1
|
Zhang Y, Kan D, Zhou Y, Lian H, Ge L, Shen J, Dai Z, Shi Y, Han C, Liu X, Yang J. Efficient RNA interference method by feeding in Brachionus plicatilis (Rotifera). Biotechnol Lett 2024; 46:961-971. [PMID: 39235648 DOI: 10.1007/s10529-024-03524-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/20/2024] [Accepted: 08/03/2024] [Indexed: 09/06/2024]
Abstract
Rotifers are small, ubiquitous invertebrate animals found throughout the world and have emerged as a promising model system for studying molecular mechanisms in the fields of experimental ecology, aquatic toxicology, and geroscience. However, the lack of efficient gene expression manipulation techniques has hindered the study of rotifers. In this study, we used the L4440 plasmid with two reverse-oriented T7 promoters, along with RNase-deficient E. coli HT115, to efficiently produce dsRNA and thereby present an efficient feeding-based RNAi method in Brachionus plicatilis. We targeted Bp-Ku70 & Ku80, key proteins in the DNA double-strand breaks repair pathway, and then subjected rotifers to UV radiation. We found that the mRNA expression, fecundity, as well as survival rate diminished significantly as a result of RNAi. Overall, our results demonstrate that the feeding-based RNAi method is a simple and efficient tool for gene knockdown in B. plicatilis, advancing their use as a model organism for biological research.
Collapse
Affiliation(s)
- Yu Zhang
- School of Marine Science and Engineering, Nanjing Normal University, No. 2 Xuelin Rd, Nanjing, 210023, People's Republic of China
| | - Dongqi Kan
- School of Marine Science and Engineering, Nanjing Normal University, No. 2 Xuelin Rd, Nanjing, 210023, People's Republic of China
| | - Yang Zhou
- School of Marine Science and Engineering, Nanjing Normal University, No. 2 Xuelin Rd, Nanjing, 210023, People's Republic of China
| | - Hairong Lian
- School of Marine Science and Engineering, Nanjing Normal University, No. 2 Xuelin Rd, Nanjing, 210023, People's Republic of China
| | - Lingling Ge
- School of Marine Science and Engineering, Nanjing Normal University, No. 2 Xuelin Rd, Nanjing, 210023, People's Republic of China
| | - Jing Shen
- School of Marine Science and Engineering, Nanjing Normal University, No. 2 Xuelin Rd, Nanjing, 210023, People's Republic of China
| | - Zhongqi Dai
- School of Marine Science and Engineering, Nanjing Normal University, No. 2 Xuelin Rd, Nanjing, 210023, People's Republic of China
| | - Yan Shi
- School of Marine Science and Engineering, Nanjing Normal University, No. 2 Xuelin Rd, Nanjing, 210023, People's Republic of China
| | - Cui Han
- School of Marine Science and Engineering, Nanjing Normal University, No. 2 Xuelin Rd, Nanjing, 210023, People's Republic of China
| | - Xiaojie Liu
- School of Marine Science and Engineering, Nanjing Normal University, No. 2 Xuelin Rd, Nanjing, 210023, People's Republic of China
| | - Jiaxin Yang
- School of Marine Science and Engineering, Nanjing Normal University, No. 2 Xuelin Rd, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
2
|
Lyu K, Wu Y, Li J, Yang Z. MicroRNA miR-210 Modulates the Water Flea Daphnia magna Response to Cyanobacterial Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18520-18530. [PMID: 39382696 DOI: 10.1021/acs.est.4c04190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
As a key form of post-transcriptional regulation, microRNAs (miRNAs) regulate gene expression by binding to target mRNAs, leading to mRNA decay or translational repression. Recently, the role of miRNAs in the response of aquatic organisms to environmental stressors has emerged. Daphnia, widely distributed cladocerans, play a crucial role in aquatic ecosystems. Cyanobacterial blooms often cause Daphnia populations to decrease, thereby disrupting ecosystem functionality and water quality. However, the post-transcriptional mechanisms behind Daphnia's response to toxic cyanobacteria are insufficiently understood. This study investigated the role of miR-210, a multifunctional miRNA involved in stress response and toxicity pathways, and its target genes (MLH3, CDHR5, and HYOU1) in two Daphnia magna clones exposed to toxic Microcystis aeruginosa. Results showed that M. aeruginosa inhibited somatic growth rates, led to microcystin accumulation, caused abnormal ultrastructural alterations in the digestive tract, and induced DNA damage in both clones. Notably, exposure significantly increased miR-210 expression and decreased the expression of its target genes compared with the controls. We identified miR-210s regulation on clonal-tolerance variations in D. magna to M. aeruginosa, emphasizing miRNAs' contribution to adaptive responses. Our work uncovered a novel post-transcriptional mechanism of cyanobacterial impact on zooplankton and provided essential insights for assessing cyanobacterial toxicity risks.
