1
|
Guo W, Kang H, Huo F, Zhang H, Ye X, Jashenko R, Zhang T, Ji R, Hu H. Environmental drivers affecting the dormancy of Paranosema locustae. J Appl Microbiol 2025; 136:lxaf097. [PMID: 40275519 DOI: 10.1093/jambio/lxaf097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/22/2025] [Accepted: 04/23/2025] [Indexed: 04/26/2025]
Abstract
AIMS As a gastrotoxic biocontrol agent employed for locust outbreak management, the infectivity of Paranosema locustae demonstrates significant dependence on pre-ingestion environmental exposure conditions, particularly temperature fluctuations, humidity levels, and UV radiation intensity, making the systematic investigation of these abiotic factors crucial for optimal field application. METHODS AND RESULTS In this study, we simulated key environmental parameters (temperature, humidity, and UV radiation) that critically influence P. locustae viability during the pre-infection phase of host exposure. Analyzed the locust growth curve post-infection, the pathogen's copy number, dormancy factor Lso2 gene expression, and phosphorylated protein levels. Results show a marked decline in lethality and infectivity of P. locustae after prolonged exposure to water, especially at 20°C for 15 days, the survival curve became similar to that of the negative control group. In contrast, drying at 40°C for 15 days preserved its pathogenicity. The pathogen exhibited strong UV resistance, remaining infectious after 24 h of UV exposure at intensities over 100 µW/cm². After 5-10 days of dry conditions, the significant increase in Lso2 gene expression highlights the entry of P. locustae into true dormancy, which subsequently returns to baseline with extended exposure. Western blot analysis supported that sustained phosphorylation is vital for P. locustae lethality. CONCLUSIONS Paranosema locustae demonstrates high-temperature tolerance, with dry heat and UV exposure maintaining infectivity, while wet environments reduce its viability.
Collapse
Affiliation(s)
- Weiqi Guo
- International Research Center of Cross-Border Pest Management in Central Asia, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Xinyi Road, Urumqi, Xinjiang Province 830054, P.R. China
- Tacheng, Research Field (Migratory Biology), Observation and Research Station of Xinjiang, Xinjiang 834700, China
| | - Hanye Kang
- International Research Center of Cross-Border Pest Management in Central Asia, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Xinyi Road, Urumqi, Xinjiang Province 830054, P.R. China
- Tacheng, Research Field (Migratory Biology), Observation and Research Station of Xinjiang, Xinjiang 834700, China
| | - Fan Huo
- International Research Center of Cross-Border Pest Management in Central Asia, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Xinyi Road, Urumqi, Xinjiang Province 830054, P.R. China
- Tacheng, Research Field (Migratory Biology), Observation and Research Station of Xinjiang, Xinjiang 834700, China
| | - Huihui Zhang
- International Research Center of Cross-Border Pest Management in Central Asia, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Xinyi Road, Urumqi, Xinjiang Province 830054, P.R. China
- Tacheng, Research Field (Migratory Biology), Observation and Research Station of Xinjiang, Xinjiang 834700, China
| | - Xiaofang Ye
- International Research Center of Cross-Border Pest Management in Central Asia, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Xinyi Road, Urumqi, Xinjiang Province 830054, P.R. China
- Tacheng, Research Field (Migratory Biology), Observation and Research Station of Xinjiang, Xinjiang 834700, China
| | - Roman Jashenko
- Institute of Zoology RK, 93, Al-Farabi Ave., Almaty 050060, Republic of Kazakhstan
| | - Tinghao Zhang
- International Research Center of Cross-Border Pest Management in Central Asia, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Xinyi Road, Urumqi, Xinjiang Province 830054, P.R. China
- Tacheng, Research Field (Migratory Biology), Observation and Research Station of Xinjiang, Xinjiang 834700, China
| | - Rong Ji
- International Research Center of Cross-Border Pest Management in Central Asia, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Xinyi Road, Urumqi, Xinjiang Province 830054, P.R. China
- Tacheng, Research Field (Migratory Biology), Observation and Research Station of Xinjiang, Xinjiang 834700, China
| | - Hongxia Hu
- International Research Center of Cross-Border Pest Management in Central Asia, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Xinyi Road, Urumqi, Xinjiang Province 830054, P.R. China
