1
|
Poom L. Dynamics of visual reversals from ambiguous spinning biological-motion and rigid structure-from-motion. Iperception 2025; 16:20416695251342410. [PMID: 40443534 PMCID: PMC12120536 DOI: 10.1177/20416695251342410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 04/30/2025] [Indexed: 06/02/2025] Open
Abstract
Three-dimensional rigid structure-from-motion (SFM) and structure from nonrigid biological point-light motion stimuli are perceptually ambiguous. This study investigated the dynamics of perceived reversals in two cases: a spinning point-light walker (PLW) and a spinning rigid human figure in a walking pose (SFM). It specifically focused on two key questions: Could the facing-the-viewer bias (FTV) account for the reversals for spinning PLW? To what extent do motion cues from limb motions or configural cues from the human shape contribute to the perceived reversals? In Experiment 1, participants reported reversals with more than twice the frequency while viewing the upright and inverted PLW than for the rigid structures, but an FTV bias was observed only for the upright walker. The perception of an ambulating living human shape of typically encountered walkers in an upright position thus plays a crucial role in obtaining an FTV bias for these spinning stimuli. In Experiment 2, the human figures walked or rigidly moved along a circular path while facing the motion direction, spinning at the same rate as in Experiment 1. A strong initial FTV bias was then observed, but the reversal rate was substantially reduced compared to reversals when spinning on the same spot. These findings highlight theoretically interesting distinct temporal dynamics of reversals and biases between biological motion and rigid SFM. It is argued that the differences in reversals between conditions have a common cause in the form of past experiences that differ between conditions.
Collapse
|
2
|
Abdai J. Perception of animate motion in dogs. Front Psychol 2025; 15:1522489. [PMID: 39830849 PMCID: PMC11739167 DOI: 10.3389/fpsyg.2024.1522489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Various motion cues can lead to the perception of animacy, including (1) simple motion characteristics such as starting to move from rest, (2) motion patterns of interactions like chasing, or (3) the motion of point-lights representing the joints of a moving biological agent. Due to the relevance of dogs in comparative research and considering the large variability within the species, studying animacy perception in dogs can provide unique information about how selection for specific traits and individual-level (social) differences may shape social perception. Despite these advantages, only a few studies have investigated the phenomenon in dogs. In this mini-review, we discuss the current findings about how specific motion dynamics associated with animacy drive dogs' visual attention.
Collapse
Affiliation(s)
- Judit Abdai
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| |
Collapse
|
3
|
De Agrò M, Galpayage Dona HS, Vallortigara G. Seeing life in the teeming world: animacy perception in arthropods. Front Psychol 2024; 15:1492239. [PMID: 39640042 PMCID: PMC11617153 DOI: 10.3389/fpsyg.2024.1492239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
The term "animacy perception" describes the ability of animals to detect cues that indicate whether a particular object in the environment is alive or not. Such skill is crucial for survival, as it allows for the rapid identification of animated agents, being them potential social partners, or dangers to avoid. The literature on animacy perception is rich, and the ability has been found to be present in a wide variety of vertebrate taxa. Many studies suggest arthropods also possess this perceptual ability, however, the term "animacy" has not often been explicitly used in the research focused on these models. Here, we review the current literature providing evidence of animacy perception in arthropods, focusing especially on studies of prey categorization, predator avoidance, and social interactions. First, we present evidence for the detection of biological motion, which involves recognizing the spatio-temporal patterns characteristic of liveliness. We also consider the congruency between shape and motion that gives rise to animacy percept, like the maintenance of a motion direction aligned with the main body axis. Next, we discuss how some arthropods use static visual cues, such as facial markings, to detect and recognize individuals. We explore the mechanisms, development, and neural basis of this face detection system, focusing on the well-studied paper wasps. Finally, we discuss thanatosis-a behavior in which an animal feigns death to disrupt cues of liveliness-as evidence for the active manipulation of animacy perception in arthropods.
