1
|
Oda AH, Yasukawa T, Tamura M, Sano A, Masuo N, Ohta K. Advantages of Mutant Generation by Genome Rearrangements of Non-Conventional Yeast via Direct Nuclease Transfection. Genes Cells 2025; 30:e70010. [PMID: 40065658 PMCID: PMC11894362 DOI: 10.1111/gtc.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/19/2025] [Accepted: 02/23/2025] [Indexed: 03/14/2025]
Abstract
We previously developed a genome engineering method (TAQing2.0) based on the direct delivery of DNA endonucleases into living cells, which induces genome rearrangements even in non-sporulating nonconventional yeasts without introducing foreign DNA. Using TAQing2.0 and conventional mutagenesis (by nitrosoguanidine), we obtained mutant asexual Candida utilis strains capable of growing under highly acidic conditions (pH 1.8). Whole genome resequencing revealed that the genomic sequences of mutants generated by both methods contain a negligible small population of unmappable sequences, suggesting that both types of mutants can be regarded as equivalent to naturally occurring mutants. TAQing2.0 mutants exhibit multiple genome rearrangements with few point mutations, whereas conventional mutagenesis produces numerous point mutations. This feature enabled us to easily identify candidate genes (e.g., LYP1 homolog) responsible for acid resistance. TAQing2.0 is a powerful and versatile tool for mutant production and gene hunting without invasion of foreign DNA.
Collapse
Affiliation(s)
- Arisa H. Oda
- Department of Life SciencesGraduate School of Arts & Sciences, the University of TokyoTokyoJapan
- Collaborative Research Institute for Innovative MicrobiologyTokyoJapan
| | | | - Miki Tamura
- Department of Life SciencesGraduate School of Arts & Sciences, the University of TokyoTokyoJapan
| | - Ayumu Sano
- Mitsubishi Corporation Life Sciences LimitedTokyoJapan
| | - Naohisa Masuo
- Mitsubishi Corporation Life Sciences LimitedTokyoJapan
| | - Kunihiro Ohta
- Department of Life SciencesGraduate School of Arts & Sciences, the University of TokyoTokyoJapan
- Collaborative Research Institute for Innovative MicrobiologyTokyoJapan
- The Universal Biology Institute of the University of TokyoTokyoJapan
| |
Collapse
|
2
|
Morozumi Y, Mahayot F, Nakase Y, Soong JX, Yamawaki S, Sofyantoro F, Imabata Y, Oda AH, Tamura M, Kofuji S, Akikusa Y, Shibatani A, Ohta K, Shiozaki K. Rapamycin-sensitive mechanisms confine the growth of fission yeast below the temperatures detrimental to cell physiology. iScience 2024; 27:108777. [PMID: 38269097 PMCID: PMC10805665 DOI: 10.1016/j.isci.2023.108777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/12/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024] Open
Abstract
Cells cease to proliferate above their growth-permissible temperatures, a ubiquitous phenomenon generally attributed to heat damage to cellular macromolecules. We here report that, in the presence of rapamycin, a potent inhibitor of Target of Rapamycin Complex 1 (TORC1), the fission yeast Schizosaccharomyces pombe can proliferate at high temperatures that usually arrest its growth. Consistently, mutations to the TORC1 subunit RAPTOR/Mip1 and the TORC1 substrate Sck1 significantly improve cellular heat resistance, suggesting that TORC1 restricts fission yeast growth at high temperatures. Aiming for a more comprehensive understanding of the negative regulation of high-temperature growth, we conducted genome-wide screens, which identified additional factors that suppress cell proliferation at high temperatures. Among them is Mks1, which is phosphorylated in a TORC1-dependent manner, forms a complex with the 14-3-3 protein Rad24, and suppresses the high-temperature growth independently of Sck1. Our study has uncovered unexpected mechanisms of growth restraint even below the temperatures deleterious to cell physiology.
