1
|
Plazolles N, Kulyk H, Cahoreau E, Biran M, Wargnies M, Pineda E, El Kadri M, Rimoldi A, Hervé P, Asencio C, Rivière L, Michels PAM, Inaoka D, Tetaud E, Portais JC, Bringaud F. The glycosomal ATP-dependent phosphofructokinase of Trypanosoma brucei operates also in the gluconeogenic direction. PLoS Biol 2025; 23:e3002938. [PMID: 40378123 PMCID: PMC12121924 DOI: 10.1371/journal.pbio.3002938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 05/29/2025] [Accepted: 04/10/2025] [Indexed: 05/18/2025] Open
Abstract
In the glucose-free environment of the midgut of the tsetse fly vector, the procyclic forms of Trypanosoma brucei primarily consume proline to feed its central carbon and energy metabolism. In this context, the parasite produces through gluconeogenesis, glucose 6-phosphate (G6P), the precursor of essential metabolic pathways, from proline catabolism. We show here that the parasite uses three different enzymes to perform the key gluconeogenic reaction producing fructose 6-phosphate (F6P) from fructose 1,6-bisphosphate, (i) fructose-1,6-bisphosphatase (FBPase), the canonical enzyme performing this reaction, (ii) sedoheptulose-1,7-bisphosphatase (SBPase), and (iii) more surprisingly ATP-dependent phosphofructokinase (PFK), an enzyme considered to irreversibly catalyze the opposite reaction involved in glycolysis. These three enzymes, as well as six other glycolytic/gluconeogenic enzymes, are located in peroxisome-related organelles, named glycosomes. Incorporation of 13C-enriched glycerol (a more effective alternative to proline for monitoring gluconeogenic activity) into F6P and G6P was more affected in the PFK null mutant than in the FBPase null mutant, suggesting the PFK contributes at least as much as FBPase to gluconeogenesis. We also showed that glucose deprivation did not affect the quantities of PFK substrates and products, whereas an approximately 500-fold increase in the substrate/product ratio was expected for PFK to carry out the gluconeogenic reaction. In conclusion, we show for the first time that ATP-dependent PFK can function in vivo in the gluconeogenic direction, even in the presence of FBPase activity. This particular feature, which precludes loss of ATP through a futile cycle involving PFK and FBPase working simultaneously in the glycolytic and gluconeogenic directions, respectively, is possibly due to the supramolecular organization of the metabolic pathway within glycosomes to overcome thermodynamic barriers through metabolic channeling.
Collapse
Affiliation(s)
- Nicolas Plazolles
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
| | - Hanna Kulyk
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
- MetaToul–MetaboHUB, Toulouse, France
| | - Edern Cahoreau
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
- MetaToul–MetaboHUB, Toulouse, France
| | - Marc Biran
- Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), UMR 5536, Bordeaux, France
| | - Marion Wargnies
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
| | - Erika Pineda
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
| | - Mohammad El Kadri
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
| | - Aline Rimoldi
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
| | - Perrine Hervé
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
| | - Corinne Asencio
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
| | - Loïc Rivière
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
| | - Paul A. M. Michels
- School of Biological Sciences, The University of Edinburgh, Edinburgh, Scotland
| | - Daniel Inaoka
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Emmanuel Tetaud
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
| | - Jean-Charles Portais
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
- MetaToul–MetaboHUB, Toulouse, France
- STROMALab, Université de Toulouse, INSERM U1031, EFS, INP-ENVT, UPS, Toulouse, France
| | - Frédéric Bringaud
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
| |
Collapse
|
2
|
Asencio C, Hervé P, Morand P, Oliveres Q, Morel CA, Prouzet-Mauleon V, Biran M, Monic S, Bonhivers M, Robinson DR, Ouellette M, Rivière L, Bringaud F, Tetaud E. Streptococcus pyogenes Cas9 ribonucleoprotein delivery for efficient, rapid and marker-free gene editing in Trypanosoma and Leishmania. Mol Microbiol 2024; 121:1079-1094. [PMID: 38558208 DOI: 10.1111/mmi.15256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/13/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
Kinetoplastids are unicellular eukaryotic flagellated parasites found in a wide range of hosts within the animal and plant kingdoms. They are known to be responsible in humans for African sleeping sickness (Trypanosoma brucei), Chagas disease (Trypanosoma cruzi), and various forms of leishmaniasis (Leishmania spp.), as well as several animal diseases with important economic impact (African trypanosomes, including Trypanosoma congolense). Understanding the biology of these parasites necessarily implies the ability to manipulate their genomes. In this study, we demonstrate that transfection of a ribonucleoprotein complex, composed of recombinant Streptococcus pyogenes Cas9 (SpCas9) and an in vitro-synthesized guide RNA, results in rapid and efficient genetic modifications of trypanosomatids, in marker-free conditions. This approach was successfully developed to inactivate, delete, and mutate candidate genes in various stages of the life cycle of T. brucei and T. congolense, and Leishmania promastigotes. The functionality of SpCas9 in these parasites now provides, to the research community working on these parasites, a rapid and efficient method of genome editing, without requiring plasmid construction and selection by antibiotics but requires only cloning and PCR screening of the clones. Importantly, this approach is adaptable to any wild-type parasite.
