1
|
Mundinger C, Schulz NKE, Singh P, Janz S, Schurig M, Seidemann J, Kurtz J, Müller C, Schielzeth H, von Kortzfleisch VT, Richter SH. Testing the reproducibility of ecological studies on insect behavior in a multi-laboratory setting identifies opportunities for improving experimental rigor. PLoS Biol 2025; 23:e3003019. [PMID: 40261831 PMCID: PMC12013911 DOI: 10.1371/journal.pbio.3003019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/25/2025] [Indexed: 04/24/2025] Open
Abstract
The reproducibility of studies involving insect species is an underexplored area in the broader discussion about poor reproducibility in science. Our study addresses this gap by conducting a systematic multi-laboratory investigation into the reproducibility of ecological studies on insect behavior. We implemented a 3 × 3 experimental design, incorporating three study sites, and three independent experiments on three insect species from different orders: the turnip sawfly (Athalia rosae, Hymenoptera), the meadow grasshopper (Pseudochorthippus parallelus, Orthoptera), and the red flour beetle (Tribolium castaneum, Coleoptera). Using random-effect meta-analysis, we compared the consistency and accuracy of treatment effects on insect behavioral traits across replicate experiments. We successfully reproduced the overall statistical treatment effect in 83% of the replicate experiments, but overall effect size replication was achieved in only 66% of the replicates. Thus, though demonstrating sufficient reproducibility in some measures, this study also provides the first experimental evidence for cases of poor reproducibility in insect experiments. Our findings further show that reasons causing poor reproducibility established in rodent research also hold for other study organisms and research questions. We believe that a rethinking of current best practices is required to face reproducibility issues in insect studies but also across disciplines. Specifically, we advocate for adopting open research practices and the implementation of methodological strategies that reduce bias and problems arising from over-standardization. With respect to the latter, the introduction of systematic variation through multi-laboratory or heterogenized designs may contribute to improved reproducibility in studies involving any living organisms.
Collapse
Affiliation(s)
- Carolin Mundinger
- Department of Behavioural Biology, University of Münster, Münster, Germany
| | - Nora K. E. Schulz
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Pragya Singh
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Steven Janz
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Maximilian Schurig
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Jacob Seidemann
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Joint Institute for Individualisation in a Changing Environment, University of Münster and Bielefeld University, Münster and Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
- Joint Institute for Individualisation in a Changing Environment, University of Münster and Bielefeld University, Münster and Bielefeld, Germany
| | - Holger Schielzeth
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, Germany
- Joint Institute for Individualisation in a Changing Environment, University of Münster and Bielefeld University, Münster and Bielefeld, Germany
| | | | - S. Helene Richter
- Department of Behavioural Biology, University of Münster, Münster, Germany
- Joint Institute for Individualisation in a Changing Environment, University of Münster and Bielefeld University, Münster and Bielefeld, Germany
| |
Collapse
|
2
|
Rashed MS, Abdelkarim EA, Elsamahy T, Sobhy M, El-Mesery HS, Salem A. Advances in cell-based biosensors: Transforming food flavor evaluation with novel approaches. Food Chem X 2025; 26:102336. [PMID: 40115496 PMCID: PMC11923814 DOI: 10.1016/j.fochx.2025.102336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 03/23/2025] Open
Abstract
Food flavor, a blend of taste and smell, is key to consumer acceptance and food quality. Traditional sensory and instrumental methods often fail to replicate human sensory responses. This review discusses the role of cell-based biosensors in flavor evaluation, showcasing their sensitivity, specificity, and rapid response. Using living cells like taste and olfactory cells, these biosensors surpass traditional approaches. Advancements include microelectrode array systems with taste receptor cells for real-time detection of bitter, sweet, and umami substances and improved cell immobilization technologies for detecting complex odorant profiles. Challenges such as signal stability, selective detection, cell cultivation, and scalability persist. However, integrating artificial intelligence and portable technologies could broaden their applications. With the potential to revolutionize sensory analysis, cell-based biosensors offer a sustainable, precise, and scalable approach to food flavor evaluation, bridging sensory perception with advanced analytical methods and driving innovation in food science.
