad Sci U S A 2025; 122:e2426180122. [PMID: 40198707 PMCID: PMC12012547 DOI: 10.1073/pnas.2426180122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/04/2025] [Indexed: 04/10/2025] Open
Abstract
Engineering small autonomous agents capable of operating in the microscale environment remains a key challenge, with current systems still evolving. Our study explores the fruit fly, Drosophila melanogaster, a classic model system in biology and a species adept at microscale interaction, as a biological platform for microrobotics. Initially, we focus on remotely directing the walking paths of fruit flies in an experimental arena. We accomplish this through two distinct approaches: harnessing the fruit flies' optomotor response and optogenetic modulation of its olfactory system. These techniques facilitate reliable and repeated guidance of flies between arbitrary spatial locations. We guide flies along predetermined trajectories, enabling them to scribe patterns resembling textual characters through their locomotion. We enhance olfactory-guided navigation through additional optogenetic activation of attraction-inducing mushroom body output neurons. We extend this control to collective behaviors in shared spaces and navigation through constrained maze-like environments. We further use our guidance technique to enable flies to carry a load across designated points in space, establishing the upper bound on their weight-carrying capabilities. Additionally, we demonstrate that visual guidance can facilitate novel interactions between flies and objects, showing that flies can consistently relocate a small spherical object over significant distances. Last, we demonstrate multiagent formation control, with flies alternating between distinct spatial patterns. Beyond expanding tools available for microrobotics, these behavioral contexts can provide insights into the neurological basis of behavior in fruit flies.
Collapse
Affiliation(s)
- Kenichi Iwasaki
- The Rowland Institute at Harvard, Harvard University, Cambridge, MA02138
| | - Charles Neuhauser
- The Rowland Institute at Harvard, Harvard University, Cambridge, MA02138
- Faculty of Arts and Sciences, Harvard University, Cambridge, MA02138
| | - Chris Stokes
- The Rowland Institute at Harvard, Harvard University, Cambridge, MA02138
| | | |
Collapse
|
3
|
Teicher G, Riffe RM, Barnaby W, Martin G, Clayton BE, Trapani JG, Downes GB. Marigold: a machine learning-based web app for zebrafish pose tracking. BMC Bioinformatics 2025; 26:30. [PMID: 39875867 PMCID: PMC11773884 DOI: 10.1186/s12859-025-06042-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND High-throughput behavioral analysis is important for drug discovery, toxicological studies, and the modeling of neurological disorders such as autism and epilepsy. Zebrafish embryos and larvae are ideal for such applications because they are spawned in large clutches, develop rapidly, feature a relatively simple nervous system, and have orthologs to many human disease genes. However, existing software for video-based behavioral analysis can be incompatible with recordings that contain dynamic backgrounds or foreign objects, lack support for multiwell formats, require expensive hardware, and/or demand considerable programming expertise. Here, we introduce Marigold, a free and open source web app for high-throughput behavioral analysis of embryonic and larval zebrafish. RESULTS Marigold features an intuitive graphical user interface, tracks up to 10 user-defined keypoints, supports both single- and multiwell formats, and exports a range of kinematic parameters in addition to publication-quality data visualizations. By leveraging a highly efficient, custom-designed neural network architecture, Marigold achieves reasonable training and inference speeds even on modestly powered computers lacking a discrete graphics processing unit. Notably, as a web app, Marigold does not require any installation and runs within popular web browsers on ChromeOS, Linux, macOS, and Windows. To demonstrate Marigold's utility, we used two sets of biological experiments. First, we examined novel aspects of the touch-evoked escape response in techno trousers (tnt) mutant embryos, which contain a previously described loss-of-function mutation in the gene encoding Eaat2b, a glial glutamate transporter. We identified differences and interactions between touch location (head vs. tail) and genotype. Second, we investigated the effects of feeding on larval visuomotor behavior at 5 and 7 days post-fertilization (dpf). We found differences in the number and vigor of swimming bouts between fed and unfed fish at both time points, as well as interactions between developmental stage and feeding regimen. CONCLUSIONS In both biological experiments presented here, the use of Marigold facilitated novel behavioral findings. Marigold's ease of use, robust pose tracking, amenability to diverse experimental paradigms, and flexibility regarding hardware requirements make it a powerful tool for analyzing zebrafish behavior, especially in low-resource settings such as course-based undergraduate research experiences. Marigold is available at: https://downeslab.github.io/marigold/ .
Collapse
Affiliation(s)
- Gregory Teicher
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA.
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA.
| | - R Madison Riffe
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Wayne Barnaby
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Gabrielle Martin
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA
| | - Benjamin E Clayton
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA
| | - Josef G Trapani
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
- Biology Department, Amherst College, Amherst, MA, USA
- Neuroscience Program, Amherst College, Amherst, MA, USA
| | - Gerald B Downes
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA.
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA.