Collapse
Affiliation(s)
- Kai Lyu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yuting Wu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jiameng Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
3
|
Feng YF, Zhang Y, Yang RJ, Li SQ, Liu XJ, Han C, Xing YF, Yang JX. Ecotoxicological assessment, oxidative response, and enzyme activity disorder of the rotifer Brachionus asplanchnoidis exposed to a toxic cocktail of spent lithium-ion battery leachate. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135050. [PMID: 38954852 DOI: 10.1016/j.jhazmat.2024.135050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Spent lithium-ion batteries (LIBs) have emerged as a major source of waste due to their low recovery rate. The physical disposal of spent LIBs can lead to the leaching of their contents into the surrounding environment. While it is widely agreed that hazardous substances such as nickel and cobalt in the leachate can pose a threat to the environment and human health, the overall composition and toxicity of LIB leachate remain unclear. In this study, a chemical analysis of leachate from spent LIBs was conducted to identify its primary constituents. The ecotoxicological parameters of the model organism, rotifer Brachionus asplanchnoidis, were assessed to elucidate the toxicity of the LIB leachate. Subsequent experiments elucidated the impacts of the LIB leachate and its representative components on the malondialdehyde (MDA) level, antioxidant capacity, and enzyme activity of B. asplanchnoidis. The results indicate that both the LIB leachate and its components are harmful to individual rotifers due to the adverse effects of stress-induced disturbances in biochemical indicators, posing a threat to population development. The intensified poisoning phenomenon under combined stress suggests the presence of complex synergistic effects among the components of LIB leachate. Due to the likely environmental and biological hazards, LIBs should be strictly managed after disposal. Additionally, more economical and eco-friendly recycling and treatment technologies need to be developed and commercialized.
Collapse
Affiliation(s)
- Yi-Fan Feng
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province 210023, PR China.
| | - Yu Zhang
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province 210023, PR China.
| | - Run-Jia Yang
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province 210023, PR China.
| | - Si-Qi Li
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province 210023, PR China.
| | - Xiao-Jie Liu
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province 210023, PR China.
| | - Cui Han
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province 210023, PR China.
| | - Yi-Fu Xing
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province 210023, PR China.
| | - Jia-Xin Yang
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province 210023, PR China.
| |
Collapse
|
4
|
Murillo Ramos AM, Wilson JY. Is there potential for estradiol receptor signaling in lophotrochozoans? Gen Comp Endocrinol 2024; 354:114519. [PMID: 38677339 DOI: 10.1016/j.ygcen.2024.114519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024]
Abstract
Estrogen receptors (ERs) are thought to be the ancestor of all steroid receptors and are present in most lophotrochozoans studied to date, including molluscs, annelids, and rotifers. A number of studies have investigated the functional role of estrogen receptors in invertebrate species, although most are in molluscs, where the receptor is constitutively active. In vitro experiments provided evidence for ligand-activated estrogen receptors in annelids, raising important questions about the role of estrogen signalling in lophotrochozoan lineages. Here, we review the concordant and discordant evidence of estradiol receptor signalling in lophotrochozoans, with a focus on annelids and rotifers. We explore the de novo synthesis of estrogens, the evolution and expression of estrogen receptors, and physiological responses to activation of estrogen receptors in the lophotrochozoan phyla Annelida and Rotifera. Key data are missing to determine if de novo biosynthesis of estradiol in non-molluscan lophotrochozoans is likely. For example, an ortholog for the CYP11 gene is present, but confirmation of substrate conversion and measured tissue products is lacking. Orthologs CYP17 and CYP19 are lacking, yet intermediates or products (e.g. estradiol) in tissues have been measured. Estrogen receptors are present in multiple species, and for a limited number, in vitro data show agonist binding of estradiol and/or transcriptional activation. The expression patterns of the lophotrochozoan ERs suggest developmental, reproductive, and digestive roles but are highly species dependent. E2 exposures suggest that lophotrochozoan ERs may play a role in reproduction, but no strong dose-response relationship has been established. Therefore, we expect most lophotrochozoan species, outside of perhaps platyhelminths, to have an ER but their physiological role remains elusive. Mining genomes for orthologs gene families responsible for steroidogenesis, coupled with in vitro and in vivo studies of the steroid pathway are needed to better assess whether lophotrochozoans are capable of estradiol biosynthesis. One major challenge is that much of the data are divided across a diversity of species. We propose that the polychaetes Capitella teleta or Platyneris dumerilii, and rotifer Brachionus manjavacas may be strong species choices for studies of estrogen receptor signalling, because of available genomic data, established laboratory culture techniques, and gene knockout potential.