Collapse
Affiliation(s)
- Mahmoud Said Rashed
- Food Science and Technology Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| | - Esraa A Abdelkarim
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | | | - Mabrouk Sobhy
- Food Science and Technology Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hany S El-Mesery
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
- Agricultural Engineering Research Institute, Agricultural Research Center, Dokki, 12611 Giza, Egypt
| | - Ali Salem
- Civil Engineering Department, Faculty of Engineering, Minia University, Minia 61111, Egypt
- Structural Diagnostics and Analysis Research Group, Faculty of Engineering and Information Technology, University of Pecs, Hungary
| |
Collapse
|
3
|
Reiber M, Stirling H, Ahuis TP, Arias W, Aulehner K, Dreßler U, Kas MJH, Kela J, Kerker K, Kuosmanen T, Lorenz H, Pennington AT, von Rüden EL, Schauerte H, Seiffert I, Talbot SR, Torturo C, Virtanen S, Waldron AM, Ramboz S, Potschka H. A systematic assessment of robustness in CNS safety pharmacology. Br J Pharmacol 2025; 182:530-545. [PMID: 39389585 DOI: 10.1111/bph.17358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/04/2024] [Accepted: 08/26/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND AND PURPOSE Irwin tests are key preclinical study elements for characterising drug-induced neurological side effects. This multicentre study aimed to assess the robustness of Irwin tests across multinational sites during three stages of protocol harmonisation. The projects were part of the Enhanced Quality in Preclinical Data framework, aiming to increase success rates in transition from preclinical testing to clinical application. EXPERIMENTAL APPROACH Female and male NMRI mice were assigned to one of three groups (vehicle, MK-801 0.1 and 0.3 mg kg-1). Irwin scores were assessed at baseline and multiple times following intraperitoneal injection of MK-801 using local protocols (Stage 1), shared protocols with harmonised environmental design (Stage 2) and fully harmonised Irwin scoring protocols (Stage 3). KEY RESULTS The analysis based on the four functional domains (motor, autonomic, sedation and excitation) revealed substantial data variability in Stages 1 and 2. Although there was still marked overall heterogeneity between sites in Stage 3 after complete harmonisation of the Irwin scoring scheme, heterogeneity was only moderate within functional domains. When comparing treatment groups versus vehicle, we found large effect sizes in the motor domain and subtle to moderate effects in the excitation-related and autonomic domains. CONCLUSION AND IMPLICATIONS The pronounced interlaboratory variability in Irwin datasets for the CNS-active compound MK-801 needs to be carefully considered when making decisions during drug development. While environmental and general study design had a minor impact, the study suggests that harmonisation of parameters and their scoring can limit variability and increase robustness.
Collapse
Affiliation(s)
- Maria Reiber
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Helen Stirling
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tim P Ahuis
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Katharina Aulehner
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ute Dreßler
- AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | | | | | | | - Helga Lorenz
- AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany
| | | | - Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Heike Schauerte
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Isabel Seiffert
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Steven R Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | | | | | - Ann-Marie Waldron
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
4
|
Bailoo JD, Bergeson SE, Ponomarev I, Willms JO, Kisby BR, Cornwall GA, MacDonald CC, Lawrence JJ, Ganapathy V, Sivaprakasam S, Panthagani P, Trasti S, Varholick JA, Findlater M, Deonarine A. A bespoke water T-maze apparatus and protocol: an optimized, reliable, and repeatable method for screening learning, memory, and executive functioning in laboratory mice. Front Behav Neurosci 2024; 18:1492327. [PMID: 39720305 PMCID: PMC11666379 DOI: 10.3389/fnbeh.2024.1492327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/16/2024] [Indexed: 12/26/2024] Open
Abstract
The Morris Water Maze (MWM) is the most commonly used assay for evaluating learning and memory in laboratory mice. Despite its widespread use, contemporary reviews have highlighted substantial methodological variation in experimental protocols and that the associated testing procedures are acutely (each trial) and chronically (testing across days) stressful; stress impairs attention, memory consolidation and the retrieval of learned information. Moreover, the interpretation of behavior within the MWM is often difficult because of wall hugging, non-spatial swim strategies, floating, and jumping off the escape platform. Together, these issues may compromise the reproducibility, generalizability, and predictability of experimental results, as well as animal welfare. To address these issues, and as an initial proof-of-principle, we first narrowed the spatial dimensions of the MWM by using a T-insert, which constrained and reduced the overall length of time/distance that the animal must swim in order to navigate to the escape platform, thus reducing stress and off-task behavior. Given the robust performance observed across spatial acquisition (learning and memory) as well as during reversal learning (executive function), we further reduced (by 43%) the overall distance and time that the animal must swim in order to find the escape platform in a bespoke standalone Water T-Maze (WTM). We show, across five experiments, procedural refinements to our protocol and demonstrate robust, reliable and reproducible indicators of learning, memory and executive functioning in a task that is also significantly more efficient (3 days of testing within the WTM vs. 11 days of testing within the MWM). Taken together, our WTM apparatus and protocol are a significant improvement over other water-based apparatuses and protocols for evaluating learning, memory, and executive functioning in laboratory mice.