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA.
| |
Collapse
|
4
|
Lucks V, Theine J, Arteaga Avendaño MP, Engelmann J. A framework for a low-cost system of automated gate control in assays of spatial cognition in fishes. JOURNAL OF FISH BIOLOGY 2024. [PMID: 39415602 DOI: 10.1111/jfb.15958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024]
Abstract
Automation of experimental setups is a promising direction in behavioral research because it can facilitate the acquisition of data while increasing its repeatability and reliability. For example, research in spatial cognition can benefit from automated control by systematic manipulation of sensory cues and more efficient execution of training procedures. However, commercial solutions are often costly, restricted to specific platforms, and mainly focused on the automation of data acquisition, stimulus presentation, and reward delivery. Animal welfare considerations as well as experimental demands may require automating the access of an animal or animals to the experimental arena. Here, we provide and test a low-cost, versatile Raspberry Pi-based solution for such use cases. We provide four application scenarios of varying complexities, based on our research of spatial orientation and navigation in weakly electric fish, with step-by-step protocols for the control of gates in the experimental setups. This easy-to-implement, platform-independent approach can be adapted to various experimental needs, including closed-loop as well as field experiments. As such, it can contribute to the optimization and standardization of experiments in a variety of species, thereby enhancing the comparability of data.
Collapse
Affiliation(s)
- Valerie Lucks
- Active Sensing, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Jens Theine
- Genetics and Genomics of Plants, Faculty of Biology & Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | | | - Jacob Engelmann
- Active Sensing, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
5
|
Tadres D, Saxena N, Louis M. Tracking the Navigation Behavior of Drosophila Larvae in Real and Virtual Odor Gradients by Using the Raspberry Pi Virtual Reality (PiVR) System. Cold Spring Harb Protoc 2024; 2024:pdb.top108098. [PMID: 37258056 DOI: 10.1101/pdb.top108098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In a closed-loop experimental paradigm, an animal experiences a modulation of its sensory input as a function of its own behavior. Tools enabling closed-loop experiments are crucial for delineating causal relationships between the activity of genetically labeled neurons and specific behavioral responses. We have recently developed an experimental platform known as "Raspberry Pi Virtual Reality" (PiVR) that is used to perform closed-loop optogenetic stimulation of neurons in unrestrained animals. PiVR is a system that operates at high temporal resolution (>30-Hz) and with low latencies. Larvae of the fruit fly Drosophila melanogaster are ideal to study the role of individual neurons in modulating behavior to aid the understanding of the neural pathways underlying various guided behaviors. Here, we introduce larval chemotaxis as an example of a navigational behavior in which an animal seeks to locate a target-in this case, the attractive source of an odor-by tracking a concentration gradient. The methodologies that we describe here combine the use of PiVR with the study of larval chemotaxis in real and virtual odor gradients, but these can also be readily adapted to other sensory modalities.
Collapse
Affiliation(s)
- David Tadres
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California 93106, USA
- Department of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Nitesh Saxena
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - Matthieu Louis
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California 93106, USA
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
6
|
Tadres D, Saxena N, Louis M. Using the Raspberry Pi Virtual Reality (PiVR) System to Study Drosophila Larval Chemotaxis with Real and Virtual Odor Gradients. Cold Spring Harb Protoc 2024; 2024:pdb.prot108120. [PMID: 37258057 DOI: 10.1101/pdb.prot108120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Here, we present a detailed protocol for the study of the orientation behavior of larvae of the fruit fly Drosophila melanogaster in response to both real and virtual odors (chemotaxis). An element common to the study of navigation directed by all sensory modalities is the need to correlate changes in behavioral states (e.g., crawling and turning) with temporal changes in the stimulus preceding these events. It has been shown recently that virtual odor landscapes, with any arbitrary geometry, can be created by combining a platform known as "Raspberry Pi virtual reality" (PiVR) with optogenetics. This methodology offers a technical foundation with which to characterize how the larval nervous system responds to stimulation by real and virtual odors. Furthermore, the experimental steps presented and discussed herein highlight important considerations that are needed to ensure experimental reproducibility. Finally, we believe that this framework can be easily adapted and generalized to allow investigators to study other sensory modalities in the Drosophila larva and in other animals.
