1
|
Mishra P, Potlia R, Sandhu KS. Left-handed conformations of glycyl residues may confer protection against protein aggregation. FEBS J 2025. [PMID: 40243345 DOI: 10.1111/febs.70092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/09/2025] [Accepted: 03/04/2025] [Indexed: 04/18/2025]
Abstract
The lack of Cβ atom allows glycyl to adopt left-handed Ramachandran conformations, typically disallowed for l-amino acids. The underlying significance remains under-appreciated. Through conformational analysis of glycyls at 1104 disease and 343 benign variant sites, we show that the left-handed glycyls are over-represented (odds ratio > 1.3) at disease variant sites and are evolutionarily conserved. Mutations involving l-disallowed glycyls destabilize native folding by altering free energies (P = 2.4 × 10-4). The l-disallowed glycyls are enriched at the aggregation gatekeepers, more profoundly so in thermophiles (P = 2.0 × 10-6), implying heightened selection to impede aggregation. Mutations of l-disallowed glycyls also reduce the protein solubility (P = 0.001). Due to mostly positive Φ dihedral-angle, Cα atom of l-disallowed glycyl flips to conform a crescent that likely disrupts β-strand alignment, discouraging the intermolecular aggregation of β-strands. Deep learning confirms the predictive value of l-disallowed glycyls in identifying pathogenic variants (accuracy = 0.81 vs. 0.69, area under the curve = 0.88 vs. 0.79). The findings underscore the evolutionary selection of l-disallowed conformations of glycyls to maintain proteostasis by modulating protein stability and aggregation, and suggest applications for disease-associated genetic prioritization and soluble protein design.
Collapse
Affiliation(s)
- Purva Mishra
- DBT Bioinformatics Centre, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) -Mohali, SAS Nagar, India
| | - Rajesh Potlia
- DBT Bioinformatics Centre, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) -Mohali, SAS Nagar, India
| | - Kuljeet Singh Sandhu
- DBT Bioinformatics Centre, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) -Mohali, SAS Nagar, India
| |
Collapse
|
2
|
Abecia Martínez EI, Puente Prieto J, Delgado Fernández JL, Martínez Castillón J, Nagore González C, Ferrando Lamana L. Mucopolysaccharidoses type VII (Sly syndrome): New uncertain pathogenic variants in GUSB gene. REVISTA ESPANOLA DE PATOLOGIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ANATOMIA PATOLOGICA Y DE LA SOCIEDAD ESPANOLA DE CITOLOGIA 2025; 58:100814. [PMID: 39983349 DOI: 10.1016/j.patol.2025.100814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/28/2024] [Accepted: 09/17/2024] [Indexed: 02/23/2025]
Abstract
Mucopolysaccharidoses (MPS) are a group of diseases caused by the accumulation of glycosaminoglycans (GAGs). Currently, eleven enzyme deficiencies have been described, with eight different MPS subtypes reported. MPS VII, also known as Sly syndrome, is a recessive disorder caused by pathogenic variants in the GUSB gene. This results in dysfunction of the enzyme β-glucuronidase, which can lead to non-immune hydrops fetalis (NIHF). The patient was a 22-week foetus with pathological nuchal translucency and unfavourable prognosis based on radiological criteria; as a result, both parents opted to terminate the pregnancy. Post mortem examination revealed several hallmarks of NIHF. Moreover, microscopic examination showed widespread histiocytes with microvacuolated cytoplasm. Genetic testing demonstrated biallelic variants in exon 8 of the GUSB gene, but both of uncertain meaning. Subsequent histological findings suggested that these GUSB gene variants resulted in MPS VII.