Collapse
Affiliation(s)
- Yuichi Morozumi
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Fontip Mahayot
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Yukiko Nakase
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Jia Xin Soong
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Sayaka Yamawaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Fajar Sofyantoro
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- Faculty of Biology, Universitas Gadjah Mada, Sleman, Yogyakarta 55281, Indonesia
| | - Yuki Imabata
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Arisa H. Oda
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Miki Tamura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Shunsuke Kofuji
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Yutaka Akikusa
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Ayu Shibatani
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kunihiro Ohta
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Kazuhiro Shiozaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
3
|
Shi Y, Li J, Wolf CA, Liu S, Sharma SS, Wolber G, Bureik M, Clark BR. Expected and Unexpected Products from the Biochemical Oxidation of Bacterial Alkylquinolones with CYP4F11. JOURNAL OF NATURAL PRODUCTS 2023; 86:2502-2513. [PMID: 37939299 DOI: 10.1021/acs.jnatprod.3c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
2-Alkylquinolones are a class of microbial natural products primarily produced in the Pseudomonas and Burkholderia genera that play a key role in modulating quorum sensing. Bacterial alkylquinolones were synthesized and then subjected to oxidative biotransformation using human cytochrome P450 enzyme CYP4F11, heterologously expressed in the fission yeast Schizosaccharomyces pombe. This yielded a range of hydroxylated and carboxylic acid derivatives which had undergone ω-oxidation of the 2-alkyl chain, the structures of which were determined by analysis of NMR and MS data. Oxidation efficiency depended on chain length, with a chain length of eight or nine carbon atoms proving optimal for high yields. Homology modeling suggested that Glu233 was relevant for binding, due to the formation of a hydrogen bond from the quinolone nitrogen to Glu233, and in this position only the longer alkyl chains could come close enough to the heme moiety for effective oxidation. In addition to the direct oxidation products, a number of esters were also isolated, which was attributed to the action of endogenous yeast enzymes on the newly formed ω-hydroxy-alkylquinolones. ω-Oxidation of the alkyl chain significantly reduced the antimicrobial and antibiofilm activity of the quinolones.
Collapse
Affiliation(s)
- Yue Shi
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, People's Republic of China
| | - Jianye Li
- Hebei Key Laboratory of Heterocyclic Compounds, College of Chemical Engineering and Materials, Handan University, Handan 056005, Hebei Province, People's Republic of China
| | - Clemens Alexander Wolf
- Molecular Design Lab, Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Sijie Liu
- Molecular Design Lab, Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Sangeeta S Sharma
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, People's Republic of China
| | - Gerhard Wolber
- Molecular Design Lab, Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, People's Republic of China
| | - Benjamin R Clark
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, People's Republic of China
| |
Collapse
|
4
|
Enkhbaatar T, Skoneczny M, Stępień K, Mołoń M, Skoneczna A. Live while the DNA lasts. The role of autophagy in DNA loss and survival of diploid yeast cells during chronological aging. Aging (Albany NY) 2023; 15:9965-9983. [PMID: 37815879 PMCID: PMC10599738 DOI: 10.18632/aging.205102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023]
Abstract
Aging is inevitable and affects all cell types, thus yeast cells are often used as a model in aging studies. There are two approaches to studying aging in yeast: replicative aging, which describes the proliferative potential of cells, and chronological aging, which is used for studying post-mitotic cells. While analyzing the chronological lifespan (CLS) of diploid Saccharomyces cerevisiae cells, we discovered a remarkable phenomenon: ploidy reduction during aging progression. To uncover the mechanism behind this unusual process we used yeast strains undergoing a CLS assay, looking for various aging parameters. Cell mortality, regrowth ability, autophagy induction and cellular DNA content measurements indicated that during the CLS assay, dying cells lost their DNA, and only diploids survived. We demonstrated that autophagy was responsible for the gradual loss of DNA. The nucleophagy marker activation at the start of the CLS experiment correlated with the significant drop in cell viability. The activation of piecemeal microautophagy of nucleus (PMN) markers appeared to accompany the chronological aging process until the end. Our findings emphasize the significance of maintaining at least one intact copy of the genome for the survival of post-mitotic diploid cells. During chronological aging, cellular components, including DNA, are exposed to increasing stress, leading to DNA damage and fragmentation in aging cells. We propose that PMN-dependent clearance of damaged DNA from the nucleus helps prevent genome rearrangements. However, as long as one copy of the genome can be rebuilt, cells can still survive.
Collapse
Affiliation(s)
- Tuguldur Enkhbaatar
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Marek Skoneczny
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Karolina Stępień
- Institute of Medical Sciences, Rzeszów University, Rzeszów 35-959, Poland
| | - Mateusz Mołoń
- Institute of Biology, Rzeszów University, Rzeszów 35-601, Poland
| | - Adrianna Skoneczna
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| |
Collapse
|