Collapse
Affiliation(s)
- David Tadres
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California 93106, USA
- Department of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Nitesh Saxena
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - Matthieu Louis
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California 93106, USA
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
7
|
Dunham KE, Khaled KH, Weizman L, Venton BJ. Microdosing ketamine in Drosophila does not block serotonin reuptake, but causes complex behavioral changes mediated by glutamate and serotonin receptors. J Neurochem 2024; 168:1097-1112. [PMID: 38323657 PMCID: PMC11136605 DOI: 10.1111/jnc.16070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
Microdosing ketamine is a novel antidepressant for treatment-resistant depression. Traditional antidepressants, like selective serotonin reuptake inhibitors (SSRIs), inhibit serotonin reuptake, but it is not clear if ketamine shows a similar mechanism. Here, we tested the effects of feeding ketamine and SSRIs to Drosophila melanogaster larvae, which has a similar serotonin system to mammals and is a good model to track depressive behaviors, such as locomotion and feeding. Fast-scan cyclic voltammetry (FSCV) was used to measure optogenetically stimulated serotonin changes, and locomotion tracking software and blue dye feeding to monitor behavior. We fed larvae various doses (1-100 mM) of antidepressants for 24 h and found that 1 mM ketamine did not affect serotonin, but increased locomotion and feeding. Low doses (≤10 mM) of escitalopram and fluoxetine inhibited dSERT and also increased feeding and locomotion behaviors. At 100 mM, ketamine inhibited dSERT and increased serotonin concentrations, but decreased locomotion and feeding because of its anesthetic properties. Since microdosing ketamine causes behavioral effects, we further investigated behavioral changes with a SERT16 mutant and low doses of other NMDA receptor antagonists and 5-HT1A and 2 agonists. Feeding and locomotion changes were similar to ketamine in the mutant, and we found NMDA receptor antagonism increased feeding, while serotonin receptor agonism increased locomotion, which could explain these effects with ketamine. Ultimately, this work shows that Drosophila is a good model to discern antidepressant mechanisms, and that ketamine does not work on dSERT like SSRIs, but effects behavior with other mechanisms that should be investigated further.
Collapse
Affiliation(s)
- Kelly E Dunham
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Kani H Khaled
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Leah Weizman
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
8
|
Doszyn O, Dulski T, Zmorzynska J. Diving into the zebrafish brain: exploring neuroscience frontiers with genetic tools, imaging techniques, and behavioral insights. Front Mol Neurosci 2024; 17:1358844. [PMID: 38533456 PMCID: PMC10963419 DOI: 10.3389/fnmol.2024.1358844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
The zebrafish (Danio rerio) is increasingly used in neuroscience research. Zebrafish are relatively easy to maintain, and their high fecundity makes them suitable for high-throughput experiments. Their small, transparent embryos and larvae allow for easy microscopic imaging of the developing brain. Zebrafish also share a high degree of genetic similarity with humans, and are amenable to genetic manipulation techniques, such as gene knockdown, knockout, or knock-in, which allows researchers to study the role of specific genes relevant to human brain development, function, and disease. Zebrafish can also serve as a model for behavioral studies, including locomotion, learning, and social interactions. In this review, we present state-of-the-art methods to study the brain function in zebrafish, including genetic tools for labeling single neurons and neuronal circuits, live imaging of neural activity, synaptic dynamics and protein interactions in the zebrafish brain, optogenetic manipulation, and the use of virtual reality technology for behavioral testing. We highlight the potential of zebrafish for neuroscience research, especially regarding brain development, neuronal circuits, and genetic-based disorders and discuss its certain limitations as a model.
Collapse
Affiliation(s)
| | | | - J. Zmorzynska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology in Warsaw (IIMCB), Warsaw, Poland
| |
Collapse
|
9
|
Randlett O. pi_tailtrack: A compact, inexpensive and open-source behaviour-tracking system for head-restrained zebrafish. J Exp Biol 2023; 226:jeb246335. [PMID: 37818550 DOI: 10.1242/jeb.246335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023]
Abstract
Quantifying animal behaviour during microscopy is crucial to associate optically recorded neural activity with behavioural outputs and states. Here, I describe an imaging and tracking system for head-restrained larval zebrafish compatible with functional microscopy. This system is based on the Raspberry Pi computer, Pi NoIR camera and open-source software for the real-time tail segmentation and skeletonization of the zebrafish tail at over 100 Hz. This allows for precise and long-term analyses of swimming behaviour, which can be related to functional signals recorded in individual neurons. This system offers a simple but performant solution for quantifying the behaviour of head-restrained larval zebrafish, which can be built for 340€.