- Tacheng, Research Field (Migratory Biology), Observation and Research Station of Xinjiang, Xinjiang 834700, China
| |
Collapse
|
2
|
Ekemezie CL, Melnikov SV. Hibernating ribosomes as drug targets? Front Microbiol 2024; 15:1436579. [PMID: 39135874 PMCID: PMC11317432 DOI: 10.3389/fmicb.2024.1436579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/24/2024] [Indexed: 08/15/2024] Open
Abstract
When ribosome-targeting antibiotics attack actively growing bacteria, they occupy ribosomal active centers, causing the ribosomes to stall or make errors that either halt cellular growth or cause bacterial death. However, emerging research indicates that bacterial ribosomes spend a considerable amount of time in an inactive state known as ribosome hibernation, in which they dissociate from their substrates and bind to specialized proteins called ribosome hibernation factors. Since 60% of microbial biomass exists in a dormant state at any given time, these hibernation factors are likely the most common partners of ribosomes in bacterial cells. Furthermore, some hibernation factors occupy ribosomal drug-binding sites - leading to the question of how ribosome hibernation influences antibiotic efficacy, and vice versa. In this review, we summarize the current state of knowledge on physical and functional interactions between hibernation factors and ribosome-targeting antibiotics and explore the possibility of using antibiotics to target not only active but also hibernating ribosomes. Because ribosome hibernation empowers bacteria to withstand harsh conditions such as starvation, stress, and host immunity, this line of research holds promise for medicine, agriculture, and biotechnology: by learning to regulate ribosome hibernation, we could enhance our capacity to manage the survival of microorganisms in dormancy.
Collapse
Affiliation(s)
- Chinenye L. Ekemezie
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sergey V. Melnikov
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Medical School of Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
3
|
Koli S, Shetty S. Ribosomal dormancy at the nexus of ribosome homeostasis and protein synthesis. Bioessays 2024; 46:e2300247. [PMID: 38769702 DOI: 10.1002/bies.202300247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/05/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Dormancy or hibernation is a non-proliferative state of cells with low metabolic activity and gene expression. Dormant cells sequester ribosomes in a translationally inactive state, called dormant/hibernating ribosomes. These dormant ribosomes are important for the preservation of ribosomes and translation shut-off. While recent studies attempted to elucidate their modes of formation, the regulation and roles of the diverse dormant ribosomal populations are still largely understudied. The mechanistic details of the formation of dormant ribosomes in stress and especially their disassembly during recovery remain elusive. In this review, we discuss the roles of dormant ribosomes and their potential regulatory mechanisms. Furthermore, we highlight the paradigms that need to be answered in the field of ribosomal dormancy.
Collapse
Affiliation(s)
- Saloni Koli
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Sunil Shetty
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
4
|
Helena-Bueno K, Chan LI, Melnikov SV. Rippling life on a dormant planet: hibernation of ribosomes, RNA polymerases, and other essential enzymes. Front Microbiol 2024; 15:1386179. [PMID: 38770025 PMCID: PMC11102965 DOI: 10.3389/fmicb.2024.1386179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/21/2024] [Indexed: 05/22/2024] Open
Abstract
Throughout the tree of life, cells and organisms enter states of dormancy or hibernation as a key feature of their biology: from a bacterium arresting its growth in response to starvation, to a plant seed anticipating placement in fertile ground, to a human oocyte poised for fertilization to create a new life. Recent research shows that when cells hibernate, many of their essential enzymes hibernate too: they disengage from their substrates and associate with a specialized group of proteins known as hibernation factors. Here, we summarize how hibernation factors protect essential cellular enzymes from undesired activity or irreparable damage in hibernating cells. We show how molecular hibernation, once viewed as rare and exclusive to certain molecules like ribosomes, is in fact a widespread property of biological molecules that is required for the sustained persistence of life on Earth.