Collapse
Affiliation(s)
- Massimo De Agrò
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | | | | |
Collapse
|
4
|
Loconsole M, Ferrante F, Giacomazzi D, De Agrò M. Independence and synergy of spatial attention in the two visual systems of jumping spiders. J Exp Biol 2024; 227:jeb246199. [PMID: 39324315 DOI: 10.1242/jeb.246199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
By selectively focusing on a specific portion of the environment, animals can solve the problem of information overload, toning down irrelevant inputs and concentrating only on the relevant ones. This may be of particular relevance for animals such as the jumping spider, which possess a wide visual field of almost 360 deg and thus could benefit from a low-cost system for sharpening attention. Jumping spiders have a modular visual system composed of four pairs of eyes, of which only the two frontal eyes (the anteromedial eyes, AMEs) are motile, whereas the other secondary pairs remain immobile. We hypothesised that jumping spiders can exploit both principal and secondary eyes for stimulus detection and attentional shift, with the two systems working synergistically. In experiment 1, we investigated the attentional responses of AMEs following a spatial cue presented to the secondary eyes. In experiment 2, we tested for enhanced attention in the secondary eyes' visual field congruent with the direction of the AMEs' focus. In both experiments, we observed that animals were faster and more accurate in detecting a target when it appeared in a direction opposite to that of the initial cue. In contrast with our initial hypothesis, these results would suggest that attention is segregated across eyes, with each system working on compensating the other by attending to different spatial locations.
Collapse
Affiliation(s)
- Maria Loconsole
- Department of General Psychology, University of Padua, 35131 Padua, Italy
- Department of Biological and Experimental Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4DQ, UK
| | - Federico Ferrante
- Department of General Psychology, University of Padua, 35131 Padua, Italy
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Florence, Italy
| | - Davide Giacomazzi
- Department of General Psychology, University of Padua, 35131 Padua, Italy
| | - Massimo De Agrò
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Florence, Italy
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, 56025 Pontedera, Italy
- Esapolis' Living Insects Museum, 35143 Padua, Italy
| |
Collapse
|
5
|
Humphrey B, Stouffer DB, Moser-Rust A, Helton WS, Grace RC, Nelson XJ. The effect of interstimulus interval on sustained attention. Behav Processes 2024; 222:105097. [PMID: 39299355 DOI: 10.1016/j.beproc.2024.105097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
The ability of nervous systems to filter out irrelevant and repetitive stimuli may prevent animals from becoming 'saturated' with excess information. However, animals must be particular about which stimuli to attend to and which to ignore, as mistakes may be costly. Using a comparative approach, we explored the effect of interstimulus interval (ISI) between repeated presentations of visual stimuli presented on a screen to test the decrease in responses (response decrement) of both Trite planiceps jumping spiders and untrained Columba livia pigeons, animals with comparable visual ability despite having structurally different visual systems and brain size. We used ISIs of 2.5 s, 5 s, 10 s, predicting that decreases in ISI would lead to progressively less responses to the stimuli. Following from previous work on T. planiceps, we also manipulated pigeon hunger level, finding that hungry birds were initially more responsive than sated pigeons, but the rate of decrease in responses to the stimulus did not differ between the two groups. While a clear response decrement was seen in both species across all conditions, shorter ISIs resulted in more dramatic response decrements, aligning with previous work and with the resource depletion theory posited in the human-based literature.
Collapse
Affiliation(s)
- Bonnie Humphrey
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Daniel B Stouffer
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Averill Moser-Rust
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - William S Helton
- Department of Psychology, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand; Department of Psychology, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA
| | - Randolph C Grace
- Department of Psychology, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Ximena J Nelson
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.
| |
Collapse
|
6
|
Brebner JS, Loconsole M, Hanley D, Vasas V. Through an animal's eye: the implications of diverse sensory systems in scientific experimentation. Proc Biol Sci 2024; 291:20240022. [PMID: 39016597 PMCID: PMC11253838 DOI: 10.1098/rspb.2024.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 03/01/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024] Open
Abstract
'Accounting for the sensory abilities of animals is critical in experimental design.' No researcher would disagree with this statement, yet it is often the case that we inadvertently fall for anthropocentric biases and use ourselves as the reference point. This paper discusses the risks of adopting an anthropocentric view when working with non-human animals, and the unintended consequences this has on our experimental designs and results. To this aim, we provide general examples of anthropocentric bias from different fields of animal research, with a particular focus on animal cognition and behaviour, and lay out the potential consequences of adopting a human-based perspective. Knowledge of the sensory abilities, both in terms of similarities to humans and peculiarities of the investigated species, is crucial to ensure solid conclusions. A more careful consideration of the diverse sensory systems of animals would improve many scientific fields and enhance animal welfare in the laboratory.
