1
|
Chen Z, Xue J, Wang Z, Sun J, Cui Y, Zhu T, Yang H, Li M, Wu B. Small RNA Toxin-Assisted Evolution of GC-Preferred ErCas12a for Enhanced Genome Targeting Range. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e17105. [PMID: 40391806 DOI: 10.1002/advs.202417105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/26/2025] [Indexed: 05/22/2025]
Abstract
CRISPR/Cas12a, a promising gene editing technology, faces limitations due to its requirement for a thymine (T)-rich protospacer adjacent motif (PAM). Despite the development of Cas12a variants with expanded PAM profiles, many genomic loci, especially those with guanine-cytosine (GC)-rich PAMs, have remained inaccessible. This study develops a small RNA toxin-aided strategy to evolve ErCas12a for targeting GC-rich PAMs, resulting in the creation of enhanced ErCas12a (enErCas12a). EnErCas12a demonstrates the ability to recognize GC-rich PAMs and target five times more PAM sequences than the wild-type ErCas12a. Furthermore, enErCas12a achieves efficient gene editing in both bacterial and mammalian cells at various sites with non-canonical PAMs, including GC-rich PAMs such as GCCC, CGCC, and GGCC, which are inaccessible to previous Cas12a variants. Moreover, enErCas12a effectively targets PAM sequences with a GC content exceeding 75% in mammalian cells, providing a valuable alternative to the existing Cas12a toolkit. Importantly, enErCas12a maintains high specificity at targets with canonical PAMs, while also demonstrating enhanced specificity at targets with non-canonical PAMs. Collectively, this work establishes enErCas12a as a promising tool for gene editing in both eukaryotes and prokaryotes.
Collapse
Affiliation(s)
- Zehua Chen
- AIM center, College of Life Sciences and Technology, Beijing University of Chemical Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Junyuan Xue
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ziying Wang
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100000, China
| | - Jinyuan Sun
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yinglu Cui
- AIM center, College of Life Sciences and Technology, Beijing University of Chemical Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tong Zhu
- AIM center, College of Life Sciences and Technology, Beijing University of Chemical Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huaiyi Yang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ming Li
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bian Wu
- AIM center, College of Life Sciences and Technology, Beijing University of Chemical Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Green Biomanufacturing, Beijing, 100029, China
| |
Collapse
|
2
|
Zhang X, Tao C, Li M, Zhang S, Liang P, Huang Y, Liu H, Wang Y. Engineering of SauriCas9 with enhanced specificity. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102455. [PMID: 40027883 PMCID: PMC11869866 DOI: 10.1016/j.omtn.2025.102455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 01/14/2025] [Indexed: 03/05/2025]
Abstract
SauriCas9 is a compact Cas9 nuclease showing promise for in vivo therapeutic applications. However, concerns about off-target effects necessitated improvements in specificity. We addressed this by introducing mutations to eliminate polar contacts between Cas9 and the target DNA, resulting in the SauriCas9-R253A variant with enhanced specificity. To validate its efficacy, we employed SauriCas9-R253A to disrupt three genes (B2M, TRAC, and PDCD1), a strategy integral to the development of allogeneic chimeric antigen receptor T cell (CAR-T) therapies. Our results demonstrated that the most efficient single-guide RNAs for SauriCas9-R253A exhibited comparable activity to SpCas9 and showed no detectable off-target effects in the disruption of these genes, highlighting its therapeutic potential.
Collapse
Affiliation(s)
- Xiaoqi Zhang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chen Tao
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Miaomiao Li
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Sufang Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Puping Liang
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yan Huang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Fudan University, Shanghai 200433, China
| | - Huihui Liu
- National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Experimental Center of Forestry in North China, CAF, Beijing 102300, China
| | - Yongming Wang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, School of Life Sciences, Fudan University, Shanghai 200438, China
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
3
|
Wang S, Tao C, Mao H, Hou L, Wang Y, Qi T, Yang Y, Ong SG, Hu S, Chai R, Wang Y. Correction: Identification of SaCas9 orthologs containing a conserved serine residue that determines simple NNGG PAM recognition. PLoS Biol 2025; 23:e3003036. [PMID: 40080461 DOI: 10.1371/journal.pbio.3003036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pbio.3001897.].
