1
|
Serot C, Scarcelli V, Pouget A, Largeau C, Sagot A, El-Hachami K, Dupuy D, Culetto E, Lefebvre C, Legouis R. Reticulon-dependent ER-phagy mediates adaptation to heat stress in C. elegans. Curr Biol 2025; 35:2365-2378.e7. [PMID: 40328253 DOI: 10.1016/j.cub.2025.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 03/06/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025]
Abstract
The selective degradation of endoplasmic reticulum (ER) by autophagy, named ER-phagy, promotes the recovery of ER homeostasis after stress. Depending on the ER stress, different types of ER-phagy involve various selective autophagy receptors. In this study, we report a macroER-phagy induced by the fragmentation of tubular ER in response to acute heat stress. We identified a novel ER-phagy receptor encoded by the reticulon long isoform RET-1d. RET-1d is mainly expressed in the nervous system and the epidermis and colocalizes with the ubiquitin-like autophagy protein LGG-1/GABARAP during heat-stress-induced autophagy. Two LC3-interacting region (LIR) motifs in the long intrinsically disordered region of RET-1d mediate its interaction with the LGG-1 protein. The specific depletion of the RET-1d isoform or the mutations of the LIRs resulted in a defective ER-phagy and a decrease in the capacity of animals to adapt to heat stress. Our data revealed a RET-1d- and LGG-1-dependent ER-phagy mechanism that takes place in neurons and epidermis and participates in the adaptation of C. elegans to heat stress.
Collapse
Affiliation(s)
- Claudia Serot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France; Department of R&I in Monogastric Animal Nutrition, European Laboratory of Innovation Science & Expertise (ELISE), Adisseo France S.A.S., Saint Fons 69190, France
| | - Vincent Scarcelli
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France
| | - Alexandre Pouget
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France; INSERM U1280, Gif-sur-Yvette cedex 91198, France
| | - Céline Largeau
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France; INSERM U1280, Gif-sur-Yvette cedex 91198, France
| | - Audrey Sagot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France; INSERM U1280, Gif-sur-Yvette cedex 91198, France
| | - Kenza El-Hachami
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France
| | - Denis Dupuy
- University of Bordeaux, INSERM U1212, CNRS UMR 5320, ARN: Régulation Naturelle et Artificielle (ARNA) Laboratory, Bordeaux F-33000, France
| | - Emmanuel Culetto
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France; INSERM U1280, Gif-sur-Yvette cedex 91198, France
| | - Christophe Lefebvre
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France; INSERM U1280, Gif-sur-Yvette cedex 91198, France.
| | - Renaud Legouis
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France; INSERM U1280, Gif-sur-Yvette cedex 91198, France.
| |
Collapse
|
2
|
Schmid EW, Walter JC. Predictomes, a classifier-curated database of AlphaFold-modeled protein-protein interactions. Mol Cell 2025; 85:1216-1232.e5. [PMID: 40015271 PMCID: PMC11931459 DOI: 10.1016/j.molcel.2025.01.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 12/17/2024] [Accepted: 01/31/2025] [Indexed: 03/01/2025]
Abstract
Protein-protein interactions (PPIs) are ubiquitous in biology, yet a comprehensive structural characterization of the PPIs underlying cellular processes is lacking. AlphaFold-Multimer (AF-M) has the potential to fill this knowledge gap, but standard AF-M confidence metrics do not reliably separate relevant PPIs from an abundance of false positive predictions. To address this limitation, we used machine learning on curated datasets to train a structure prediction and omics-informed classifier (SPOC) that effectively separates true and false AF-M predictions of PPIs, including in proteome-wide screens. We applied SPOC to an all-by-all matrix of nearly 300 human genome maintenance proteins, generating ∼40,000 predictions that can be viewed at predictomes.org, where users can also score their own predictions with SPOC. High-confidence PPIs discovered using our approach enable hypothesis generation in genome maintenance. Our results provide a framework for interpreting large-scale AF-M screens and help lay the foundation for a proteome-wide structural interactome.