Collapse
Affiliation(s)
- Joanna S. Brebner
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI); CNRS, University Paul Sabatier – Toulouse III, Toulouse, France
| | - Maria Loconsole
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of General Psychology, University of Padova, Padova, Italy
| | - Daniel Hanley
- Department of Biology, George Mason University, Fairfax, VA, USA
| | - Vera Vasas
- School of Life Sciences, University of Sussex, BrightonBN1 9RH, UK
| |
Collapse
|
7
|
Wolff JO, Rößler DC. Evolution: Decoding the adaptation of multi-eyed visual systems. Curr Biol 2024; 34:R675-R677. [PMID: 39043137 DOI: 10.1016/j.cub.2024.05.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Many invertebrates possess more than two pairs of eyes - but does eye redundancy aid in ecological diversification? A new study finds varied size adaptation of different eye pairs in spiders, demonstrating how developmental modularity of multi-eyed systems effectively balances selective pressures.
Collapse
Affiliation(s)
- Jonas O Wolff
- Evolutionary Biomechanics, University of Greifswald, Greifswald, Germany; School of Natural Sciences, Macquarie University, Sydney, Australia.
| | - Daniela C Rößler
- Zukunftskolleg, University of Konstanz, Konstanz, Germany; Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany
| |
Collapse
|
8
|
De Agrò M, Rößler DC, Shamble PS. Eye-specific detection and a multi-eye integration model of biological motion perception. J Exp Biol 2024; 227:jeb247061. [PMID: 38752337 PMCID: PMC11418026 DOI: 10.1242/jeb.247061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/07/2024] [Indexed: 06/27/2024]
Abstract
'Biological motion' refers to the distinctive kinematics observed in many living organisms, where visually perceivable points on the animal move at fixed distances from each other. Across the animal kingdom, many species have developed specialized visual circuitry to recognize such biological motion and to discriminate it from other patterns. Recently, this ability has been observed in the distributed visual system of jumping spiders. These eight-eyed animals use six eyes to perceive motion, while the remaining two (the principal anterior medial eyes) are shifted across the visual scene to further inspect detected objects. When presented with a biologically moving stimulus and a random one, jumping spiders turn to face the latter, clearly demonstrating the ability to discriminate between them. However, it remains unclear whether the principal eyes are necessary for this behavior, whether all secondary eyes can perform this discrimination, or whether a single eye-pair is specialized for this task. Here, we systematically tested the ability of jumping spiders to discriminate between biological and random visual stimuli by testing each eye-pair alone. Spiders were able to discriminate stimuli only when the anterior lateral eyes were unblocked, and performed at chance levels in other configurations. Interestingly, spiders showed a preference for biological motion over random stimuli - unlike in past work. We therefore propose a new model describing how specialization of the anterior lateral eyes for detecting biological motion contributes to multi-eye integration in this system. This integration generates more complex behavior through the combination of simple, single-eye responses. We posit that this in-built modularity may be a solution to the limited resources of these invertebrates' brains, constituting a novel approach to visual processing.
Collapse
Affiliation(s)
- Massimo De Agrò
- Faculty of Biology, University of Regensburg, 93053 Regensburg, Germany
- Department of Biology, University of Florence, 50121 Firenze, Italy
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Daniela C. Rößler
- Zukunftskolleg, Konstanz University, 78464 Konstanz, Germany
- Department of Biology, Konstanz University, 78464 Konstanz, Germany
- Department of Ecology of Animal Societies, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
| | - Paul S. Shamble
- Kavli Institute for Neuroscience, Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
9
|
Tan M, Chan JYO, Yu L, Tan EJ, Li D. Background matching can reduce responsiveness of jumping spiders to stimuli in motion. J Exp Biol 2024; 227:jeb246092. [PMID: 38054359 PMCID: PMC10906486 DOI: 10.1242/jeb.246092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
Motion and camouflage were previously considered to be mutually exclusive, as sudden movements can be easily detected. Background matching, for instance, is a well-known, effective camouflage strategy where the colour and pattern of a stationary animal match its surrounding background. However, background matching may lose its efficacy when the animal moves, as the boundaries of the animal become more defined against its background. Recent evidence shows otherwise, as camouflaged objects can be less detectable than uncamouflaged objects even while in motion. Here, we explored whether the detectability of computer-generated stimuli varies with the speed of motion, background (matching and unmatching) and size of stimuli in six species of jumping spiders (Araneae: Salticidae). Our results showed that, in general, the responsiveness of all six salticid species tested decreased with increasing stimulus speed regardless of whether the stimuli were conspicuous or camouflaged. Importantly, salticid responses to camouflaged stimuli were significantly lower compared with those to conspicuous stimuli. There were significant differences in motion detectability across species when the stimuli were conspicuous, suggesting differences in visual acuity in closely related species of jumping spiders. Furthermore, small stimuli elicited significantly lower responses than large stimuli across species and speeds. Our results thus suggest that background matching is effective even when stimuli are in motion, reducing the detectability of moving stimuli.