Collapse
Affiliation(s)
- Owen Randlett
- Laboratoire MeLiS, Université Claude Bernard Lyon 1 - CNRS UMR5284 - Inserm U1314, Institut NeuroMyoGène, Faculté de Médecine et de Pharmacie, 8 Avenue Rockefeller, 69008 Lyon, France
| |
Collapse
|
10
|
Cano-Ferrer X, Roberts RJ, French AS, de Folter J, Gong H, Nightingale L, Strange A, Imbert A, Prieto-Godino LL. OptoPi: An open source flexible platform for the analysis of small animal behaviour. HARDWAREX 2023; 15:e00443. [PMID: 37795340 PMCID: PMC10545942 DOI: 10.1016/j.ohx.2023.e00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/24/2023] [Accepted: 06/11/2023] [Indexed: 10/06/2023]
Abstract
Behaviour is the ultimate output of neural circuit computations, and therefore its analysis is a cornerstone of neuroscience research. However, every animal and experimental paradigm requires different illumination conditions to capture and, in some cases, manipulate specific behavioural features. This means that researchers often develop, from scratch, their own solutions and experimental set-ups. Here, we present OptoPi, an open source, affordable (∼ £600), behavioural arena with accompanying multi-animal tracking software. The system features highly customisable and reproducible visible and infrared illumination and allows for optogenetic stimulation. OptoPi acquires images using a Raspberry Pi camera, features motorised LED-based illumination, Arduino control, as well as irradiance monitoring to fine-tune illumination conditions with real time feedback. Our open-source software (BioImageProcessing) can be used to simultaneously track multiple unmarked animals both in on-line and off-line modes. We demonstrate the functionality of OptoPi by recording and tracking under different illumination conditions the spontaneous behaviour of larval zebrafish as well as adult Drosophila flies and their first instar larvae, an experimental animal that due to its small size and transparency has classically been hard to track. Further, we showcase OptoPi's optogenetic capabilities through a series of experiments using transgenic Drosophila larvae.
Collapse
Affiliation(s)
| | | | | | | | - Hui Gong
- The Francis Crick Institute, London NW1 1BF, United Kingdom
| | | | - Amy Strange
- The Francis Crick Institute, London NW1 1BF, United Kingdom
| | - Albane Imbert
- The Francis Crick Institute, London NW1 1BF, United Kingdom
| | | |
Collapse
|
11
|
Greaney MR, Wreden CC, Heckscher ES. Distinctive features of the central synaptic organization of Drosophila larval proprioceptors. Front Neural Circuits 2023; 17:1223334. [PMID: 37564629 PMCID: PMC10410283 DOI: 10.3389/fncir.2023.1223334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023] Open
Abstract
Proprioceptive feedback is critically needed for locomotor control, but how this information is incorporated into central proprioceptive processing circuits remains poorly understood. Circuit organization emerges from the spatial distribution of synaptic connections between neurons. This distribution is difficult to discern in model systems where only a few cells can be probed simultaneously. Therefore, we turned to a relatively simple and accessible nervous system to ask: how are proprioceptors' input and output synapses organized in space, and what principles underlie this organization? Using the Drosophila larval connectome, we generated a map of the input and output synapses of 34 proprioceptors in several adjacent body segments (5-6 left-right pairs per segment). We characterized the spatial organization of these synapses, and compared this organization to that of other somatosensory neurons' synapses. We found three distinguishing features of larval proprioceptor synapses: (1) Generally, individual proprioceptor types display segmental somatotopy. (2) Proprioceptor output synapses both converge and diverge in space; they are organized into six spatial domains, each containing a unique set of one or more proprioceptors. Proprioceptors form output synapses along the proximal axonal entry pathway into the neuropil. (3) Proprioceptors receive few inhibitory input synapses. Further, we find that these three features do not apply to other larval somatosensory neurons. Thus, we have generated the most comprehensive map to date of how proprioceptor synapses are centrally organized. This map documents previously undescribed features of proprioceptors, raises questions about underlying developmental mechanisms, and has implications for downstream proprioceptive processing circuits.
Collapse
Affiliation(s)
- Marie R. Greaney
- Committee on Neurobiology, The University of Chicago, Chicago, IL, United States
| | - Chris C. Wreden
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
| | - Ellie S. Heckscher
- Committee on Neurobiology, The University of Chicago, Chicago, IL, United States
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
- Institute for Neuroscience, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
12
|
Wang Y, Zhang R, Huang S, Valverde PTT, Lobb-Rabe M, Ashley J, Venkatasubramanian L, Carrillo RA. Glial Draper signaling triggers cross-neuron plasticity in bystander neurons after neuronal cell death in Drosophila. Nat Commun 2023; 14:4452. [PMID: 37488133 PMCID: PMC10366216 DOI: 10.1038/s41467-023-40142-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023] Open
Abstract
Neuronal cell death and subsequent brain dysfunction are hallmarks of aging and neurodegeneration, but how the nearby healthy neurons (bystanders) respond to the death of their neighbors is not fully understood. In the Drosophila larval neuromuscular system, bystander motor neurons can structurally and functionally compensate for the loss of their neighbors by increasing their terminal bouton number and activity. We term this compensation as cross-neuron plasticity, and in this study, we demonstrate that the Drosophila engulfment receptor, Draper, and the associated kinase, Shark, are required for cross-neuron plasticity. Overexpression of the Draper-I isoform boosts cross-neuron plasticity, implying that the strength of plasticity correlates with Draper signaling. In addition, we find that functional cross-neuron plasticity can be induced at different developmental stages. Our work uncovers a role for Draper signaling in cross-neuron plasticity and provides insights into how healthy bystander neurons respond to the loss of their neighboring neurons.