Collapse
|
4
|
Wei J, Liu J, Tian Y, Wang Z, Hou L, Yang Y, Tao C, Li M, Gao BQ, Zhou H, Zheng X, Tang J, Gao S, Yang L, Chai R, Wang Y. Discovery and engineering of ChCas12b for precise genome editing. Sci Bull (Beijing) 2024; 69:3260-3271. [PMID: 38910106 DOI: 10.1016/j.scib.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/25/2024] [Accepted: 06/07/2024] [Indexed: 06/25/2024]
Abstract
Many clustered regularly interspaced short palindromic repeat and CRISPR-associated protein 12b (CRISPR-Cas12b) nucleases have been computationally identified, yet their potential for genome editing remains largely unexplored. In this study, we conducted a GFP-activation assay screening 13 Cas12b nucleases for mammalian genome editing, identifying five active candidates. Candidatus hydrogenedentes Cas12b (ChCas12b) was found to recognize a straightforward WTN (W = T or A) proto-spacer adjacent motif (PAM), thereby dramatically expanding the targeting scope. Upon optimization of the single guide RNA (sgRNA) scaffold, ChCas12b exhibited activity comparable to SpCas9 across a panel of nine endogenous loci. Additionally, we identified nine mutations enhancing ChCas12b specificity. More importantly, we demonstrated that both ChCas12b and its high-fidelity variant, ChCas12b-D496A, enabled allele-specific disruption of genes harboring single nucleotide polymorphisms (SNPs). These data position ChCas12b and its high-fidelity counterparts as promising tools for both fundamental research and therapeutic applications.
Collapse
Affiliation(s)
- Jingjing Wei
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Shanghai Pudong Hospital, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China
| | - Jingtong Liu
- Shanghai Pudong Hospital, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China
| | - Yuwen Tian
- Shanghai Pudong Hospital, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China
| | - Ziwen Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Linghui Hou
- Shanghai Pudong Hospital, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China
| | - Yuan Yang
- Shanghai Pudong Hospital, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China
| | - Chen Tao
- Shanghai Pudong Hospital, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China
| | - Miaomiao Li
- Shanghai Pudong Hospital, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China
| | - Bao-Qing Gao
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China
| | - Huanyu Zhou
- Shanghai Pudong Hospital, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China
| | - Xixi Zheng
- Shanghai Pudong Hospital, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China
| | - Junnan Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.
| | - Yongming Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Shanghai Pudong Hospital, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China.
| |
Collapse
|
5
|
Zhang Y, Wei J, Wang H, Wang Y. Characterization of NiCas12b for In Vivo Genome Editing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400469. [PMID: 39076074 PMCID: PMC11423069 DOI: 10.1002/advs.202400469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/08/2024] [Indexed: 07/31/2024]
Abstract
The RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12b system represents the third family of CRISPR-Cas systems that are harnessed for genome editing. However, only a few nucleases have demonstrated activity in human cells, and their in vivo therapeutic potential remains uncertain. In this study, a green fluorescent protein (GFP)-activation assay is conducted to screen a panel of 15 Cas12b orthologs, and four of them exhibited editing activity in mammalian cells. Particularly noteworthy is the NiCas12b derived from Nitrospira sp., which recognizes a "TTN" protospacer adjacent motif (PAM) and facilitates efficient genome editing in various cell lines. Importantly, NiCas12b also exhibits a high degree of specificity, rendering it suitable for therapeutic applications. As proof of concept, the adeno-associated virus (AAV) is employed to introduce NiCas12b to target the cholesterol regulatory gene proprotein convertase subtilisin/ kexin type 9 (Pcsk9) in the mouse liver. After 4 weeks of injections, an impressive is observed over 16.0% insertion/deletion (indel) efficiency, resulting in a significant reduction in serum cholesterol levels. NiCas12b provides a novel option for both basic research and clinical applications.