Collapse
Affiliation(s)
| | | | - Sergey V. Melnikov
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
5
|
Sharma H, Jespersen N, Ehrenbolger K, Carlson LA, Barandun J. Ultrastructural insights into the microsporidian infection apparatus reveal the kinetics and morphological transitions of polar tube and cargo during host cell invasion. PLoS Biol 2024; 22:e3002533. [PMID: 38422169 DOI: 10.1371/journal.pbio.3002533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/12/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
During host cell invasion, microsporidian spores translocate their entire cytoplasmic content through a thin, hollow superstructure known as the polar tube. To achieve this, the polar tube transitions from a compact spring-like state inside the environmental spore to a long needle-like tube capable of long-range sporoplasm delivery. The unique mechanical properties of the building blocks of the polar tube allow for an explosive transition from compact to extended state and support the rapid cargo translocation process. The molecular and structural factors enabling this ultrafast process and the structural changes during cargo delivery are unknown. Here, we employ light microscopy and in situ cryo-electron tomography to visualize multiple ultrastructural states of the Vairimorpha necatrix polar tube, allowing us to evaluate the kinetics of its germination and characterize the underlying morphological transitions. We describe a cargo-filled state with a unique ordered arrangement of microsporidian ribosomes, which cluster along the thin tube wall, and an empty post-translocation state with a reduced diameter but a thicker wall. Together with a proteomic analysis of endogenously affinity-purified polar tubes, our work provides comprehensive data on the infection apparatus of microsporidia and uncovers new aspects of ribosome regulation and transport.
Collapse
Affiliation(s)
- Himanshu Sharma
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory, Umeå University, Umeå, Sweden
- Department of Medical Biochemistry and Biophysics, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Wallenberg Centre for Molecular Medicine, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Nathan Jespersen
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory, Umeå University, Umeå, Sweden
| | - Kai Ehrenbolger
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory, Umeå University, Umeå, Sweden
- Department of Medical Biochemistry and Biophysics, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Wallenberg Centre for Molecular Medicine, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Lars-Anders Carlson
- Department of Medical Biochemistry and Biophysics, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Wallenberg Centre for Molecular Medicine, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Jonas Barandun
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory, Umeå University, Umeå, Sweden
| |
Collapse
|
6
|
Schierholz L, Brown CR, Helena-Bueno K, Uversky VN, Hirt RP, Barandun J, Melnikov SV. A Conserved Ribosomal Protein Has Entirely Dissimilar Structures in Different Organisms. Mol Biol Evol 2024; 41:msad254. [PMID: 37987564 PMCID: PMC10764239 DOI: 10.1093/molbev/msad254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/23/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
Ribosomes from different species can markedly differ in their composition by including dozens of ribosomal proteins that are unique to specific lineages but absent in others. However, it remains unknown how ribosomes acquire new proteins throughout evolution. Here, to help answer this question, we describe the evolution of the ribosomal protein msL1/msL2 that was recently found in ribosomes from the parasitic microorganism clade, microsporidia. We show that this protein has a conserved location in the ribosome but entirely dissimilar structures in different organisms: in each of the analyzed species, msL1/msL2 exhibits an altered secondary structure, an inverted orientation of the N-termini and C-termini on the ribosomal binding surface, and a completely transformed 3D fold. We then show that this fold switching is likely caused by changes in the ribosomal msL1/msL2-binding site, specifically, by variations in rRNA. These observations allow us to infer an evolutionary scenario in which a small, positively charged, de novo-born unfolded protein was first captured by rRNA to become part of the ribosome and subsequently underwent complete fold switching to optimize its binding to its evolving ribosomal binding site. Overall, our work provides a striking example of how a protein can switch its fold in the context of a complex biological assembly, while retaining its specificity for its molecular partner. This finding will help us better understand the origin and evolution of new protein components of complex molecular assemblies-thereby enhancing our ability to engineer biological molecules, identify protein homologs, and peer into the history of life on Earth.