Collapse
Affiliation(s)
- Jeremy Davidson Bailoo
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Susan E. Bergeson
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Igor Ponomarev
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Joshua O. Willms
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Brent R. Kisby
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Gail A. Cornwall
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Clinton C. MacDonald
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - J. Josh Lawrence
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Sathish Sivaprakasam
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Praneetha Panthagani
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Scott Trasti
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Justin A. Varholick
- Department of Biology, University of Florida, Gainesville, FL, United States
| | - Michael Findlater
- Department of Chemistry and Biochemistry, University of California Merced, Merced, CA, United States
| | - Amrika Deonarine
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
5
|
Ahuis TP, Smyk MK, Laloux C, Aulehner K, Bray J, Waldron AM, Miljanovic N, Seiffert I, Song D, Boulanger B, Jucker M, Potschka H, Platt B, Riedel G, Voehringer P, Nicholson JR, Drinkenburg WHIM, Kas MJH, Leiser SC. Evaluation of variation in preclinical electroencephalographic (EEG) spectral power across multiple laboratories and experiments: An EQIPD study. PLoS One 2024; 19:e0309521. [PMID: 39471212 PMCID: PMC11521305 DOI: 10.1371/journal.pone.0309521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/13/2024] [Indexed: 11/01/2024] Open
Abstract
The European Quality In Preclinical Data (EQIPD) consortium was born from the fact that publications report challenges with the robustness, rigor, and/or validity of research data, which may impact decisions about whether to proceed with further preclinical testing or to advance to clinical testing, as well as draw conclusions on the predictability of preclinical models. To address this, a consortium including multiple research laboratories from academia and industry participated in a series of electroencephalography (EEG) experiments in mice aimed to detect sources of variance and to gauge how protocol harmonisation and data analytics impact such variance. Ultimately, the goal of this first ever between-laboratory comparison of EEG recordings and analyses was to validate the principles that supposedly increase data quality, robustness, and comparability. Experiments consisted of a Localisation phase, which aimed to identify the factors that influence between-laboratory variability, a Harmonisation phase to evaluate whether harmonisation of standardized protocols and centralised processing and data analysis reduced variance, and a Ring-Testing phase to verify the ability of the harmonised protocol to generate consistent findings. Indeed, between-laboratory variability reduced from Localisation to Harmonisation and this reduction remained during the Ring-Testing phase. Results obtained in this multicentre preclinical qEEG study also confirmed the complex nature of EEG experiments starting from the surgery and data collection through data pre-processing to data analysis that ultimately influenced the results and contributed to variance in findings across laboratories. Overall, harmonisation of protocols and centralized data analysis were crucial in reducing laboratory-to-laboratory variability. To this end, it is recommended that standardized guidelines be updated and followed for collection and analysis of preclinical EEG data.