Collapse
|
3
|
Pormehr LA, Manian KV, Cho HE, Comander J. Higher throughput assays for understanding the pathogenicity of variants of unknown significance (VUS) in the RPE65 gene. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.635952. [PMID: 39975398 PMCID: PMC11838478 DOI: 10.1101/2025.01.31.635952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Purpose RPE65 is a key enzyme in the visual cycle that regenerates 11-cis retinal. Mutations in RPE65 cause a retinal dystrophy that is treatable with an FDA-approved gene therapy. Variants of unknown significance (VUS) on genetic testing can prevent patients from obtaining a firm genetic diagnosis and accessing gene therapy. Since most RPE65 mutations have a low protein expression level, this study developed and validated multiple methods for assessing the expression level of RPE65 variants. This functional evidence is expected to aid in reclassifying RPE65 VUS as pathogenic, which in turn can broaden the application of gene therapy for RPE65 patients. Methods 30 different variants of RPE65 (12 pathogenic, 13 VUS, 5 benign) were cloned into lentiviral expression vectors. Protein expression levels were measured after transient transfection or in stable cell lines, using Western blots and immunostaining with flow cytometry. Then, a pooled, high throughput, fluorescence-activated cell sorting (FACS) assay with an NGS-based sequencing readout was used to assay pools of RPE65 variants. Results There was a high correlation between protein levels measured by Western blot, flow cytometry, and the pooled FACS assay. Using these assays, we confirm and extend RPE65 variant data, including that Pro111Ser has a low, pathogenic expression level. There was a high correlation between RPE65 expression and previously reported enzyme activity levels; further development of a high throughput enzymatic activity assay would complement this expression data. Conclusion This scalable approach can be used to solve patient pedigrees with VUS in RPE65, facilitating treatment and providing RPE65 structure-function information.
Collapse
Affiliation(s)
- Leila Azizzadeh Pormehr
- Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Mass Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Kannan Vrindavan Manian
- Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Mass Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Ha Eun Cho
- Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Mass Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason Comander
- Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Mass Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Andhika NS, Biswas S, Hardcastle C, Green DJ, Ramsden SC, Birney E, Black GC, Sergouniotis PI. Using computational approaches to enhance the interpretation of missense variants in the PAX6 gene. Eur J Hum Genet 2024; 32:1005-1013. [PMID: 38849599 PMCID: PMC11292026 DOI: 10.1038/s41431-024-01638-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/12/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
The PAX6 gene encodes a highly-conserved transcription factor involved in eye development. Heterozygous loss-of-function variants in PAX6 can cause a range of ophthalmic disorders including aniridia. A key molecular diagnostic challenge is that many PAX6 missense changes are presently classified as variants of uncertain significance. While computational tools can be used to assess the effect of genetic alterations, the accuracy of their predictions varies. Here, we evaluated and optimised the performance of computational prediction tools in relation to PAX6 missense variants. Through inspection of publicly available resources (including HGMD, ClinVar, LOVD and gnomAD), we identified 241 PAX6 missense variants that were used for model training and evaluation. The performance of ten commonly used computational tools was assessed and a threshold optimization approach was utilized to determine optimal cut-off values. Validation studies were subsequently undertaken using PAX6 variants from a local database. AlphaMissense, SIFT4G and REVEL emerged as the best-performing predictors; the optimized thresholds of these tools were 0.967, 0.025, and 0.772, respectively. Combining the prediction from these top-three tools resulted in lower performance compared to using AlphaMissense alone. Tailoring the use of computational tools by employing optimized thresholds specific to PAX6 can enhance algorithmic performance. Our findings have implications for PAX6 variant interpretation in clinical settings.
Collapse
Affiliation(s)
- Nadya S Andhika
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Susmito Biswas
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Claire Hardcastle
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - David J Green
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Simon C Ramsden
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
| | - Graeme C Black
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Panagiotis I Sergouniotis
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK.
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK.
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK.
| |
Collapse
|
5
|
Visibelli A, Finetti R, Niccolai N, Spiga O, Santucci A. Molecular Origins of the Mendelian Rare Diseases Reviewed by Orpha.net: A Structural Bioinformatics Investigation. Int J Mol Sci 2024; 25:6953. [PMID: 39000061 PMCID: PMC11241713 DOI: 10.3390/ijms25136953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
The study of rare diseases is important not only for the individuals affected but also for the advancement of medical knowledge and a deeper understanding of human biology and genetics. The wide repertoire of structural information now available from reliable and accurate prediction methods provides the opportunity to investigate the molecular origins of most of the rare diseases reviewed in the Orpha.net database. Thus, it has been possible to analyze the topology of the pathogenic missense variants found in the 2515 proteins involved in Mendelian rare diseases (MRDs), which form the database for our structural bioinformatics study. The amino acid substitutions responsible for MRDs showed different mutation site distributions at different three-dimensional protein depths. We then highlighted the depth-dependent effects of pathogenic variants for the 20,061 pathogenic variants that are present in our database. The results of this structural bioinformatics investigation are relevant, as they provide additional clues to mitigate the damage caused by MRD.