Collapse
Affiliation(s)
- Léon Schierholz
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Science for Life Laboratory, Umeå University, Umeå 901 87, Sweden
| | - Charlotte R Brown
- Biosciences Institute, Newcastle University School of Medicine, Newcastle upon Tyne NE2 4HH, UK
| | - Karla Helena-Bueno
- Biosciences Institute, Newcastle University School of Medicine, Newcastle upon Tyne NE2 4HH, UK
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Robert P Hirt
- Biosciences Institute, Newcastle University School of Medicine, Newcastle upon Tyne NE2 4HH, UK
| | - Jonas Barandun
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Science for Life Laboratory, Umeå University, Umeå 901 87, Sweden
| | - Sergey V Melnikov
- Biosciences Institute, Newcastle University School of Medicine, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
7
|
McLaren M, Conners R, Isupov MN, Gil-Díez P, Gambelli L, Gold VAM, Walter A, Connell SR, Williams B, Daum B. CryoEM reveals that ribosomes in microsporidian spores are locked in a dimeric hibernating state. Nat Microbiol 2023; 8:1834-1845. [PMID: 37709902 PMCID: PMC10522483 DOI: 10.1038/s41564-023-01469-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/11/2023] [Indexed: 09/16/2023]
Abstract
Translational control is an essential process for the cell to adapt to varying physiological or environmental conditions. To survive adverse conditions such as low nutrient levels, translation can be shut down almost entirely by inhibiting ribosomal function. Here we investigated eukaryotic hibernating ribosomes from the microsporidian parasite Spraguea lophii in situ by a combination of electron cryo-tomography and single-particle electron cryo-microscopy. We show that microsporidian spores contain hibernating ribosomes that are locked in a dimeric (100S) state, which is formed by a unique dimerization mechanism involving the beak region. The ribosomes within the dimer are fully assembled, suggesting that they are ready to be activated once the host cell is invaded. This study provides structural evidence for dimerization acting as a mechanism for ribosomal hibernation in microsporidia, and therefore demonstrates that eukaryotes utilize this mechanism in translational control.
Collapse
Affiliation(s)
- Mathew McLaren
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Rebecca Conners
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Michail N Isupov
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Patricia Gil-Díez
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
- Crop Science Centre, Cambridge University, Cambridge, UK
| | - Lavinia Gambelli
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Vicki A M Gold
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Andreas Walter
- Center of Optical Technologies, Aalen University, Aalen, Germany
| | - Sean R Connell
- Structural Biology of Cellular Machines, IIS Biobizkaia, Barakaldo, Spain
| | - Bryony Williams
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Bertram Daum
- Living Systems Institute, University of Exeter, Exeter, UK.
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
8
|
Affiliation(s)
- Elizabeth Weyer
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, USA
| | - Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, USA.
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Wadi L, El Jarkass HT, Tran TD, Islah N, Luallen RJ, Reinke AW. Genomic and phenotypic evolution of nematode-infecting microsporidia. PLoS Pathog 2023; 19:e1011510. [PMID: 37471459 PMCID: PMC10393165 DOI: 10.1371/journal.ppat.1011510] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 06/24/2023] [Indexed: 07/22/2023] Open
Abstract
Microsporidia are a large phylum of intracellular parasites that can infect most types of animals. Species in the Nematocida genus can infect nematodes including Caenorhabditis elegans, which has become an important model to study mechanisms of microsporidia infection. To understand the genomic properties and evolution of nematode-infecting microsporidia, we sequenced the genomes of nine species of microsporidia, including two genera, Enteropsectra and Pancytospora, without any previously sequenced genomes. Core cellular processes, including metabolic pathways, are mostly conserved across genera of nematode-infecting microsporidia. Each species encodes unique proteins belonging to large gene families that are likely used to interact with host cells. Most strikingly, we observed one such family, NemLGF1, is present in both Nematocida and Pancytospora species, but not any other microsporidia. To understand how Nematocida phenotypic traits evolved, we measured the host range, tissue specificity, spore size, and polar tube length of several species in the genus. Our phylogenetic analysis shows that Nematocida is composed of two groups of species with distinct traits and that species with longer polar tubes infect multiple tissues. Together, our work details both genomic and trait evolution between related microsporidia species and provides a useful resource for further understanding microsporidia evolution and infection mechanisms.