Collapse
Affiliation(s)
- Tim P. Ahuis
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Groningen, The Netherlands
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Magdalena K. Smyk
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Groningen, The Netherlands
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | | | - Katharina Aulehner
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians- Universität (LMU), Munich, Germany
| | - Jack Bray
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom
| | - Ann-Marie Waldron
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians- Universität (LMU), Munich, Germany
| | - Nina Miljanovic
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians- Universität (LMU), Munich, Germany
| | - Isabel Seiffert
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians- Universität (LMU), Munich, Germany
| | - Dekun Song
- Translational EEG, PsychoGenics Inc., Paramus, New Jersey, United States of America
| | | | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians- Universität (LMU), Munich, Germany
| | - Bettina Platt
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom
| | - Gernot Riedel
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom
| | - Patrizia Voehringer
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Janet R. Nicholson
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Wilhelmus H. I. M. Drinkenburg
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Groningen, The Netherlands
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Martien J. H. Kas
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Groningen, The Netherlands
| | - Steven C. Leiser
- Translational EEG, PsychoGenics Inc., Paramus, New Jersey, United States of America
| |
Collapse
|
6
|
Lim CJM, Bray J, Janhunen SK, Platt B, Riedel G. Mouse Exploratory Behaviour in the Open Field with and without NAT-1 EEG Device: Effects of MK801 and Scopolamine. Biomolecules 2024; 14:1008. [PMID: 39199395 PMCID: PMC11352671 DOI: 10.3390/biom14081008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
One aspect of reproducibility in preclinical research that is frequently overlooked is the physical condition in which physiological, pharmacological, or behavioural recordings are conducted. In this study, the physical conditions of mice were altered through the attachments of wireless electrophysiological recording devices (Neural Activity Tracker-1, NAT-1). NAT-1 devices are miniaturised multichannel devices with onboard memory for direct high-resolution recording of brain activity for >48 h. Such devices may limit the mobility of animals and affect their behavioural performance due to the added weight (total weight of approximately 3.4 g). The mice were additionally treated with saline (control), N-methyl-D-aspartate (NMDA) receptor antagonist MK801 (0.85 mg/kg), or the muscarinic acetylcholine receptor blocker scopolamine (0.65 mg/kg) to allow exploration of the effect of NAT-1 attachments in pharmacologically treated mice. We found only minimal differences in behavioural outcomes with NAT-1 attachments in standard parameters of locomotor activity widely reported for the open field test between the drug treatments. Hypoactivity was globally observed as a consistent outcome in the MK801-treated mice and hyperactivity in scopolamine groups regardless of NAT-1 attachments. These data collectively confirm the reproducibility for combined behavioural, pharmacological, and physiological endpoints even in the presence of lightweight wireless data loggers. The NAT-1 therefore constitutes a pertinent tool for investigating brain activity in, e.g., drug discovery and models of neuropsychiatric and/or neurodegenerative diseases with minimal effects on pharmacological and behavioural outcomes.
Collapse
Affiliation(s)
- Charmaine J. M. Lim
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.J.M.L.); (J.B.); (B.P.)
| | - Jack Bray
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.J.M.L.); (J.B.); (B.P.)
| | | | - Bettina Platt
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.J.M.L.); (J.B.); (B.P.)
| | - Gernot Riedel
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.J.M.L.); (J.B.); (B.P.)
| |
Collapse
|
7
|
Meinhardt MW, Gerlach B, Spanagel R. Good Practice Guideline for Preclinical Alcohol Research: The STRINGENCY Framework. Curr Top Behav Neurosci 2024. [PMID: 39117860 DOI: 10.1007/7854_2024_484] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Research in the field of preclinical alcohol research, but also science in general, has a problem: Many published scientific results cannot be repeated. As a result, findings from preclinical research often do not translate well to humans, causing increasing disappointment and calls for restructuring of preclinical research, that is, better reproducibility of preclinical research. However, the replication crisis is an inherent problem in biomedical research. Replication failures are not only due to small experimental variations but are often the result of poor methodology. In response to the replication crisis, numerous guidelines and recommendations have been proposed to promote transparency, rigor, and reproducibility in scientific research. What is missing today is a framework that integrates all the confusing information that results from all these guidelines and recommendations. Here we present STRINGENCY, an integrative approach to good practice guidelines for preclinical alcohol research, which can also apply to behavioral research in general and which aims to improve preclinical research to better prepare it for translation and minimize the "valley of death" in translational research. STRINGENCY includes systematic review and, when possible, meta-analysis prior to study design, sample size calculation, preregistration, multisite experiments, scientific data management (FAIR), reporting of data using ARRIVE, generalization of research data, and transparent publications that allow reporting of null results. We invite the scientific community to adopt STRINGENCY to improve the reliability and impact of preclinical alcohol research.
Collapse
Affiliation(s)
- Marcus W Meinhardt
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
- Department of Molecular Neuroimaging, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Heidelberg, Germany.
| | - Björn Gerlach
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
- Guarantors of EQIPD e.V., Heidelberg, Germany
- PAASP GmbH, Heidelberg, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
- German Center for Mental Health (DZPG), Mannheim, Heidelberg, Ulm, Germany.
| |
Collapse
|
8
|
Brown RE. Measuring the replicability of our own research. J Neurosci Methods 2024; 406:110111. [PMID: 38521128 DOI: 10.1016/j.jneumeth.2024.110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
In the study of transgenic mouse models of neurodevelopmental and neurodegenerative disorders, we use batteries of tests to measure deficits in behaviour and from the results of these tests, we make inferences about the mental states of the mice that we interpret as deficits in "learning", "memory", "anxiety", "depression", etc. This paper discusses the problems of determining whether a particular transgenic mouse is a valid mouse model of disease X, the problem of background strains, and the question of whether our behavioural tests are measuring what we say they are. The problem of the reliability of results is then discussed: are they replicable between labs and can we replicate our results in our own lab? This involves the study of intra- and inter- experimenter reliability. The variables that influence replicability and the importance of conducting a complete behavioural phenotype: sensory, motor, cognitive and social emotional behaviour are discussed. Then the thorny question of failure to replicate is examined: Is it a curse or a blessing? Finally, the role of failure in research and what it tells us about our research paradigms is examined.