Collapse
Affiliation(s)
- Min Tan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore117543
| | - Jeremiah Y. O. Chan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore117543
| | - Long Yu
- Centre for Behavioural Ecology & Evolution, College of Life Sciences, Hubei University, Wuhan 430062, Hubei, China
| | - Eunice J. Tan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore117543
- Division of Science, Yale-NUS College, 16 College Avenue West, Singapore138527
| | - Daiqin Li
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore117543
- Centre for Behavioural Ecology & Evolution, College of Life Sciences, Hubei University, Wuhan 430062, Hubei, China
| |
Collapse
|
10
|
Han Y, Han W, Li L, Zhang T, Wang Y. Identifying critical kinematic features of animate motion and contribution to animacy perception. iScience 2023; 26:107658. [PMID: 37664633 PMCID: PMC10472316 DOI: 10.1016/j.isci.2023.107658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/30/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
Humans can distinguish flying birds from drones based solely on motion features when no image information is available. However, it remains unclear which motion features of animate motion induce our animacy perception. To address this, we first analyzed the differences in centroid motion between birds and drones, and discovered that birds exhibit greater acceleration, angular speed, and trajectory fluctuations. We further determined the order of their importance in evoking animacy perception was trajectory fluctuations, acceleration, and speed. More interestingly, people judge whether a moving object is alive using a feature-matching strategy, implying that animacy perception is induced in a key feature-triggered way rather than relying on the accumulation of evidence. Our findings not only shed light on the critical motion features that induce animacy perception and their relative contributions but also have important implications for developing target classification algorithms based on motion features.
Collapse
Affiliation(s)
- Yifei Han
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Department of Psychology, Beijing 100049, China
| | - Wenhao Han
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Department of Psychology, Beijing 100049, China
| | - Liang Li
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Tao Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Department of Psychology, Beijing 100049, China
| | - Yizheng Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
11
|
Mannino E, Regolin L, Moretto E, De Agrò M. Study Replication: Shape Discrimination in a Conditioning Procedure on the Jumping Spider Phidippus regius. Animals (Basel) 2023; 13:2326. [PMID: 37508103 PMCID: PMC10376405 DOI: 10.3390/ani13142326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Spiders possess a unique visual system, split into eight different eyes and divided into two fully independent visual pathways. This peculiar organization begs the question of how visual information is processed, and whether the classically recognized Gestalt rules of perception hold true. In a previous experiment, we tested the ability of jumping spiders to associate a geometrical shape with a reward (sucrose solution), and then to generalize the learned association to a partially occluded version of the shape. The occluded shape was presented together with a broken version of the same shape. The former should be perceived as a whole shape only in the case the animals, like humans, are able to amodally complete an object partly hidden by an occluder; otherwise, the two shapes would be perceived as identical. There, the spiders learned the association but failed to generalize. Here, we present a replication of the experiment, with an increased number of subjects, a DeepLabCut-based scoring procedure, and an improved statistical analysis. The results of the experiment follow closely the direction of the effects observed in the previous work but fail to rise to significance. We discuss the importance of study replication, and we especially highlight the use of automated scoring procedures to maximize objectivity in behavioral studies.