Collapse
Affiliation(s)
- Yupu Wang
- Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL, 60637, USA.
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA.
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, 20147, USA.
| | - Ruiling Zhang
- Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Sihao Huang
- Program in Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL, 60637, USA
| | - Parisa Tajalli Tehrani Valverde
- Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Meike Lobb-Rabe
- Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA
- Program in Cell and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - James Ashley
- Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA
| | | | - Robert A Carrillo
- Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL, 60637, USA.
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, 60637, USA.
- Program in Cell and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
13
|
Thane M, Paisios E, Stöter T, Krüger AR, Gläß S, Dahse AK, Scholz N, Gerber B, Lehmann DJ, Schleyer M. High-resolution analysis of individual Drosophila melanogaster larvae uncovers individual variability in locomotion and its neurogenetic modulation. Open Biol 2023; 13:220308. [PMID: 37072034 PMCID: PMC10113034 DOI: 10.1098/rsob.220308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/05/2023] [Indexed: 04/20/2023] Open
Abstract
Neuronally orchestrated muscular movement and locomotion are defining faculties of multicellular animals. Due to its simple brain and genetic accessibility, the larva of the fruit fly Drosophila melanogaster allows one to study these processes at tractable levels of complexity. However, although the faculty of locomotion clearly pertains to the individual, most studies of locomotion in larvae use measurements aggregated across animals, or animals tested one by one, an extravagance for larger-scale analyses. This prevents grasping the inter- and intra-individual variability in locomotion and its neurogenetic determinants. Here, we present the IMBA (individual maggot behaviour analyser) for analysing the behaviour of individual larvae within groups, reliably resolving individual identity across collisions. We use the IMBA to systematically describe the inter- and intra-individual variability in locomotion of wild-type animals, and how the variability is reduced by associative learning. We then report a novel locomotion phenotype of an adhesion GPCR mutant. We further investigated the modulation of locomotion across repeated activations of dopamine neurons in individual animals, and the transient backward locomotion induced by brief optogenetic activation of the brain-descending 'mooncrawler' neurons. In summary, the IMBA is an easy-to-use toolbox allowing an unprecedentedly rich view of the behaviour and its variability of individual larvae, with utility in multiple biomedical research contexts.
Collapse
Affiliation(s)
- Michael Thane
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Simulation and Graphics, Otto von Guerike University, Magdeburg, Germany
| | - Emmanouil Paisios
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Torsten Stöter
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Anna-Rosa Krüger
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Institute of Biology, Free University of Berlin, Berlin, Germany
| | - Sebastian Gläß
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Anne-Kristin Dahse
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Nicole Scholz
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Bertram Gerber
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Dirk J. Lehmann
- Department of Simulation and Graphics, Otto von Guerike University, Magdeburg, Germany
- Department for Information Engineering, Faculty of Computer Science, Ostfalia University of Applied Science, Brunswick-Wolfenbuettel, Germany
| | - Michael Schleyer
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
14
|
Deere JU, Sarkissian AA, Yang M, Uttley HA, Martinez Santana N, Nguyen L, Ravi K, Devineni AV. Selective integration of diverse taste inputs within a single taste modality. eLife 2023; 12:e84856. [PMID: 36692370 PMCID: PMC9873257 DOI: 10.7554/elife.84856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023] Open
Abstract
A fundamental question in sensory processing is how different channels of sensory input are processed to regulate behavior. Different input channels may converge onto common downstream pathways to drive the same behaviors, or they may activate separate pathways to regulate distinct behaviors. We investigated this question in the Drosophila bitter taste system, which contains diverse bitter-sensing cells residing in different taste organs. First, we optogenetically activated subsets of bitter neurons within each organ. These subsets elicited broad and highly overlapping behavioral effects, suggesting that they converge onto common downstream pathways, but we also observed behavioral differences that argue for biased convergence. Consistent with these results, transsynaptic tracing revealed that bitter neurons in different organs connect to overlapping downstream pathways with biased connectivity. We investigated taste processing in one type of downstream bitter neuron that projects to the higher brain. These neurons integrate input from multiple organs and regulate specific taste-related behaviors. We then traced downstream circuits, providing the first glimpse into taste processing in the higher brain. Together, these results reveal that different bitter inputs are selectively integrated early in the circuit, enabling the pooling of information, while the circuit then diverges into multiple pathways that may have different roles.