Collapse
Affiliation(s)
- Anna Visibelli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (A.V.); (R.F.); (O.S.); (A.S.)
| | - Rebecca Finetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (A.V.); (R.F.); (O.S.); (A.S.)
| | - Neri Niccolai
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (A.V.); (R.F.); (O.S.); (A.S.)
- Le Ricerche del BarLume Free Association, Ville di Corsano, 53014 Monteroni d’Arbia, Italy
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (A.V.); (R.F.); (O.S.); (A.S.)
- Industry 4.0 Competence Center ARTES 4.0, Viale Rinaldo Piaggio, 56025 Pontedera, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (A.V.); (R.F.); (O.S.); (A.S.)
- Industry 4.0 Competence Center ARTES 4.0, Viale Rinaldo Piaggio, 56025 Pontedera, Italy
| |
Collapse
|
6
|
Xie Y, Wu R, Li H, Dong W, Zhou G, Zhao H. Statistical methods for assessing the effects of de novo variants on birth defects. Hum Genomics 2024; 18:25. [PMID: 38486307 PMCID: PMC10938830 DOI: 10.1186/s40246-024-00590-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/26/2024] [Indexed: 03/18/2024] Open
Abstract
With the development of next-generation sequencing technology, de novo variants (DNVs) with deleterious effects can be identified and investigated for their effects on birth defects such as congenital heart disease (CHD). However, statistical power is still limited for such studies because of the small sample size due to the high cost of recruiting and sequencing samples and the low occurrence of DNVs. DNV analysis is further complicated by genetic heterogeneity across diseased individuals. Therefore, it is critical to jointly analyze DNVs with other types of genomic/biological information to improve statistical power to identify genes associated with birth defects. In this review, we discuss the general workflow, recent developments in statistical methods, and future directions for DNV analysis.
Collapse
Affiliation(s)
- Yuhan Xie
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Ruoxuan Wu
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA
| | - Hongyu Li
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA
| | - Weilai Dong
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Geyu Zhou
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
7
|
Barbitoff YA, Ushakov MO, Lazareva TE, Nasykhova YA, Glotov AS, Predeus AV. Bioinformatics of germline variant discovery for rare disease diagnostics: current approaches and remaining challenges. Brief Bioinform 2024; 25:bbad508. [PMID: 38271481 PMCID: PMC10810331 DOI: 10.1093/bib/bbad508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/18/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
Next-generation sequencing (NGS) has revolutionized the field of rare disease diagnostics. Whole exome and whole genome sequencing are now routinely used for diagnostic purposes; however, the overall diagnosis rate remains lower than expected. In this work, we review current approaches used for calling and interpretation of germline genetic variants in the human genome, and discuss the most important challenges that persist in the bioinformatic analysis of NGS data in medical genetics. We describe and attempt to quantitatively assess the remaining problems, such as the quality of the reference genome sequence, reproducible coverage biases, or variant calling accuracy in complex regions of the genome. We also discuss the prospects of switching to the complete human genome assembly or the human pan-genome and important caveats associated with such a switch. We touch on arguably the hardest problem of NGS data analysis for medical genomics, namely, the annotation of genetic variants and their subsequent interpretation. We highlight the most challenging aspects of annotation and prioritization of both coding and non-coding variants. Finally, we demonstrate the persistent prevalence of pathogenic variants in the coding genome, and outline research directions that may enhance the efficiency of NGS-based disease diagnostics.