Collapse
Affiliation(s)
- Yunqian Zhang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jingjing Wei
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Fudan University, Shanghai, 200438, China
| | - Hongyan Wang
- Obstetrics & Gynecology Hospital, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
- Children's Hospital, Fudan University, Shanghai, 201102, China
| | - Yongming Wang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Fudan University, Shanghai, 200438, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China
| |
Collapse
|
6
|
Zhou H, Tian T, Liu J, Lu H, Yu Y, Wang Y. Efficient and markerless gene integration with SlugCas9-HF in Kluyveromyces marxianus. Commun Biol 2024; 7:797. [PMID: 38956406 PMCID: PMC11219867 DOI: 10.1038/s42003-024-06487-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024] Open
Abstract
The nonconventional yeast Kluyveromyces marxianus has potential for industrial production, but the lack of advanced synthetic biology tools for precise engineering hinders its rapid development. Here, we introduce a CRISPR-Cas9-mediated multilocus integration method for assembling multiple exogenous genes. Using SlugCas9-HF, a high-fidelity Cas9 nuclease, we enhance gene editing precision. Specific genomic loci predisposed to efficient integration and expression of heterologous genes are identified and combined with a set of paired CRISPR-Cas9 expression plasmids and donor plasmids to establish a CRISPR-based biosynthesis toolkit. This toolkit enables genome integration of large gene modules over 12 kb and achieves simultaneous quadruple-locus integration in a single step with 20% efficiency. As a proof-of-concept, we apply the toolkit to screen for gene combinations that promote heme production, revealing the importance of HEM4Km and HEM12Sc. This CRISPR-based toolkit simplifies the reconstruction of complex pathways in K. marxianus, broadening its application in synthetic biology.
Collapse
Affiliation(s)
- Huanyu Zhou
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Fudan University, Shanghai, 201399, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China
| | - Tian Tian
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China
| | - Jingtong Liu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Fudan University, Shanghai, 201399, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China
| | - Hong Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China.
| | - Yao Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China.
| | - Yongming Wang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Fudan University, Shanghai, 201399, China.
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
7
|
Wei J, Liu J, Wang Z, Yang Y, Tian Y, Wang S, Gao BQ, Gao S, Yang L, Tang J, Wang Y. Engineering of a high-fidelity Cas12a nuclease variant capable of allele-specific editing. PLoS Biol 2024; 22:e3002680. [PMID: 38865309 PMCID: PMC11168656 DOI: 10.1371/journal.pbio.3002680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
CRISPR-Cas12a, often regarded as a precise genome editor, still requires improvements in specificity. In this study, we used a GFP-activation assay to screen 14 new Cas12a nucleases for mammalian genome editing, successfully identifying 9 active ones. Notably, these Cas12a nucleases prefer pyrimidine-rich PAMs. Among these nucleases, we extensively characterized Mb4Cas12a obtained from Moraxella bovis CCUG 2133, which recognizes a YYN PAM (Y = C or T). Our biochemical analysis demonstrates that Mb4Cas12a can cleave double-strand DNA across a wide temperature range. To improve specificity, we constructed a SWISS-MODEL of Mb4Cas12a based on the FnCas12a crystal structure and identified 8 amino acids potentially forming hydrogen bonds at the target DNA-crRNA interface. By replacing these amino acids with alanine to disrupt the hydrogen bond, we tested the influence of each mutation on Mb4Cas12a specificity. Interestingly, the F370A mutation improved specificity with minimal influence on activity. Further study showed that Mb4Cas12a-F370A is capable of discriminating single-nucleotide polymorphisms. These new Cas12a orthologs and high-fidelity variants hold substantial promise for therapeutic applications.