Collapse
Affiliation(s)
- Julia U Deere
- Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
| | | | - Meifeng Yang
- Department of Biology, Emory UniversityAtlantaUnited States
| | - Hannah A Uttley
- Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
| | | | - Lam Nguyen
- Department of Biology, Emory UniversityAtlantaUnited States
| | - Kaushiki Ravi
- Department of Biology, Emory UniversityAtlantaUnited States
| | - Anita V Devineni
- Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
- Neuroscience Graduate Program, Emory UniversityAtlantaUnited States
- Department of Biology, Emory UniversityAtlantaUnited States
| |
Collapse
|
15
|
Tadres D, Wong PH, To T, Moehlis J, Louis M. Depolarization block in olfactory sensory neurons expands the dimensionality of odor encoding. SCIENCE ADVANCES 2022; 8:eade7209. [PMID: 36525486 PMCID: PMC9757753 DOI: 10.1126/sciadv.ade7209] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/15/2022] [Indexed: 05/20/2023]
Abstract
Upon strong and prolonged excitation, neurons can undergo a silent state called depolarization block that is often associated with disorders such as epileptic seizures. Here, we show that neurons in the peripheral olfactory system undergo depolarization block as part of their normal physiological function. Typically, olfactory sensory neurons enter depolarization block at odor concentrations three orders of magnitude above their detection threshold, thereby defining receptive fields over concentration bands. The silencing of high-affinity olfactory sensory neurons produces sparser peripheral odor representations at high-odor concentrations, which might facilitate perceptual discrimination. Using a conductance-based model of the olfactory transduction cascade paired with spike generation, we provide numerical and experimental evidence that depolarization block arises from the slow inactivation of sodium channels-a process that could affect a variety of sensory neurons. The existence of ethologically relevant depolarization block in olfactory sensory neurons creates an additional dimension that expands the peripheral encoding of odors.
Collapse
Affiliation(s)
- David Tadres
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Philip H. Wong
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Thuc To
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Jeff Moehlis
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Matthieu Louis
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA, USA
- Corresponding author.
| |
Collapse
|
16
|
Morris BI, Kittredge MJ, Casey B, Meng O, Chagas AM, Lamparter M, Thul T, Pask GM. PiSpy: An affordable, accessible, and flexible imaging platform for the automated observation of organismal biology and behavior. PLoS One 2022; 17:e0276652. [PMID: 36288371 PMCID: PMC9604989 DOI: 10.1371/journal.pone.0276652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
A great deal of understanding can be gleaned from direct observation of organismal growth, development, and behavior. However, direct observation can be time consuming and influence the organism through unintentional stimuli. Additionally, video capturing equipment can often be prohibitively expensive, difficult to modify to one's specific needs, and may come with unnecessary features. Here, we describe PiSpy, a low-cost, automated video acquisition platform that uses a Raspberry Pi computer and camera to record video or images at specified time intervals or when externally triggered. All settings and controls, such as programmable light cycling, are accessible to users with no programming experience through an easy-to-use graphical user interface. Importantly, the entire PiSpy system can be assembled for less than $100 using laser-cut and 3D-printed components. We demonstrate the broad applications and flexibility of PiSpy across a range of model and non-model organisms. Designs, instructions, and code can be accessed through an online repository, where a global community of PiSpy users can also contribute their own unique customizations and help grow the community of open-source research solutions.
Collapse
Affiliation(s)
- Benjamin I. Morris
- Program in Molecular Biology and Biochemistry, Middlebury College, Middlebury, Vermont, United States of America
- * E-mail: (BIM); (GMP)
| | - Marcy J. Kittredge
- Neuroscience Program, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - Bea Casey
- Department of Electrical and Computer Engineering, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - Owen Meng
- Department of Electrical and Computer Engineering, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - André Maia Chagas
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- TReND in Africa, Brighton, United Kingdom
- Gathering for Open Science Hardware
| | - Matt Lamparter
- Department of Electrical and Computer Engineering, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - Thomas Thul
- Department of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - Gregory M. Pask
- Program in Molecular Biology and Biochemistry, Middlebury College, Middlebury, Vermont, United States of America
- Department of Biology and Neuroscience Program, Middlebury College, Middlebury, Vermont, United States of America
- * E-mail: (BIM); (GMP)
| |
Collapse
|
17
|
Oellermann M, Jolles JW, Ortiz D, Seabra R, Wenzel T, Wilson H, Tanner RL. Open Hardware in Science: The Benefits of Open Electronics. Integr Comp Biol 2022; 62:1061-1075. [PMID: 35595471 PMCID: PMC9617215 DOI: 10.1093/icb/icac043] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/30/2022] [Accepted: 05/13/2022] [Indexed: 11/30/2022] Open
Abstract
Openly shared low-cost electronic hardware applications, known as open electronics, have sparked a new open-source movement, with much untapped potential to advance scientific research. Initially designed to appeal to electronic hobbyists, open electronics have formed a global “maker” community and are increasingly used in science and industry. In this perspective article, we review the current costs and benefits of open electronics for use in scientific research ranging from the experimental to the theoretical sciences. We discuss how user-made electronic applications can help (I) individual researchers, by increasing the customization, efficiency, and scalability of experiments, while improving data quantity and quality; (II) scientific institutions, by improving access to customizable high-end technologies, sustainability, visibility, and interdisciplinary collaboration potential; and (III) the scientific community, by improving transparency and reproducibility, helping decouple research capacity from funding, increasing innovation, and improving collaboration potential among researchers and the public. We further discuss how current barriers like poor awareness, knowledge access, and time investments can be resolved by increased documentation and collaboration, and provide guidelines for academics to enter this emerging field. We highlight that open electronics are a promising and powerful tool to help scientific research to become more innovative and reproducible and offer a key practical solution to improve democratic access to science.