Collapse
Affiliation(s)
| | - Perrine Hervé
- Univ. Bordeaux, CNRS, MFP, UMR 5234, Bordeaux, France
| | | | | | | | | | - Marc Biran
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, Bordeaux, France
| | - Sarah Monic
- Univ. Bordeaux, CNRS, MFP, UMR 5234, Bordeaux, France
| | | | | | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Loïc Rivière
- Univ. Bordeaux, CNRS, MFP, UMR 5234, Bordeaux, France
| | | | | |
Collapse
|
3
|
Kovářová J, Moos M, Barrett MP, Horn D, Zíková A. The bloodstream form of Trypanosoma brucei displays non-canonical gluconeogenesis. PLoS Negl Trop Dis 2024; 18:e0012007. [PMID: 38394337 PMCID: PMC10917290 DOI: 10.1371/journal.pntd.0012007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 03/06/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Trypanosoma brucei is a causative agent of the Human and Animal African Trypanosomiases. The mammalian stage parasites infect various tissues and organs including the bloodstream, central nervous system, skin, adipose tissue and lungs. They rely on ATP produced in glycolysis, consuming large amounts of glucose, which is readily available in the mammalian host. In addition to glucose, glycerol can also be used as a source of carbon and ATP and as a substrate for gluconeogenesis. However, the physiological relevance of glycerol-fed gluconeogenesis for the mammalian-infective life cycle forms remains elusive. To demonstrate its (in)dispensability, first we must identify the enzyme(s) of the pathway. Loss of the canonical gluconeogenic enzyme, fructose-1,6-bisphosphatase, does not abolish the process hence at least one other enzyme must participate in gluconeogenesis in trypanosomes. Using a combination of CRISPR/Cas9 gene editing and RNA interference, we generated mutants for four enzymes potentially capable of contributing to gluconeogenesis: fructose-1,6-bisphoshatase, sedoheptulose-1,7-bisphosphatase, phosphofructokinase and transaldolase, alone or in various combinations. Metabolomic analyses revealed that flux through gluconeogenesis was maintained irrespective of which of these genes were lost. Our data render unlikely a previously hypothesised role of a reverse phosphofructokinase reaction in gluconeogenesis and preclude the participation of a novel biochemical pathway involving transaldolase in the process. The sustained metabolic flux in gluconeogenesis in our mutants, including a triple-null strain, indicates the presence of a unique enzyme participating in gluconeogenesis. Additionally, the data provide new insights into gluconeogenesis and the pentose phosphate pathway, and improve the current understanding of carbon metabolism of the mammalian-infective stages of T. brucei.
Collapse
Affiliation(s)
- Julie Kovářová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Martin Moos
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Michael P. Barrett
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - David Horn
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, United Kingdom
| | - Alena Zíková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
4
|
Silva Dias Vieira C, Pinheiro Aguiar R, de Almeida Nogueira NP, Costa dos Santos Junior G, Paes MC. Glucose metabolism sustains heme-induced Trypanosoma cruzi epimastigote growth in vitro. PLoS Negl Trop Dis 2023; 17:e0011725. [PMID: 37948458 PMCID: PMC10664871 DOI: 10.1371/journal.pntd.0011725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/22/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023] Open
Abstract
Chagas disease is caused by the protozoan parasite, Trypanosoma cruzi. This parasite alternates between an insect vector and a mammalian host. T. cruzi epimastigotes reside in the insect vector and coexist with the blood components of the vertebrate host. The metabolic profile of T. cruzi has been extensively studied; however, changes in its metabolism in response to signaling molecules present in the vector are poorly understood. Heme acts as a physiological oxidant that triggers intense epimastigote proliferation and upregulates the expression of genes related to glycolysis and aerobic fermentation in vitro. Here, heme-cultured epimastigotes increased D-glucose consumption. In fact, heme-cultured parasites secreted more succinate (the end product of the so-called succinic fermentation) followed by glucose intake. Increased succinate levels reduced the extracellular pH, leading to acidification of the supernatant. However, the acidification and proliferation stimulated by heme was impaired when glycolysis was inhibited. Otherwise, when glucose amount is enhanced in supernatant, heme-cultured parasites increased its growth whereas the glucose depletion caused a delay in proliferation. Heme supplementation increased epimastigote electron transport system-related O2 consumption rates, while glucose addition reduced both the electron transport system-related O2 consumption rates and spare respiratory capacity, indicating a Crabtree-like effect. These results show that glycolysis predominated in heme-cultured epimastigotes over oxidative phosphorylation for energy supply when glucose is present to sustain its high proliferation in vitro. Furthermore, it provided an insight into the parasite biology in the vector environment that supply glucose and the digestion of blood generates free heme that can lead to the growth of T. cruzi epimastigotes.