Collapse
Affiliation(s)
- Eleonora Mannino
- Department of General Psychology, University of Padua, 35122 Padua, Italy
| | - Lucia Regolin
- Department of General Psychology, University of Padua, 35122 Padua, Italy
| | - Enzo Moretto
- Esapolis' Living Insects Museum of the Padua Province, 35143 Padua, Italy
- Butterfly Arc Ltd., 35036 Padua, Italy
| | - Massimo De Agrò
- Esapolis' Living Insects Museum of the Padua Province, 35143 Padua, Italy
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, 56025 Pontedera, Italy
| |
Collapse
|
12
|
Earl B. Humans, fish, spiders and bees inherited working memory and attention from their last common ancestor. Front Psychol 2023; 13:937712. [PMID: 36814887 PMCID: PMC9939904 DOI: 10.3389/fpsyg.2022.937712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/11/2022] [Indexed: 02/08/2023] Open
Abstract
All brain processes that generate behaviour, apart from reflexes, operate with information that is in an "activated" state. This activated information, which is known as working memory (WM), is generated by the effect of attentional processes on incoming information or information previously stored in short-term or long-term memory (STM or LTM). Information in WM tends to remain the focus of attention; and WM, attention and STM together enable information to be available to mental processes and the behaviours that follow on from them. WM and attention underpin all flexible mental processes, such as solving problems, making choices, preparing for opportunities or threats that could be nearby, or simply finding the way home. Neither WM nor attention are necessarily conscious, and both may have evolved long before consciousness. WM and attention, with similar properties, are possessed by humans, archerfish, and other vertebrates; jumping spiders, honey bees, and other arthropods; and members of other clades, whose last common ancestor (LCA) is believed to have lived more than 600 million years ago. It has been reported that very similar genes control the development of vertebrate and arthropod brains, and were likely inherited from their LCA. Genes that control brain development are conserved because brains generate adaptive behaviour. However, the neural processes that generate behaviour operate with the activated information in WM, so WM and attention must have existed prior to the evolution of brains. It is proposed that WM and attention are widespread amongst animal species because they are phylogenetically conserved mechanisms that are essential to all mental processing, and were inherited from the LCA of vertebrates, arthropods, and some other animal clades.
Collapse
|
13
|
Lemaire BS, Vallortigara G. Life is in motion (through a chick's eye). Anim Cogn 2023; 26:129-140. [PMID: 36222937 PMCID: PMC9877072 DOI: 10.1007/s10071-022-01703-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 01/29/2023]
Abstract
Cognitive scientists, social psychologists, computer scientists, neuroscientists, ethologists and many others have all wondered how brains detect and interpret the motion of living organisms. It appears that specific cues, incorporated into our brains by natural selection, serve to signal the presence of living organisms. A simple geometric figure such as a triangle put in motion with specific kinematic rules can look alive, and it can even seem to have intentions and goals. In this article, we survey decades of parallel investigations on the motion cues that drive animacy perception-the sensation that something is alive-in non-human animals, especially in precocial species, such as the domestic chick, to identify inborn biological predispositions. At the same time, we highlight the relevance of these studies for an understanding of human typical and atypical cognitive development.
Collapse
Affiliation(s)
- Bastien S Lemaire
- Center for Mind and Brain Sciences, University of Trento, Trento, Italy.
| | | |
Collapse
|
14
|
Bartos M. Visual prey categorization by a generalist jumping spider. THE EUROPEAN ZOOLOGICAL JOURNAL 2022. [DOI: 10.1080/24750263.2022.2143583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Maciej Bartos
- Department of Biodiversity Studies and Bioeducation, University of Łódź, Poland
| |
Collapse
|
15
|
Lemaire BS, Rosa-Salva O, Fraja M, Lorenzi E, Vallortigara G. Spontaneous preference for unpredictability in the temporal contingencies between agents' motion in naive domestic chicks. Proc Biol Sci 2022; 289:20221622. [PMID: 36350221 PMCID: PMC9653227 DOI: 10.1098/rspb.2022.1622] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/12/2022] [Indexed: 08/24/2023] Open
Abstract
The ability to recognize animate agents based on their motion has been investigated in humans and animals alike. When the movements of multiple objects are interdependent, humans perceive the presence of social interactions and goal-directed behaviours. Here, we investigated how visually naive domestic chicks respond to agents whose motion was reciprocally contingent in space and time (i.e. the time and direction of motion of one object can be predicted from the time and direction of motion of another object). We presented a 'social aggregation' stimulus, in which three smaller discs repeatedly converged towards a bigger disc, moving in a manner resembling a mother hen and chicks (versus a control stimulus lacking such interactions). Remarkably, chicks preferred stimuli in which the timing of the motion of one object could not be predicted by that of other objects. This is the first demonstration of a sensitivity to the temporal relationships between the motion of different objects in naive animals, a trait that could be at the basis of the development of the perception of social interaction and goal-directed behaviours.