Collapse
Affiliation(s)
- Yury A Barbitoff
- Dpt. of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, Mendeleevskaya line 3, 199034, St. Petersburg, Russia
- Bioinformatics Institute, Kentemirovskaya st. 2A, 197342, St. Petersburg, Russia
| | - Mikhail O Ushakov
- Dpt. of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, Mendeleevskaya line 3, 199034, St. Petersburg, Russia
| | - Tatyana E Lazareva
- Dpt. of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, Mendeleevskaya line 3, 199034, St. Petersburg, Russia
| | - Yulia A Nasykhova
- Dpt. of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, Mendeleevskaya line 3, 199034, St. Petersburg, Russia
| | - Andrey S Glotov
- Dpt. of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, Mendeleevskaya line 3, 199034, St. Petersburg, Russia
| | - Alexander V Predeus
- Bioinformatics Institute, Kentemirovskaya st. 2A, 197342, St. Petersburg, Russia
| |
Collapse
|
8
|
Shahrear S, Islam ABMMK. Unveiling clinically significant PPARγ mutations for thiazolidinedione treatment responsiveness through atomistic simulations. Int J Biol Macromol 2023; 253:126990. [PMID: 37741483 DOI: 10.1016/j.ijbiomac.2023.126990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 09/25/2023]
Abstract
In Type 2 diabetes, increased insulin sensitivity is induced by thiazolidinedione activation of the peroxisome proliferator-activated receptor gamma (PPARγ). Recent data indicate a relationship between SNPs in PPARγ and poor drug response. Therefore, understanding the pathogenic consequences of mutations in PPARγ-mediated protein-drug interactions will be prima-facie for establishing personalized medicine. The PPARG gene has 197 missense SNPs, 22 of which were determined to be both deleterious and destabilizing, employing in silico approaches. Molecular docking analysis suggested that the mutation influenced the binding energy of at least seven of the variants. The mutant R316H was identified as the most damaging and deleterious from the observed results. For a better understanding of the dynamic variation upon mutation at the atomic level, molecular dynamics simulations of the wild-type and R316H mutant PPARγ structure were performed. The analysis indicates that the mutation increased protein structural compactness while decreasing flexibility. The reduced dynamics in the mutant structure was further validated by principal component analysis. This mechanistic evaluation of the PPARγ protein variants provides insight into the relationship between genetic variation and interindividual variability of drug responsiveness and will facilitate the future studies for the development of tailored treatment regime for precision medicine.
Collapse
Affiliation(s)
- Sazzad Shahrear
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | |
Collapse
|
9
|
Cheng J, Novati G, Pan J, Bycroft C, Žemgulytė A, Applebaum T, Pritzel A, Wong LH, Zielinski M, Sargeant T, Schneider RG, Senior AW, Jumper J, Hassabis D, Kohli P, Avsec Ž. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science 2023; 381:eadg7492. [PMID: 37733863 DOI: 10.1126/science.adg7492] [Citation(s) in RCA: 665] [Impact Index Per Article: 332.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/23/2023] [Indexed: 09/23/2023]
Abstract
The vast majority of missense variants observed in the human genome are of unknown clinical significance. We present AlphaMissense, an adaptation of AlphaFold fine-tuned on human and primate variant population frequency databases to predict missense variant pathogenicity. By combining structural context and evolutionary conservation, our model achieves state-of-the-art results across a wide range of genetic and experimental benchmarks, all without explicitly training on such data. The average pathogenicity score of genes is also predictive for their cell essentiality, capable of identifying short essential genes that existing statistical approaches are underpowered to detect. As a resource to the community, we provide a database of predictions for all possible human single amino acid substitutions and classify 89% of missense variants as either likely benign or likely pathogenic.
Collapse
|
10
|
Fife JD, Cassa CA. Estimating clinical risk in gene regions from population sequencing cohort data. Am J Hum Genet 2023; 110:940-949. [PMID: 37236177 PMCID: PMC10257006 DOI: 10.1016/j.ajhg.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
While pathogenic variants can significantly increase disease risk, it is still challenging to estimate the clinical impact of rare missense variants more generally. Even in genes such as BRCA2 or PALB2, large cohort studies find no significant association between breast cancer and rare missense variants collectively. Here, we introduce REGatta, a method to estimate clinical risk from variants in smaller segments of individual genes. We first define these regions by using the density of pathogenic diagnostic reports and then calculate the relative risk in each region by using over 200,000 exome sequences in the UK Biobank. We apply this method in 13 genes with established roles across several monogenic disorders. In genes with no significant difference at the gene level, this approach significantly separates disease risk for individuals with rare missense variants at higher or lower risk (BRCA2 regional model OR = 1.46 [1.12, 1.79], p = 0.0036 vs. BRCA2 gene model OR = 0.96 [0.85, 1.07] p = 0.4171). We find high concordance between these regional risk estimates and high-throughput functional assays of variant impact. We compare our method with existing methods and the use of protein domains (Pfam) as regions and find REGatta better identifies individuals at elevated or reduced risk. These regions provide useful priors and are potentially useful for improving risk assessment for genes associated with monogenic diseases.