Collapse
Affiliation(s)
- Michael Oellermann
- Technical University of Munich, TUM School of Life Sciences, Aquatic Systems Biology Unit, Mühlenweg 22, D-85354 Freising, Germany.,University of Tasmania, Institute for Marine and Antarctic Studies, Fisheries and Aquaculture Centre, Private Bag 49, Hobart, TAS 7001, Australia
| | - Jolle W Jolles
- Centre for Research on Ecology and Forestry Applications (CREAF), Campus UAB, Edifici C. 08193 Bellaterra Barcelona, Spain
| | - Diego Ortiz
- INTA, Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Manfredi, Ruta 9 Km 636, 5988, Manfredi, Córdoba, Argentina
| | - Rui Seabra
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
| | - Tobias Wenzel
- Pontificia Universidad Católica de Chile, Institute for Biological and Medical Engineering, Schools of Engineering (IIBM), Medicine and Biological Sciences, Santiago, Chile
| | - Hannah Wilson
- Utah State University, College of Science, Biology Department, 5305 Old Main Hill, Logan, UT, 84321, USA
| | - Richelle L Tanner
- Chapman University, Environmental Science and Policy Program, 1 University Drive, Orange, CA 92866, USA
| |
Collapse
|
18
|
Luo L, Hina BW, McFarland BW, Saunders JC, Smolin N, von Reyn CR. An optogenetics device with smartphone video capture to introduce neurotechnology and systems neuroscience to high school students. PLoS One 2022; 17:e0267834. [PMID: 35522662 PMCID: PMC9075642 DOI: 10.1371/journal.pone.0267834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/16/2022] [Indexed: 11/22/2022] Open
Abstract
Although neurotechnology careers are on the rise, and neuroscience curriculums have significantly grown at the undergraduate and graduate levels, increasing neuroscience and neurotechnology exposure in high school curricula has been an ongoing challenge. This is due, in part, to difficulties in converting cutting-edge neuroscience research into hands-on activities that are accessible for high school students and affordable for high school educators. Here, we describe and characterize a low-cost, easy-to-construct device to enable students to record rapid Drosophila melanogaster (fruit fly) behaviors during optogenetics experiments. The device is generated from inexpensive Arduino kits and utilizes a smartphone for video capture, making it easy to adopt in a standard biology laboratory. We validate this device is capable of replicating optogenetics experiments performed with more sophisticated setups at leading universities and institutes. We incorporate the device into a high school neuroengineering summer workshop. We find student participation in the workshop significantly enhances their understanding of key neuroscience and neurotechnology concepts, demonstrating how this device can be utilized in high school settings and undergraduate research laboratories seeking low-cost alternatives.
Collapse
Affiliation(s)
- Liudi Luo
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Bryce W. Hina
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Brennan W. McFarland
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Jillian C. Saunders
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Natalie Smolin
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Catherine R. von Reyn
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
19
|
Croteau-Chonka EC, Clayton MS, Venkatasubramanian L, Harris SN, Jones BMW, Narayan L, Winding M, Masson JB, Zlatic M, Klein KT. High-throughput automated methods for classical and operant conditioning of Drosophila larvae. eLife 2022; 11:70015. [PMID: 36305588 PMCID: PMC9678368 DOI: 10.7554/elife.70015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/26/2022] [Indexed: 02/02/2023] Open
Abstract
Learning which stimuli (classical conditioning) or which actions (operant conditioning) predict rewards or punishments can improve chances of survival. However, the circuit mechanisms that underlie distinct types of associative learning are still not fully understood. Automated, high-throughput paradigms for studying different types of associative learning, combined with manipulation of specific neurons in freely behaving animals, can help advance this field. The Drosophila melanogaster larva is a tractable model system for studying the circuit basis of behaviour, but many forms of associative learning have not yet been demonstrated in this animal. Here, we developed a high-throughput (i.e. multi-larva) training system that combines real-time behaviour detection of freely moving larvae with targeted opto- and thermogenetic stimulation of tracked animals. Both stimuli are controlled in either open- or closed-loop, and delivered with high temporal and spatial precision. Using this tracker, we show for the first time that Drosophila larvae can perform classical conditioning with no overlap between sensory stimuli (i.e. trace conditioning). We also demonstrate that larvae are capable of operant conditioning by inducing a bend direction preference through optogenetic activation of reward-encoding serotonergic neurons. Our results extend the known associative learning capacities of Drosophila larvae. Our automated training rig will facilitate the study of many different forms of associative learning and the identification of the neural circuits that underpin them.