Collapse
Affiliation(s)
- Bastien S. Lemaire
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura, 1, 38068 Rovereto, TN, Italy
| | - Orsola Rosa-Salva
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura, 1, 38068 Rovereto, TN, Italy
| | - Margherita Fraja
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura, 1, 38068 Rovereto, TN, Italy
| | - Elena Lorenzi
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura, 1, 38068 Rovereto, TN, Italy
| | - Giorgio Vallortigara
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura, 1, 38068 Rovereto, TN, Italy
| |
Collapse
|
16
|
Ma X, Yuan X, Liu J, Shen L, Yu Y, Zhou W, Liu Z, Jiang Y. Gravity-Dependent Animacy Perception in Zebrafish. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9829016. [PMID: 36128180 PMCID: PMC9470206 DOI: 10.34133/2022/9829016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022]
Abstract
Biological motion (BM), depicted by a handful of point lights attached to the major joints, conveys rich animacy information, which is significantly disrupted if BM is shown upside down. This well-known inversion effect in BM perception is conserved in terrestrial vertebrates and is presumably a manifestation of an evolutionarily endowed perceptual filter (i.e., life motion detector) tuned to gravity-compatible BM. However, it remains unknown whether aquatic animals, living in a completely different environment from terrestrial animals, perceive BM in a gravity-dependent manner. Here, taking advantage of their typical shoaling behaviors, we used zebrafish as a model animal to examine the ability of teleosts to discriminate between upright (gravity-compatible) and inverted (gravity-incompatible) BM signals. We recorded their swimming trajectories and quantified their preference based on dwelling time and head orientation. The results obtained from three experiments consistently showed that zebrafish spent significantly more time swimming in proximity to and orienting towards the upright BM relative to the inverted BM or other gravity-incompatible point-light stimuli (i.e., the non-BM). More intriguingly, when the recorded point-light video clips of fish were directly compared with those of human walkers and pigeons, we could identify a unique and consistent pattern of accelerating movements in the vertical (gravity) direction. These findings, to our knowledge, demonstrate for the first time the inversion effect in BM perception in simple aquatic vertebrates and suggest that the evolutionary origin of gravity-dependent BM processing may be traced back to ancient aquatic animals.
Collapse
Affiliation(s)
- Xiaohan Ma
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Xiangyong Yuan
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Jiahuan Liu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Shen
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Yiwen Yu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Wen Zhou
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Zuxiang Liu
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| | - Yi Jiang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Institute for Brain Research, Beijing 102206, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| |
Collapse
|
17
|
Loconsole M, Regolin L. Are prime numbers special? Insights from the life sciences. Biol Direct 2022; 17:11. [PMID: 35619145 PMCID: PMC9137056 DOI: 10.1186/s13062-022-00326-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022] Open
Abstract
Prime numbers have been attracting the interest of scientists since the first formulation of Euclid’s theorem in 300 B.C. Nowadays, physicists and mathematicians continue to formulate new theorems about prime numbers, trying to comprehensively explain their articulated properties. However, evidence from biology and experimental psychology suggest that prime numbers possess distinctive natural properties that pre-exist human grasping. The present work aims at reviewing the existing literature on prime numbers in the life sciences, including some recent experimental contributions employing newly hatched domestic chicks as animal model to test for spontaneous mechanisms allowing discrimination of primes from non-primes. Our overarching goal is that of discussing some instances of prime numbers in nature, with particular reference to their peculiar, non-mathematical, perceptual properties.
Collapse
Affiliation(s)
- Maria Loconsole
- Department of General Psychology, University of Padua, Padua, Italy.
| | - Lucia Regolin
- Department of General Psychology, University of Padua, Padua, Italy
| |
Collapse
|