Collapse
Affiliation(s)
- James D Fife
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher A Cassa
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Fife JD, Cassa CA. Estimating clinical risk in gene regions from population sequencing cohort data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.06.23284281. [PMID: 36711752 PMCID: PMC9882564 DOI: 10.1101/2023.01.06.23284281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
While pathogenic variants significantly increase disease risk in many genes, it is still challenging to estimate the clinical impact of rare missense variants more generally. Even in genes such as BRCA2 or PALB2 , large cohort studies find no significant association between breast cancer and rare germline missense variants collectively. Here we introduce REGatta, a method to improve the estimation of clinical risk in gene segments. We define gene regions using the density of pathogenic diagnostic reports, and then calculate the relative risk in each of these regions using 109,581 exome sequences from women in the UK Biobank. We apply this method in seven established breast cancer genes, and identify regions in each gene with statistically significant differences in breast cancer incidence for rare missense carriers. Even in genes with no significant difference at the gene level, this approach significantly separates rare missense variant carriers at higher or lower risk ( BRCA2 regional model OR=1.46 [1.12, 1.79], p=0.0036 vs. BRCA2 gene model OR=0.96 [0.85,1.07] p=0.4171). We find high concordance between these regional risk estimates and high-throughput functional assays of variant impact. We compare with existing methods and the use of protein domains (Pfam) as regions, and find REGatta better identifies individuals at elevated or reduced risk. These regions provide useful priors which can potentially be used to improve risk assessment and clinical management.
Collapse
Affiliation(s)
- James D Fife
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Christopher A Cassa
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
12
|
Lee KE, Procopio R, Pulido JS, Gunton KB. Initial Investigations of Intrinsically Disordered Regions in Inherited Retinal Diseases. Int J Mol Sci 2023; 24:ijms24021060. [PMID: 36674574 PMCID: PMC9861917 DOI: 10.3390/ijms24021060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 01/08/2023] Open
Abstract
Intrinsically disordered regions (IDRs) are protein regions that are unable to fold into stable tertiary structures, enabling their involvement in key signaling and regulatory functions via dynamic interactions with diverse binding partners. An understanding of IDRs and their association with biological function may help elucidate the pathogenesis of inherited retinal diseases (IRDs). The main focus of this work was to investigate the degree of disorder in 14 proteins implicated in IRDs and their relationship with the number of pathogenic missense variants. Metapredict, an accurate, high-performance predictor that reproduces consensus disorder scores, was used to probe the degree of disorder as a function of the amino acid sequence. Publicly available data on gnomAD and ClinVar was used to analyze the number of pathogenic missense variants. We show that proteins with an over-representation of missense variation exhibit a high degree of disorder, and proteins with a high amount of disorder tolerate a higher degree of missense variation. These proteins also exhibit a lower amount of pathogenic missense variants with respect to total missense variants. These data suggest that protein function may be related to the overall level of disorder and could be used to refine variant interpretation in IRDs.
Collapse
Affiliation(s)
- Karen E. Lee
- Pediatric Ophthalmology & Adult Strabismus Service, Wills Eye Hospital, 840 Walnut Street, Philadelphia, PA 19107, USA
| | - Rebecca Procopio
- Pediatric Ophthalmology & Adult Strabismus Service, Wills Eye Hospital, 840 Walnut Street, Philadelphia, PA 19107, USA
| | - Jose S. Pulido
- Retina Service, Wills Eye Hospital and Mid Atlantic Retina, 840 Walnut Street, Philadelphia, PA 19107, USA
- Department of Translational Ophthalmology, Wills Eye Hospital, 840 Walnut Street, Philadelphia, PA 19107, USA
- Correspondence:
| | - Kammi B. Gunton
- Pediatric Ophthalmology & Adult Strabismus Service, Wills Eye Hospital, 840 Walnut Street, Philadelphia, PA 19107, USA
| |
Collapse
|
13
|
Bhargava A, Sandoval Castellanos AM, Shah S, Ning K. An insight into the iPSCs-derived two-dimensional culture and three-dimensional organoid models for neurodegenerative disorders. Interface Focus 2022; 12:20220040. [PMID: 35992771 PMCID: PMC9372641 DOI: 10.1098/rsfs.2022.0040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/18/2022] [Indexed: 12/20/2022] Open
Abstract
The use of induced pluripotent stem cells (iPSCs) is a promising approach when used as models to study neurodegenerative disorders (NDDs) in vitro. iPSCs have been used in in vitro two-dimensional cultures; however, these two-dimensional cultures do not mimic the physiological three-dimensional cellular environment. The use of iPSCs-derived three-dimensional organoids has risen as a powerful alternative to using animal models to study NDDs. These iPSCs-derived three-dimensional organoids can resemble the complexity of the tissue of interest, making it an approachable, cost-effective technique, to study NDDs in an ethical manner. Furthermore, the use of iPSCs-derived organoids will be an important tool to develop new therapeutics and pharmaceutics to treat NDDs. Herein, we will highlight how iPSCs-derived two-dimensional cultures and three-dimensional organoids have been used to study NDDs, as well as the advantages and disadvantages of both techniques.