Collapse
Affiliation(s)
- Lina Wadi
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | | | - Tuan D Tran
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Nizar Islah
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Robert J Luallen
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Aaron W Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
10
|
Structure of the reduced microsporidian proteasome bound by PI31-like peptides in dormant spores. Nat Commun 2022; 13:6962. [PMID: 36379934 PMCID: PMC9666519 DOI: 10.1038/s41467-022-34691-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022] Open
Abstract
Proteasomes play an essential role in the life cycle of intracellular pathogens with extracellular stages by ensuring proteostasis in environments with limited resources. In microsporidia, divergent parasites with extraordinarily streamlined genomes, the proteasome complexity and structure are unknown, which limits our understanding of how these unique pathogens adapt and compact essential eukaryotic complexes. We present cryo-electron microscopy structures of the microsporidian 20S and 26S proteasome isolated from dormant or germinated Vairimorpha necatrix spores. The discovery of PI31-like peptides, known to inhibit proteasome activity, bound simultaneously to all six active sites within the central cavity of the dormant spore proteasome, suggests reduced activity in the environmental stage. In contrast, the absence of the PI31-like peptides and the existence of 26S particles post-germination in the presence of ATP indicates that proteasomes are reactivated in nutrient-rich conditions. Structural and phylogenetic analyses reveal that microsporidian proteasomes have undergone extensive reductive evolution, lost at least two regulatory proteins, and compacted nearly every subunit. The highly derived structure of the microsporidian proteasome, and the minimized version of PI31 presented here, reinforce the feasibility of the development of specific inhibitors and provide insight into the unique evolution and biology of these medically and economically important pathogens.
Collapse
|
11
|
Smith PR, Pandit SC, Loerch S, Campbell ZT. The space between notes: emerging roles for translationally silent ribosomes. Trends Biochem Sci 2022; 47:477-491. [PMID: 35246374 PMCID: PMC9106873 DOI: 10.1016/j.tibs.2022.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 01/02/2023]
Abstract
In addition to their central functions in translation, ribosomes can adopt inactive structures that are fully assembled yet devoid of mRNA. We describe how the abundance of idle eukaryotic ribosomes is influenced by a broad range of biological conditions spanning viral infection, nutrient deprivation, and developmental cues. Vacant ribosomes may provide a means to exclude ribosomes from translation while also shielding them from degradation, and the variable identity of factors that occlude ribosomes may impart distinct functionality. We propose that regulated changes in the balance of idle and active ribosomes provides a means to fine-tune translation. We provide an overview of idle ribosomes, describe what is known regarding their function, and highlight questions that may clarify their biological roles.
Collapse
Affiliation(s)
- Patrick R Smith
- The University of Texas at Dallas, Department of Biological Sciences, Richardson, TX, USA
| | - Sapna C Pandit
- University of California, Santa Cruz, Department of Chemistry and Biochemistry, Santa Cruz, CA, USA
| | - Sarah Loerch
- University of California, Santa Cruz, Department of Chemistry and Biochemistry, Santa Cruz, CA, USA
| | - Zachary T Campbell
- The University of Texas at Dallas, Department of Biological Sciences, Richardson, TX, USA; The Center for Advanced Pain Studies (CAPS), University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
12
|
Nicholson D, Salamina M, Panek J, Helena-Bueno K, Brown CR, Hirt RP, Ranson NA, Melnikov SV. Adaptation to genome decay in the structure of the smallest eukaryotic ribosome. Nat Commun 2022; 13:591. [PMID: 35105900 PMCID: PMC8807834 DOI: 10.1038/s41467-022-28281-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/14/2022] [Indexed: 12/18/2022] Open
Abstract
The evolution of microbial parasites involves the counterplay between natural selection forcing parasites to improve and genetic drifts forcing parasites to lose genes and accumulate deleterious mutations. Here, to understand how this counterplay occurs at the scale of individual macromolecules, we describe cryo-EM structure of ribosomes from Encephalitozoon cuniculi, a eukaryote with one of the smallest genomes in nature. The extreme rRNA reduction in E. cuniculi ribosomes is accompanied with unparalleled structural changes, such as the evolution of previously unknown molten rRNA linkers and bulgeless rRNA. Furthermore, E. cuniculi ribosomes withstand the loss of rRNA and protein segments by evolving an ability to use small molecules as structural mimics of degenerated rRNA and protein segments. Overall, we show that the molecular structures long viewed as reduced, degenerated, and suffering from debilitating mutations possess an array of compensatory mechanisms that allow them to remain active despite the extreme molecular reduction. Many parasitic organisms contain molecular structures that are drastically smaller than analogous structures in non-parasitic organisms. Here the authors describe a cryo-EM structure of the ribosome from E. cuniculi that reveals that it compensated rRNA truncations by evolving the ability to use small molecules as ribosomal building blocks.