Collapse
Affiliation(s)
- Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
9
|
Hunniford VT, Grudniewicz A, Fergusson DA, Montroy J, Grigor E, Lansdell C, Lalu MM. A systematic assessment of preclinical multilaboratory studies and a comparison to single laboratory studies. eLife 2023; 12:e76300. [PMID: 36892457 PMCID: PMC10168693 DOI: 10.7554/elife.76300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/08/2023] [Indexed: 03/10/2023] Open
Abstract
Background Multicentric approaches are widely used in clinical trials to assess the generalizability of findings, however, they are novel in laboratory-based experimentation. It is unclear how multilaboratory studies may differ in conduct and results from single lab studies. Here, we synthesized the characteristics of these studies and quantitatively compared their outcomes to those generated by single laboratory studies. Methods MEDLINE and Embase were systematically searched. Screening and data extractions were completed in duplicate by independent reviewers. Multilaboratory studies investigating interventions using in vivo animal models were included. Study characteristics were extracted. Systematic searches were then performed to identify single lab studies matched by intervention and disease. Difference in standardized mean differences (DSMD) was then calculated across studies to assess differences in effect estimates based on study design (>0 indicates larger effects in single lab studies). Results Sixteen multilaboratory studies met inclusion criteria and were matched to 100 single lab studies. The multicenter study design was applied across a diverse range of diseases, including stroke, traumatic brain injury, myocardial infarction, and diabetes. The median number of centers was four (range 2-6) and the median sample size was 111 (range 23-384) with rodents most frequently used. Multilaboratory studies adhered to practices that reduce the risk of bias significantly more often than single lab studies. Multilaboratory studies also demonstrated significantly smaller effect sizes than single lab studies (DSMD 0.72 [95% confidence interval 0.43-1]). Conclusions Multilaboratory studies demonstrate trends that have been well recognized in clinical research (i.e. smaller treatment effects with multicentric evaluation and greater rigor in study design). This approach may provide a method to robustly assess interventions and the generalizability of findings between laboratories. Funding uOttawa Junior Clinical Research Chair; The Ottawa Hospital Anesthesia Alternate Funds Association; Canadian Anesthesia Research Foundation; Government of Ontario Queen Elizabeth II Graduate Scholarship in Science and Technology.
Collapse
Affiliation(s)
- Victoria T Hunniford
- Clinical Epidemiology Program, Blueprint Translational Research Group, Ottawa Hospital Research InstituteOttawaCanada
- Telfer School of Management, University of OttawaOttawaCanada
| | | | - Dean A Fergusson
- Clinical Epidemiology Program, Blueprint Translational Research Group, Ottawa Hospital Research InstituteOttawaCanada
- Faculty of Medicine, University of OttawaOttawaCanada
- Department of Surgery, University of OttawaOttawaCanada
- School of Epidemiology and Public Health, University of OttawaOttawaCanada
| | - Joshua Montroy
- Clinical Epidemiology Program, Blueprint Translational Research Group, Ottawa Hospital Research InstituteOttawaCanada
| | - Emma Grigor
- Clinical Epidemiology Program, Blueprint Translational Research Group, Ottawa Hospital Research InstituteOttawaCanada
- Faculty of Medicine, University of OttawaOttawaCanada
| | - Casey Lansdell
- Clinical Epidemiology Program, Blueprint Translational Research Group, Ottawa Hospital Research InstituteOttawaCanada
| | - Manoj M Lalu
- Clinical Epidemiology Program, Blueprint Translational Research Group, Ottawa Hospital Research InstituteOttawaCanada
- School of Epidemiology and Public Health, University of OttawaOttawaCanada
- Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, University of OttawaOttawaCanada
- Regenerative Medicine Program, The Ottawa Hospital Research InstituteOttawaCanada
- Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| |
Collapse
|