Collapse
Affiliation(s)
- Ernst W Schmid
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Johannes C Walter
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Liang Y, Yan Y, Shi L, Wang M, Yuan X, Wang S, Ye L, Yan Z. Molecular Basis of Thioredoxin-Dependent Arsenic Transformation in Methanogenic Archaea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:443-453. [PMID: 39560730 DOI: 10.1021/acs.est.4c06611] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Methanogenic archaea are known to play a crucial role in the biogeochemical cycling of arsenic (As); however, the molecular basis of As transformation mediated by methanogenic archaea remains poorly understood. Herein, the characterization of the redox transformation and methylation of As by Methanosarcina acetivorans, a model methanogenic archaeon, is reported. M. acetivorans was demonstrated to mediate As(V) reduction via a cytoplasmic As reductase (ArsC) in the exponential phase of methanogenic growth and to methylate As(III) via a cytoplasmic As(III) methyltransferase (ArsM) in the stationary phase. Characterization of the ArsC-catalyzed As(V) reduction and the ArsM-catalyzed As(III) methylation showed that a thioredoxin (Trx) encoded by MA4683 was preferentially utilized as a physiological electron donor for ArsC and ArsM, providing a redox link between methanogenesis and As transformation. The structures of ArsC and ArsM complexed with Trx were modeled using AlphaFold-Multimer. Site-directed mutagenesis of key cysteine residues at the interaction sites of the complexes indicated that the archaeal ArsC and ArsM employ evolutionarily distinct disulfide bonds for interacting with Trx compared to those used by bacterial ArsC or eukaryotic ArsM. The findings of this study present a major advance in our current understanding of the physiological roles and underlying mechanism of As transformation in methanogenic archaea.
Collapse
Affiliation(s)
- Yanping Liang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Shandong, Qingdao 266237, China
| | - Yunfeng Yan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Shandong, Qingdao 266237, China
| | - Lulu Shi
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Shandong, Qingdao 266237, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Shandong, Qingdao 266237, China
| | - Xianzheng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Shandong, Qingdao 266237, China
- Sino-French Research Institute for Ecology and Environment (ISFREE), School of Environmental Science and Engineering, Shandong University, Shandong, Qingdao 266237, China
| | - Shuguang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Shandong, Qingdao 266237, China
- Sino-French Research Institute for Ecology and Environment (ISFREE), School of Environmental Science and Engineering, Shandong University, Shandong, Qingdao 266237, China
- WeiHai Research Institute of Industrial Technology of Shandong University, Shandong University, Weihai 264209, China
| | - Li Ye
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Zhen Yan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Shandong, Qingdao 266237, China
| |
Collapse
|
4
|
Korona B, Itzhaki LS. How to target membrane proteins for degradation: Bringing GPCRs into the TPD fold. J Biol Chem 2024; 300:107926. [PMID: 39454955 PMCID: PMC11626814 DOI: 10.1016/j.jbc.2024.107926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
We are now in the middle of a so-called "fourth wave" of drug innovation: multispecific medicines aimed at diseases and targets previously thought to be "undruggable"; by inducing proximity between two or more proteins, for example, a target and an effector that do not naturally interact, such modalities have potential far beyond the scope of conventional drugs. In particular, targeted protein degradation (TPD) strategies to destroy disease-associated proteins have emerged as an exciting pipeline in drug discovery. Most efforts are focused on intracellular proteins, whereas membrane proteins have been less thoroughly explored despite the fact that they comprise roughly a quarter of the human proteome with G-protein coupled receptors (GPCRs) notably dysregulated in many diseases. Here, we discuss the opportunities and challenges of developing degraders for membrane proteins with a focus on GPCRs. We provide an overview of different TPD platforms in the context of membrane-tethered targets, and we present recent degradation technologies highlighting their potential application to GPCRs.
Collapse
Affiliation(s)
- Boguslawa Korona
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom.
| | - Laura S Itzhaki
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
5
|
Ackmann J, Brüge A, Gotina L, Lim S, Jahreis K, Vollbrecht AL, Kim YK, Pae AN, Labus J, Ponimaskin E. Structural determinants for activation of the Tau kinase CDK5 by the serotonin receptor 5-HT7R. Cell Commun Signal 2024; 22:233. [PMID: 38641599 PMCID: PMC11031989 DOI: 10.1186/s12964-024-01612-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/11/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Multiple neurodegenerative diseases are induced by the formation and deposition of protein aggregates. In particular, the microtubule-associated protein Tau leads to the development of so-called tauopathies characterized by the aggregation of hyperphosphorylated Tau within neurons. We recently showed that the constitutive activity of the serotonin receptor 7 (5-HT7R) is required for Tau hyperphosphorylation and aggregation through activation of the cyclin-dependent kinase 5 (CDK5). We also demonstrated physical interaction between 5-HT7R and CDK5 at the plasma membrane suggesting that the 5-HT7R/CDK5 complex is an integral part of the signaling network involved in Tau-mediated pathology. METHODS Using biochemical, microscopic, molecular biological, computational and AI-based approaches, we investigated structural requirements for the formation of 5-HT7R/CDK5 complex. RESULTS We demonstrated that 5-HT7R domains responsible for coupling to Gs proteins are not involved in receptor interaction with CDK5. We also created a structural model of the 5-HT7R/CDK5 complex and refined the interaction interface. The model predicted two conserved phenylalanine residues, F278 and F281, within the third intracellular loop of 5-HT7R to be potentially important for complex formation. While site-directed mutagenesis of these residues did not influence Gs protein-mediated receptor signaling, replacement of both phenylalanines by alanine residues significantly reduced 5-HT7R/CDK5 interaction and receptor-mediated CDK5 activation, leading to reduced Tau hyperphosphorylation and aggregation. Molecular dynamics simulations of 5-HT7R/CDK5 complex for wild-type and receptor mutants confirmed binding interface stability of the initial model. CONCLUSIONS Our results provide a structural basis for the development of novel drugs targeting the 5-HT7R/CDK5 interaction interface for the selective treatment of Tau-related disorders, including frontotemporal dementia and Alzheimer's disease.