Collapse
Affiliation(s)
- Elise C Croteau-Chonka
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom,Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | | | | | | | - Lakshmi Narayan
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Michael Winding
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom,Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jean-Baptiste Masson
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States,Decision and Bayesian Computation, Neuroscience Department & Computational Biology Department, Institut PasteurParisFrance
| | - Marta Zlatic
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom,Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States,MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Kristina T Klein
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom,Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| |
Collapse
|
20
|
Udell ME, Ni J, Garcia Martinez A, Mulligan MK, Redei EE, Chen H. TailTimer: A device for automating data collection in the rodent tail immersion assay. PLoS One 2021; 16:e0256264. [PMID: 34411163 PMCID: PMC8375991 DOI: 10.1371/journal.pone.0256264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/04/2021] [Indexed: 11/18/2022] Open
Abstract
The tail immersion assay is a widely used method for measuring acute thermal pain in a way which is quantifiable and reproducible. It is non-invasive and measures response to a stimulus that may be encountered by an animal in its natural environment. However, quantification of tail withdrawal latency relies on manual timing of tail flick using a stopwatch, and precise temperatures of the water at the time of measurement are most often not recorded. These two factors greatly reduce the reproducibility of tail immersion assay data and likely contribute to some of the discrepancies present among relevant literature. We designed a device, TailTimer, which uses a Raspberry Pi single-board computer, a digital temperature sensor, and two electrical wires, to automatically record tail withdrawal latency and water temperature. We programmed TailTimer to continuously display and record water temperature and to only permit the assay to be conducted when the water is within ± 0.25°C of the target temperature. Our software also records the identification of the animals using a radio frequency identification (RFID) system. We further adapted the RFID system to recognize several specific keys as user interface commands, allowing TailTimer to be operated via RFID fobs for increased usability. Data recorded using the TailTimer device showed a negative linear relationship between tail withdrawal latency and water temperature when tested between 47-50°C. We also observed a previously unreported, yet profound, effect of water mixing speed on latency. In one experiment using TailTimer, we observed significantly longer latencies following administration of oral oxycodone versus a distilled water control when measured after 15 mins or 1 h, but not after 4 h. TailTimer also detected significant strain differences in baseline latency. These findings valorize TailTimer in its sensitivity and reliability for measuring thermal pain thresholds.
Collapse
Affiliation(s)
- Mallory E. Udell
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Jie Ni
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Angel Garcia Martinez
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Megan K. Mulligan
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Eva E. Redei
- Department of Psychiatry and Behavioral Sciences, and Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States of America
| | - Hao Chen
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States of America
- * E-mail:
| |
Collapse
|
21
|
Jolles JW. Broad‐scale applications of the Raspberry Pi: A review and guide for biologists. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13652] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jolle W. Jolles
- Zukunftskolleg University of Konstanz Konstanz Germany
- Department of Collective Behaviour Max Planck Institute of Animal Behaviour Konstanz Germany
- Centre for Research on Ecology and Forestry Applications (CREAF) Barcelona Spain
| |
Collapse
|
22
|
Zhu ML, Herrera KJ, Vogt K, Bahl A. Navigational strategies underlying temporal phototaxis in Drosophila larvae. J Exp Biol 2021; 224:269086. [PMID: 34115116 DOI: 10.1242/jeb.242428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/29/2021] [Indexed: 11/20/2022]
Abstract
Navigating across light gradients is essential for survival for many animals. However, we still have a poor understanding of the algorithms that underlie such behaviors. Here, we developed a novel closed-loop phototaxis assay for Drosophila larvae in which light intensity is always spatially uniform but updates depending on the location of the animal in the arena. Even though larvae can only rely on temporal cues during runs, we find that they are capable of finding preferred areas of low light intensity. Further detailed analysis of their behavior reveals that larvae turn more frequently and that heading angle changes increase when they experience brightness increments over extended periods of time. We suggest that temporal integration of brightness change during runs is an important - and so far largely unexplored - element of phototaxis.
Collapse
Affiliation(s)
- Maxwell L Zhu
- Department of Physics, Harvard University, Cambridge, MA 02138, USA.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kristian J Herrera
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Katrin Vogt
- Department of Physics, Harvard University, Cambridge, MA 02138, USA.,Department of Biology, University of Konstanz, 78464Konstanz, Germany
| | - Armin Bahl
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.,Department of Biology, University of Konstanz, 78464Konstanz, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
23
|
Abstract
The olfactory system translates chemical signals into neuronal signals that inform behavioral decisions of the animal. Odors are cues for source identity, but if monitored long enough, they can also be used to localize the source. Odor representations should therefore be robust to changing conditions and flexible in order to drive an appropriate behavior. In this review, we aim at discussing the main computations that allow robust and flexible encoding of odor information in the olfactory neural pathway.
Collapse
|