Collapse
Affiliation(s)
- David Nicholson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Marco Salamina
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Johan Panek
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Karla Helena-Bueno
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Charlotte R Brown
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert P Hirt
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sergey V Melnikov
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK. .,Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
13
|
Jespersen N, Monrroy L, Barandun J. Impact of Genome Reduction in Microsporidia. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 114:1-42. [PMID: 35543997 DOI: 10.1007/978-3-030-93306-7_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microsporidia represent an evolutionary outlier in the tree of life and occupy the extreme edge of the eukaryotic domain with some of their biological features. Many of these unicellular fungi-like organisms have reduced their genomic content to potentially the lowest limit. With some of the most compacted eukaryotic genomes, microsporidia are excellent model organisms to study reductive evolution and its functional consequences. While the growing number of sequenced microsporidian genomes have elucidated genome composition and organization, a recent increase in complementary post-genomic studies has started to shed light on the impacts of genome reduction in these unique pathogens. This chapter will discuss the biological framework enabling genome minimization and will use one of the most ancient and essential macromolecular complexes, the ribosome, to illustrate the effects of extreme genome reduction on a structural, molecular, and cellular level. We outline how reductive evolution in microsporidia has shaped DNA organization, the composition and function of the ribosome, and the complexity of the ribosome biogenesis process. Studying compacted mechanisms, processes, or macromolecular machines in microsporidia illuminates their unique lifestyle and provides valuable insights for comparative eukaryotic structural biology.
Collapse
Affiliation(s)
- Nathan Jespersen
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory, Umeå University, Umeå, Sweden.
| | - Leonardo Monrroy
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory, Umeå University, Umeå, Sweden
| | - Jonas Barandun
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory, Umeå University, Umeå, Sweden.
| |
Collapse
|
14
|
Williams BAP, Williams TA, Trew J. Comparative Genomics of Microsporidia. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 114:43-69. [PMID: 35543998 DOI: 10.1007/978-3-030-93306-7_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The microsporidia are a phylum of intracellular parasites that represent the eukaryotic cell in a state of extreme reduction, with genomes and metabolic capabilities embodying eukaryotic cells in arguably their most streamlined state. Over the past 20 years, microsporidian genomics has become a rapidly expanding field starting with sequencing of the genome of Encephalitozoon cuniculi, one of the first ever sequenced eukaryotes, to the current situation where we have access to the data from over 30 genomes across 20+ genera. Reaching back further in evolutionary history, to the point where microsporidia diverged from other eukaryotic lineages, we now also have genomic data for some of the closest known relatives of the microsporidia such as Rozella allomycis, Metchnikovella spp. and Amphiamblys sp. Data for these organisms allow us to better understand the genomic processes that shaped the emergence of the microsporidia as a group. These intensive genomic efforts have revealed some of the processes that have shaped microsporidian cells and genomes including patterns of genome expansions and contractions through gene gain and loss, whole genome duplication, differential patterns of invasion and purging of transposable elements. All these processes have been shown to occur across short and longer time scales to give rise to a phylum of parasites with dynamic genomes with a diversity of sizes and organisations.