Collapse
Affiliation(s)
- Jana Ackmann
- Department of Cellular Neurophysiology, Institute for Neurophysiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Alina Brüge
- Department of Cellular Neurophysiology, Institute for Neurophysiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Lizaveta Gotina
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Sungsu Lim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Kathrin Jahreis
- Department of Cellular Neurophysiology, Institute for Neurophysiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Anna-Lena Vollbrecht
- Department of Cellular Neurophysiology, Institute for Neurophysiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Yun Kyung Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Ae Nim Pae
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Josephine Labus
- Department of Cellular Neurophysiology, Institute for Neurophysiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Evgeni Ponimaskin
- Department of Cellular Neurophysiology, Institute for Neurophysiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
6
|
Schmid EW, Walter JC. Predictomes: A classifier-curated database of AlphaFold-modeled protein-protein interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588596. [PMID: 38645019 PMCID: PMC11030396 DOI: 10.1101/2024.04.09.588596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Protein-protein interactions (PPIs) are ubiquitous in biology, yet a comprehensive structural characterization of the PPIs underlying biochemical processes is lacking. Although AlphaFold-Multimer (AF-M) has the potential to fill this knowledge gap, standard AF-M confidence metrics do not reliably separate relevant PPIs from an abundance of false positive predictions. To address this limitation, we used machine learning on well curated datasets to train a Structure Prediction and Omics informed Classifier called SPOC that shows excellent performance in separating true and false PPIs, including in proteome-wide screens. We applied SPOC to an all-by-all matrix of nearly 300 human genome maintenance proteins, generating ~40,000 predictions that can be viewed at predictomes.org, where users can also score their own predictions with SPOC. High confidence PPIs discovered using our approach suggest novel hypotheses in genome maintenance. Our results provide a framework for interpreting large scale AF-M screens and help lay the foundation for a proteome-wide structural interactome.
Collapse
Affiliation(s)
- Ernst W. Schmid
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Johannes C. Walter
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
7
|
Zhang C, Hao H, Wang Y, Mu N, Jiang W, Zhang Z, Yin Y, Yu L, Chang ACY, Ma H. Intercellular mitochondrial component transfer triggers ischemic cardiac fibrosis. Sci Bull (Beijing) 2023; 68:1784-1799. [PMID: 37517989 DOI: 10.1016/j.scib.2023.07.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/15/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023]
Abstract
Myocardial fibrosis is the villain of sudden cardiac death. Myocardial ischemia/reperfusion (MI/R) injury induces cardiomyocyte damage or even death, which in turn stimulates fibroblast activation and fibrosis, but the intercellular communication mechanism remains unknown. Recent studies have shown that small extracellular vesicles (sEVs) significantly contribute to intercellular communication. Whether and how sEV might mediate post-MI/R cardiomyocyte/fibroblasts communication remain unknown. Here, in vivo and in vitro MI/R models were established. We demonstrate that sEVs derived from cardiomyocyte (Myo-sEVs) carry mitochondrial components, which enter fibroblasts to initiate myocardial fibrosis. Based on bioinformatics screening and experimental verification, the activating molecule in Beclin1-regulated autophagy protein 1 (autophagy/beclin-1 regulator 1, Ambra1) was found to be a critical component of these sEV and might be a new marker for Myo-sEVs. Interestingly, release of Ambra1+-Myo-sEVs was caused by secretory rather than canonical autophagy after MI/R injury and thereby escaped degradation. In ischemic and peripheral areas, Ambra1+-Myo-sEVs were internalized by fibroblasts, and the delivered mtDNA components to activate the fibroblast cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway to promote fibroblast activation and proliferation. In addition, our data show that Ambra1 is expressed on the EV surface and cardiac-specific Ambra1 down regulation inhibits the Ambra1+-Myo-sEVs release and fibroblast uptake, effectively inhibiting ischemic myocardial fibrosis. This finding newly provides the evidence that myocardial secretory autophagy plays a role in intercellular communication during cardiac fibrosis. Ambra1 is a newly characterized molecule with bioactivity and might be a marker for Myo-sEVs, providing new therapeutic targets for cardiac remodeling.
Collapse
Affiliation(s)
- Chan Zhang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hao Hao
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yishi Wang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Nan Mu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Wenhua Jiang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zihui Zhang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Lu Yu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Alex Chia Yu Chang
- Department of Cardiology and Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 211125, China.
| | - Heng Ma
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|