Collapse
Affiliation(s)
- Jingjing Wei
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Jingtong Liu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Ziwen Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuan Yang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Yuwen Tian
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Shengzhou Wang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Bao-Qing Gao
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Center for Molecular Medicine, Children’s Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li Yang
- Center for Molecular Medicine, Children’s Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Junnan Tang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongming Wang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Qi T, Wang Y, Yang Y, Gao S, Liu J, Huang Q, Tian Y, Tang J, Zheng WV, Wang Y. Phage-assisted evolution of compact Cas9 variants targeting a simple NNG PAM. Nat Chem Biol 2024; 20:344-352. [PMID: 38052959 DOI: 10.1038/s41589-023-01481-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 10/12/2023] [Indexed: 12/07/2023]
Abstract
Compact Cas9 nucleases hold great promise for therapeutic applications. Although several compact Cas9 nucleases have been developed, many genomic loci still could not be edited due to a lack of protospacer adjacent motifs (PAMs). We previously developed a compact SlugCas9 recognizing an NNGG PAM. Here we demonstrate that SlugCas9 displays comparable activity to SpCas9. We developed a simple phage-assisted evolution to engineer SlugCas9 for unique PAM requirements. Interestingly, we generated a SlugCas9 variant (SlugCas9-NNG) that could recognize an NNG PAM, expanding the targeting scope. We further developed a SlugCas9-NNG-based adenine base editor and demonstrated that it could be delivered by a single adeno-associated virus to disrupt PCSK9 splice donor and splice acceptor. These genome editors greatly enhance our ability for in vivo genome editing.
Collapse
Affiliation(s)
- Tao Qi
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Fudan University, Shanghai, China
| | - Yao Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Fudan University, Shanghai, China
| | - Yuan Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Fudan University, Shanghai, China
| | - Siqi Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Fudan University, Shanghai, China
| | - Jingtong Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Fudan University, Shanghai, China
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China
| | - Yuwen Tian
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Fudan University, Shanghai, China
| | - Junnan Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Wei V Zheng
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Yongming Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China.
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Fudan University, Shanghai, China.
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China.
| |
Collapse
|
9
|
Tyumentseva M, Tyumentsev A, Akimkin V. CRISPR/Cas9 Landscape: Current State and Future Perspectives. Int J Mol Sci 2023; 24:16077. [PMID: 38003266 PMCID: PMC10671331 DOI: 10.3390/ijms242216077] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 is a unique genome editing tool that can be easily used in a wide range of applications, including functional genomics, transcriptomics, epigenetics, biotechnology, plant engineering, livestock breeding, gene therapy, diagnostics, and so on. This review is focused on the current CRISPR/Cas9 landscape, e.g., on Cas9 variants with improved properties, on Cas9-derived and fusion proteins, on Cas9 delivery methods, on pre-existing immunity against CRISPR/Cas9 proteins, anti-CRISPR proteins, and their possible roles in CRISPR/Cas9 function improvement. Moreover, this review presents a detailed outline of CRISPR/Cas9-based diagnostics and therapeutic approaches. Finally, the review addresses the future expansion of genome editors' toolbox with Cas9 orthologs and other CRISPR/Cas proteins.
Collapse
Affiliation(s)
- Marina Tyumentseva
- Central Research Institute of Epidemiology, Novogireevskaya Str., 3a, 111123 Moscow, Russia; (A.T.); (V.A.)
| | | | | |
Collapse
|
10
|
Teng Y, Wang J, Jiang T, Zou Y, Yan Y. Engineering a Streptococcus Cas9 Ortholog with an RxQ PAM-Binding Motif for PAM-Free Gene Control in Bacteria. ACS Synth Biol 2023; 12:2764-2772. [PMID: 37643152 PMCID: PMC10510713 DOI: 10.1021/acssynbio.3c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Indexed: 08/31/2023]
Abstract
The RNA-guided Cas9 endonucleases have revolutionized gene editing and regulation, but their targeting scope is limited by the protospacer adjacent motif (PAM) requirement. The most extensively used SpCas9 from Streptococcus pyogenes recognizes the NGG PAM via an RxR PAM-binding motif within its PAM-interaction (PI) domain. To overcome the strict PAM requirement, we identified and characterized a Cas9 ortholog from Streptococcus equinus HC5 (SeHCas9) that shows high sequence identity with SpCas9 but harbors a different RxQ PAM-binding motif. Complete PAM profiling revealed that SeHCas9 recognized an NAG PAM and accommodated NKG and NAW PAMs. We investigated the PAM interaction mechanism by identifying the crucial role of R1336 within the RxQ motif in determining PAM specificity, as well as the essentiality of two conserved residues (R1152 and Q1229) across Cas9 orthologs bearing the RxQ motif for PAM recognition. Further protein engineering created two variants, SeHdCas9-Q1229R and SeHdCas9-RR, that showed robust repression across an NNG and NNN PAM range, respectively. Our work proposes a novel Cas9 PAM interaction mechanism and establishes PAM-free Cas9 variants for bacterial gene control with almost no targeting restriction.