Collapse
Affiliation(s)
- Carolina Silva Dias Vieira
- Laboratório de Interação Tripanossomatídeos e Vetores—Departamento de Bioquímica, IBRAG–UERJ–Rio de Janeiro, Brazil
| | - Ramon Pinheiro Aguiar
- Institute of Medical Biochemistry Leopoldo de Meis (IBqM) and National Center for Structural Biology and Bioimaging (CENABIO)–UFRJ–Rio de Janeiro, Brazil
| | - Natalia Pereira de Almeida Nogueira
- Laboratório de Interação Tripanossomatídeos e Vetores—Departamento de Bioquímica, IBRAG–UERJ–Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia—Entomologia Molecular (INCT-EM)–Brazil
| | | | - Marcia Cristina Paes
- Laboratório de Interação Tripanossomatídeos e Vetores—Departamento de Bioquímica, IBRAG–UERJ–Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia—Entomologia Molecular (INCT-EM)–Brazil
| |
Collapse
|
5
|
Poudyal NR, Paul KS. Fatty acid uptake in Trypanosoma brucei: Host resources and possible mechanisms. Front Cell Infect Microbiol 2022; 12:949409. [PMID: 36478671 PMCID: PMC9719944 DOI: 10.3389/fcimb.2022.949409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022] Open
Abstract
Trypanosoma brucei spp. causes African Sleeping Sickness in humans and nagana, a wasting disease, in cattle. As T. brucei goes through its life cycle in its mammalian and insect vector hosts, it is exposed to distinct environments that differ in their nutrient resources. One such nutrient resource is fatty acids, which T. brucei uses to build complex lipids or as a potential carbon source for oxidative metabolism. Of note, fatty acids are the membrane anchoring moiety of the glycosylphosphatidylinositol (GPI)-anchors of the major surface proteins, Variant Surface Glycoprotein (VSG) and the Procyclins, which are implicated in parasite survival in the host. While T. brucei can synthesize fatty acids de novo, it also readily acquires fatty acids from its surroundings. The relative contribution of parasite-derived vs. host-derived fatty acids to T. brucei growth and survival is not known, nor have the molecular mechanisms of fatty acid uptake been defined. To facilitate experimental inquiry into these important aspects of T. brucei biology, we addressed two questions in this review: (1) What is known about the availability of fatty acids in different host tissues where T. brucei can live? (2) What is known about the molecular mechanisms mediating fatty acid uptake in T. brucei? Finally, based on existing biochemical and genomic data, we suggest a model for T. brucei fatty acid uptake that proposes two major routes of fatty acid uptake: diffusion across membranes followed by intracellular trapping, and endocytosis of host lipoproteins.
Collapse
Affiliation(s)
- Nava Raj Poudyal
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, SC, United States
| | - Kimberly S. Paul
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, SC, United States
| |
Collapse
|
6
|
Zíková A. Mitochondrial adaptations throughout the Trypanosoma brucei life cycle. J Eukaryot Microbiol 2022; 69:e12911. [PMID: 35325490 DOI: 10.1111/jeu.12911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 12/01/2022]
Abstract
The unicellular parasite Trypanosoma brucei has a digenetic life cycle that alternates between a mammalian host and an insect vector. During programmed development, this extracellular parasite encounters strikingly different environments that determine its energy metabolism. Functioning as a bioenergetic, biosynthetic, and signaling center, the single mitochondrion of T. brucei is drastically remodeled to support the dynamic cellular demands of the parasite. This manuscript will provide an up-to-date overview of how the distinct T. brucei developmental stages differ in their mitochondrial metabolic and bioenergetic pathways, with a focus on the electron transport chain, proline oxidation, TCA cycle, acetate production, and ATP generation. Although mitochondrial metabolic rewiring has always been simply viewed as a consequence of the differentiation process, the possibility that certain mitochondrial activities reinforce parasite differentiation will be explored.
Collapse
Affiliation(s)
- Alena Zíková
- Biology Centre CAS, Institute of Parasitology, University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
| |
Collapse
|
7
|
Bringaud F, Plazolles N, Pineda E, Asencio C, Villafraz O, Millerioux Y, Rivière L, Tetaud E. Glycerol, a possible new player in the biology of trypanosomes. PLoS Pathog 2021; 17:e1010035. [PMID: 34855923 PMCID: PMC8638926 DOI: 10.1371/journal.ppat.1010035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Frédéric Bringaud
- Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux University, CNRS, Bordeaux, France
- * E-mail:
| | - Nicolas Plazolles
- Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux University, CNRS, Bordeaux, France
| | - Erika Pineda
- Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux University, CNRS, Bordeaux, France
| | - Corinne Asencio
- Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux University, CNRS, Bordeaux, France
| | - Oriana Villafraz
- Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux University, CNRS, Bordeaux, France
| | - Yoann Millerioux
- Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux University, CNRS, Bordeaux, France
| | - Loïc Rivière
- Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux University, CNRS, Bordeaux, France
| | - Emmanuel Tetaud
- Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux University, CNRS, Bordeaux, France
| |
Collapse
|