Collapse
Affiliation(s)
- A M Murillo Ramos
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| | - J Y Wilson
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
5
|
Wilson CG, Pieszko T, Nowell RW, Barraclough TG. Recombination in bdelloid rotifer genomes: asexuality, transfer and stress. Trends Genet 2024; 40:422-436. [PMID: 38458877 DOI: 10.1016/j.tig.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/10/2024]
Abstract
Bdelloid rotifers constitute a class of microscopic animals living in freshwater habitats worldwide. Several strange features of bdelloids have drawn attention: their ability to tolerate desiccation and other stresses, a lack of reported males across the clade despite centuries of study, and unusually high numbers of horizontally acquired, non-metazoan genes. Genome sequencing is transforming our understanding of their lifestyle and its consequences, while in turn providing wider insights about recombination and genome organisation in animals. Many questions remain, not least how to reconcile apparent genomic signatures of sex with the continued absence of reported males, why bdelloids have so many horizontally acquired genes, and how their remarkable ability to survive stress interacts with recombination and other genomic processes.
Collapse
Affiliation(s)
- Christopher G Wilson
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK.
| | - Tymoteusz Pieszko
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Reuben W Nowell
- Institute of Ecology and Evolution, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK; Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | | |
Collapse
|
6
|
McMaken CM, Gribble KE. A free and user-friendly software protocol for the quantification of microfauna swimming behavior. Biotechniques 2024; 76:174-182. [PMID: 38425192 DOI: 10.2144/btn-2024-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024] Open
Abstract
Characterizing swimming behavior can provide a holistic assessment of the health, physiology and ecology of microfaunal species when done in conjunction with measuring other biological parameters. However, tracking and quantifying microfauna swimming behavior using existing automated tools is often difficult due to the animals' small size or transparency, or because of the high cost, expertise, or labor needed for the analysis. To address these issues, we created a cost-effective, user-friendly protocol for behavior analysis that employs the free software packages HitFilm and ToxTrac along with the R package 'trajr' and used the method to quantify the behavior of rotifers. This protocol can be used for other microfaunal species for which investigators may face similar issues in obtaining measurements of swimming behavior.
Collapse
Affiliation(s)
- Colleen M McMaken
- Josephine Bay Paul Center for Comparative Molecular Biology & Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Kristin E Gribble
- Josephine Bay Paul Center for Comparative Molecular Biology & Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| |
Collapse
|
7
|
Li J, Wu S, Zhang K, Sun X, Lin W, Wang C, Lin S. Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR-Associated Protein and Its Utility All at Sea: Status, Challenges, and Prospects. Microorganisms 2024; 12:118. [PMID: 38257946 PMCID: PMC10820777 DOI: 10.3390/microorganisms12010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Initially discovered over 35 years ago in the bacterium Escherichia coli as a defense system against invasion of viral (or other exogenous) DNA into the genome, CRISPR/Cas has ushered in a new era of functional genetics and served as a versatile genetic tool in all branches of life science. CRISPR/Cas has revolutionized the methodology of gene knockout with simplicity and rapidity, but it is also powerful for gene knock-in and gene modification. In the field of marine biology and ecology, this tool has been instrumental in the functional characterization of 'dark' genes and the documentation of the functional differentiation of gene paralogs. Powerful as it is, challenges exist that have hindered the advances in functional genetics in some important lineages. This review examines the status of applications of CRISPR/Cas in marine research and assesses the prospect of quickly expanding the deployment of this powerful tool to address the myriad fundamental marine biology and biological oceanography questions.
Collapse
Affiliation(s)
- Jiashun Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Shuaishuai Wu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Kaidian Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Marine Biology and Fisheries, Hainan University, Haikou 570203, China
| | - Xueqiong Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Wenwen Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Cong Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA
| |
Collapse
|