Collapse
Affiliation(s)
- Yuxi Teng
- School of Chemical, Materials
and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Jian Wang
- School of Chemical, Materials
and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Tian Jiang
- School of Chemical, Materials
and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Yusong Zou
- School of Chemical, Materials
and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Yajun Yan
- School of Chemical, Materials
and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
11
|
Wei N, Shang L, Liu J, Wang M, Liu Y, Zhu C, Fei C, Zhang L, Yang F, Gu F. Engineered Staphylococcus auricularis Cas9 with high-fidelity. FASEB J 2023; 37:e23060. [PMID: 37389931 DOI: 10.1096/fj.202202132rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/03/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
CRISPR-Cas9 is a versatile gene editing tool with a broad application of basic research and clinical therapeutics. However, the potential impact caused by off-target effects remains a critical bottleneck. The small Cas9 ortholog from Staphylococcus auricularis (SauriCas9) was identified, which recognizes a 5'-NNGG-3' protospacer adjacent motif (PAM), exhibiting high activity for genome editing. Recently, we also reported enhanced-fidelity Staphylococcus aureus Cas9 (efSaCas9), which harbors a single mutation N260D. Protein sequence alignment revealed that SauriCas9 has 62.4% sequence identity with SaCas9. Because SauriCas9 is more flexible in recognizing the target sequence with PAM of 5'-NNGG-3' than SaCas9 of 5'-NNGRRT-3' PAM, we sought to test whether key mutation(N260D) or adjacent residue mutation in efSaCas9 can be appliable to SauriCas9. With this concept, two engineered SauriCas9 variants (SauriCas9-HF1, harboring the N269D mutation; SauriCas9-HF2, harboring the D270N mutation) dramatically improved targeting specificity by targeted deep sequencing and GUIDE-seq. At certain sites, reduced off-target effects (approximately 61.6- and 111.9-fold improvements) of SauriCas9-HF2 compared with wild-type SauriCas9 were observed. Overall, two identified SauriCas9 variants (SauriCas9-HF1 and SauriCas9-HF2) expand the utility of the CRISPR toolkit for research and therapeutic applications.
Collapse
Affiliation(s)
- Nan Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Lu Shang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Jing Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Mi Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Yingchun Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Chuangang Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chenzhong Fei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Lifang Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Fayu Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Feng Gu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, China
| |
Collapse
|
12
|
Full-Length Model of SaCas9-sgRNA-DNA Complex in Cleavage State. Int J Mol Sci 2023; 24:ijms24021204. [PMID: 36674715 PMCID: PMC9867433 DOI: 10.3390/ijms24021204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/10/2023] Open
Abstract
Staphylococcus aureus Cas9 (SaCas9) is a widely used genome editing tool. Understanding its molecular mechanisms of DNA cleavage could effectively guide the engineering optimization of this system. Here, we determined the first cryo-electron microscopy structure of the SaCas9-sgRNA-DNA ternary complex. This structure reveals that the HNH nuclease domain is tightly bound to the cleavage site of the target DNA strand, and is in close contact with the WED and REC domains. Moreover, it captures the complete structure of the sgRNA, including the previously unresolved stem-loop 2. Based on this structure, we build a full-length model for the ternary complex in cleavage state. This model enables identification of the residues for the interactions between the HNH domain and the WED and REC domains. Moreover, we found that the stem-loop 2 of the sgRNA tightly binds to the PI and RuvC domains and may also regulate the position shift of the RuvC domain. Further mutagenesis and molecular dynamics simulations supported the idea that the interactions of the HNH domain with the WED and REC domains play an important role in the DNA cleavage. Thus, this study provides new mechanistic insights into the DNA cleavage of SaCas9 and is also useful for guiding the future engineering of SaCas9-mediated gene editing systems.
Collapse
|