Collapse
Affiliation(s)
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Jahcub Trew
- School of Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
15
|
Tuzlakoğlu Öztürk M, Güllülü Ö. Dimerization underlies the aggregation propensity of intrinsically disordered coiled-coil domain-containing 124. Proteins 2021; 90:218-228. [PMID: 34369007 DOI: 10.1002/prot.26210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/10/2022]
Abstract
Coiled-coil domain-containing 124 (CCDC124) is a recently discovered ribosome-binding protein conserved in eukaryotes. CCDC124 has regulatory functions on the mediation of reversible ribosomal hibernation and translational recovery by direct attachment to large subunit ribosomal protein uL5, 25S rRNA backbone, and tRNA-binding P/A-site major groove. Moreover, it independently mediates cell division and cellular stress response by facilitating cytokinetic abscission and disulfide stress-dependent transcriptional regulation, respectively. However, the structural characterization and intracellular physiological status of CCDC124 remain unknown. In this study, we employed advanced in silico protein modeling and characterization tools to generate a native-like tertiary structure of CCDC124 and examine the disorder, low sequence complexity, and aggregation propensities, as well as high-order dimeric/oligomeric states. Subsequently, dimerization of CCDC124 was investigated with co-immunoprecipitation (CO-IP) analysis, immunostaining, and a recent live-cell protein-protein interaction method, bimolecular fluorescence complementation (BiFC). Results revealed CCDC124 as a highly disordered protein consisting of low complexity regions at the N-terminus and an aggregation sequence (151-IAVLSV-156) located in the middle region. Molecular docking and post-docking binding free energy analyses highlighted a potential involvement of V153 residue on the generation of high-order dimeric/oligomeric structures. Co-IP, immunostaining, and BiFC analyses were used to further confirm the dimeric state of CCDC124 predominantly localized at the cytoplasm. In conclusion, our findings revealed in silico structural characterization and in vivo subcellular physiological state of CCDC124, suggesting low-complexity regions located at the N-terminus of disordered CCDC124 may regulate the formation of aggregates or high-order dimeric/oligomeric states.
Collapse
Affiliation(s)
| | - Ömer Güllülü
- Department of Radiotherapy and Oncology, University Hospital Frankfurt, Frankfurt am Main, Germany.,Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
16
|
Hibernation-Promoting Factor Sequesters Staphylococcus aureus Ribosomes to Antagonize RNase R-Mediated Nucleolytic Degradation. mBio 2021; 12:e0033421. [PMID: 34253058 PMCID: PMC8406268 DOI: 10.1128/mbio.00334-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Bacterial and eukaryotic hibernation factors prevent translation by physically blocking the decoding center of ribosomes, a phenomenon called ribosome hibernation that often occurs in response to nutrient deprivation. The human pathogen Staphylococcus aureus lacking the sole hibernation factor HPF undergoes massive ribosome degradation via an unknown pathway. Using genetic and biochemical approaches, we find that inactivating the 3′-to-5′ exonuclease RNase R suppresses ribosome degradation in the Δhpf mutant. In vitro cell-free degradation assays confirm that 30S and 70S ribosomes isolated from the Δhpf mutant are extremely susceptible to RNase R, in stark contrast to nucleolytic resistance of the HPF-bound 70S and 100S complexes isolated from the wild type. In the absence of HPF, specific S. aureus 16S rRNA helices are sensitive to nucleolytic cleavage. These RNase hot spots are distinct from that found in the Escherichia coli ribosomes. S. aureus RNase R is associated with ribosomes, but unlike the E. coli counterpart, it is not regulated by general stressors and acetylation. The results not only highlight key differences between the evolutionarily conserved RNase R homologs but also provide direct evidence that HPF preserves ribosome integrity beyond its role in translational avoidance, thereby poising the hibernating ribosomes for rapid resumption of translation.
Collapse
|