Collapse
Affiliation(s)
- Anushka Bhargava
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, The University of Sheffield, Sheffield S10 2HQ, UK
| | - Ana M. Sandoval Castellanos
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, The University of Sheffield, Sheffield S10 2HQ, UK
| | - Sonali Shah
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, The University of Sheffield, Sheffield S10 2HQ, UK
| | - Ke Ning
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, The University of Sheffield, Sheffield S10 2HQ, UK
| |
Collapse
|
14
|
Tiberti M, Terkelsen T, Degn K, Beltrame L, Cremers TC, da Piedade I, Di Marco M, Maiani E, Papaleo E. MutateX: an automated pipeline for in silico saturation mutagenesis of protein structures and structural ensembles. Brief Bioinform 2022; 23:6552273. [PMID: 35323860 DOI: 10.1093/bib/bbac074] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/28/2022] [Accepted: 02/16/2022] [Indexed: 12/26/2022] Open
Abstract
Mutations, which result in amino acid substitutions, influence the stability of proteins and their binding to biomolecules. A molecular understanding of the effects of protein mutations is both of biotechnological and medical relevance. Empirical free energy functions that quickly estimate the free energy change upon mutation (ΔΔG) can be exploited for systematic screenings of proteins and protein complexes. In silico saturation mutagenesis can guide the design of new experiments or rationalize the consequences of known mutations. Often software such as FoldX, while fast and reliable, lack the necessary automation features to apply them in a high-throughput manner. We introduce MutateX, a software to automate the prediction of ΔΔGs associated with the systematic mutation of each residue within a protein, or protein complex to all other possible residue types, using the FoldX energy function. MutateX also supports ΔΔG calculations over protein ensembles, upon post-translational modifications and in multimeric assemblies. At the heart of MutateX lies an automated pipeline engine that handles input preparation, parallelization and outputs publication-ready figures. We illustrate the MutateX protocol applied to different case studies. The results of the high-throughput scan provided by our tools can help in different applications, such as the analysis of disease-associated mutations, to complement experimental deep mutational scans, or assist the design of variants for industrial applications. MutateX is a collection of Python tools that relies on open-source libraries. It is available free of charge under the GNU General Public License from https://github.com/ELELAB/mutatex.
Collapse
Affiliation(s)
- Matteo Tiberti
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Thilde Terkelsen
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Kristine Degn
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Ludovica Beltrame
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Tycho Canter Cremers
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Isabelle da Piedade
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Miriam Di Marco
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Emiliano Maiani
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Elena Papaleo
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark.,Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800, Lyngby, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Lindquist P, Madsen JS, Bräuner-Osborne H, Rosenkilde MM, Hauser AS. Mutational Landscape of the Proglucagon-Derived Peptides. Front Endocrinol (Lausanne) 2021; 12:698511. [PMID: 34220721 PMCID: PMC8248487 DOI: 10.3389/fendo.2021.698511] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022] Open
Abstract
Strong efforts have been placed on understanding the physiological roles and therapeutic potential of the proglucagon peptide hormones including glucagon, GLP-1 and GLP-2. However, little is known about the extent and magnitude of variability in the amino acid composition of the proglucagon precursor and its mature peptides. Here, we identified 184 unique missense variants in the human proglucagon gene GCG obtained from exome and whole-genome sequencing of more than 450,000 individuals across diverse sub-populations. This provides an unprecedented source of population-wide genetic variation data on missense mutations and insights into the evolutionary constraint spectrum of proglucagon-derived peptides. We show that the stereotypical peptides glucagon, GLP-1 and GLP-2 display fewer evolutionary alterations and are more likely to be functionally affected by genetic variation compared to the rest of the gene products. Elucidating the spectrum of genetic variations and estimating the impact of how a peptide variant may influence human physiology and pathophysiology through changes in ligand binding and/or receptor signalling, are vital and serve as the first important step in understanding variability in glucose homeostasis, amino acid metabolism, intestinal epithelial growth, bone strength, appetite regulation, and other key physiological parameters controlled by these hormones.
Collapse
Affiliation(s)
- Peter Lindquist
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jakob S. Madsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette M. Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alexander S. Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|