1
|
Herbert A. Flipons enable genomes to learn by intermediating the exchange of energy for information. J R Soc Interface 2025; 22:20250049. [PMID: 40134357 PMCID: PMC11937930 DOI: 10.1098/rsif.2025.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025] Open
Abstract
Recent findings have confirmed the long-held belief that alternative DNA conformations encoded by genetic elements called flipons have important biological roles. Many of these alternative structures are formed by sequences originally spread throughout the human genome by endogenous retroelements (ERE) that captured 50% of the territory before being disarmed. Only 2.6% of the remaining DNA codes for proteins. Other organisms have instead streamlined their genomes by eliminating invasive retroelements and other repeat elements. The question arises, why retain any ERE at all? A new synthesis suggests that flipons enable genomes to learn and programme the context-specific readout of information by altering the transcripts produced. The exchange of energy for information is mediated through changes in DNA topology. Here I provide a formulation for how genomes learn and describe the underlying p-bit algorithm through which flipons are tuned. The framework suggests new strategies for the therapeutic reprogramming of cells.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery, InsideOutBio Inc, Charlestown, MA, USA
| |
Collapse
|
2
|
Drobotenko MI, Svidlov AA, Dorohova АA, Baryshev MG, Dzhimak SS. Medium viscosity influence on the open states genesis in a DNA molecule. J Biomol Struct Dyn 2025; 43:2253-2261. [PMID: 38102872 DOI: 10.1080/07391102.2023.2294178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
The studies were carried out by the mathematical modeling of DNA mechanical deformations. Numerical calculations done for the interferon alpha 17 gene, which consists of 980 base pairs. It has been established that the genesis and dynamics of open states in the DNA molecule depends on the magnitude of the external influence (torque) and on the viscosity of the environment. In addition, it is shown that the dynamics of open states zones can have a jump-like character with a small change in the magnitude of the torque. When torque is applied to all 980 base pairs of the gene, the following effect is observed: an increase in the viscosity of the medium leads to an increase in the value of the torque necessary for the occurrence of OS and DNA unwinding, i.e. viscosity plays an important stabilizing role in DNA dynamics. Under the influence of a localized torque on different (by the content of A-T and G-C pairs and location) regions of the interferon alpha 17 gene, it was found that the magnitude of the external torque necessary for the occurrence of open states at all calculated values of viscosity depends on the nucleotide composition. The dependence of the torque magnitude required for the open states occurrence on viscosity is observed when the torque is applied to areas close to the gene boundaries. At the same time, the significance of the end effect, which weakens DNA, decreased with increasing viscosity of the medium.
Collapse
Affiliation(s)
- Mikhail I Drobotenko
- Department of Radiophysics and Nanothechnology, Physics Faculty, Kuban State University, Krasnodar, Russia
| | - Alexandr A Svidlov
- Department of Radiophysics and Nanothechnology, Physics Faculty, Kuban State University, Krasnodar, Russia
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Federal Research Center the Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don, Russia
| | - Аnna A Dorohova
- Department of Radiophysics and Nanothechnology, Physics Faculty, Kuban State University, Krasnodar, Russia
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Federal Research Center the Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don, Russia
| | - Mikhail G Baryshev
- Department of Safety and Productivity of agroecosystems, All-Russian Research Institute of Phytopathology, Russia
| | - Stepan S Dzhimak
- Department of Radiophysics and Nanothechnology, Physics Faculty, Kuban State University, Krasnodar, Russia
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Federal Research Center the Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don, Russia
| |
Collapse
|
3
|
Wang G, Mouratidis I, Provatas K, Chantzi N, Patsakis M, Georgakopoulos-Soares I, Vasquez K. ZSeeker: An optimized algorithm for Z-DNA detection in genomic sequences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637205. [PMID: 39990320 PMCID: PMC11844381 DOI: 10.1101/2025.02.07.637205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Z-DNA is an alternative left-handed helical form of DNA with a zigzag-shaped backbone that differs from the right-handed canonical B-DNA helix. Z-DNA has been implicated in various biological processes, including transcription, replication, and DNA repair, and can induce genetic instability. Repetitive sequences of alternating purines and pyrimidines have the potential to adopt Z-DNA structures. ZSeeker is a novel computational tool developed for the accurate detection of potential Z-DNA-forming sequences in genomes, addressing limitations of prior methods. By introducing a novel methodology informed and validated by experimental data, ZSeeker enables the refined detection of potential Z-DNA-forming sequences. Built both as a standalone Python package and as an accessible web interface, ZSeeker allows users to input genomic sequences, adjust detection parameters, and view potential Z-DNA sequence distributions and Z-scores via downloadable visualizations. Our Web Platform provides a no-code solution for Z-DNA identification, with a focus on accessibility, user-friendliness, speed and customizability. By providing efficient, high-throughput analysis and enhanced detection accuracy, ZSeeker has the potential to support significant advancements in understanding the roles of Z-DNA in normal cellular functions, genetic instability, and its implications in human diseases.
Collapse
Affiliation(s)
- Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX, USA
| | - Ioannis Mouratidis
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Kimonas Provatas
- Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Nikol Chantzi
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Michail Patsakis
- Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Karen Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX, USA
| |
Collapse
|
4
|
Benham CJ. DNA superhelicity. Nucleic Acids Res 2024; 52:22-48. [PMID: 37994702 PMCID: PMC10783518 DOI: 10.1093/nar/gkad1092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
Closing each strand of a DNA duplex upon itself fixes its linking number L. This topological condition couples together the secondary and tertiary structures of the resulting ccDNA topoisomer, a constraint that is not present in otherwise identical nicked or linear DNAs. Fixing L has a range of structural, energetic and functional consequences. Here we consider how L having different integer values (that is, different superhelicities) affects ccDNA molecules. The approaches used are primarily theoretical, and are developed from a historical perspective. In brief, processes that either relax or increase superhelicity, or repartition what is there, may either release or require free energy. The energies involved can be substantial, sufficient to influence many events, directly or indirectly. Here two examples are developed. The changes of unconstrained superhelicity that occur during nucleosome attachment and release are examined. And a simple theoretical model of superhelically driven DNA structural transitions is described that calculates equilibrium distributions for populations of identical topoisomers. This model is used to examine how these distributions change with superhelicity and other factors, and applied to analyze several situations of biological interest.
Collapse
Affiliation(s)
- Craig J Benham
- UC Davis Genome Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
5
|
Abstract
The initial discovery of left-handed Z-DNA was met with great excitement as a dramatic alternative to the right-handed double-helical conformation of canonical B-DNA. In this chapter, we describe the workings of the program ZHUNT as a computational approach to mapping Z-DNA in genomic sequences using a rigorous thermodynamic model for the transition between the two conformations (the B-Z transition). The discussion starts with a brief summary of the structural properties that differentiate Z- from B-DNA, focusing on those properties that are particularly relevant to the B-Z transition and the junction that splices a left- to right-handed DNA duplex. We then derive the statistical mechanics (SM) analysis of the zipper model that describes the cooperative B-Z transition and show that this analysis very accurately simulates this behavior of naturally occurring sequences that are induced to undergo the B-Z transition through negative supercoiling. A description of the ZHUNT algorithm and its validation are presented, followed by how the program had been applied for genomic and phylogenomic analyses in the past and how a user can access the online version of the program. Finally, we present a new version of ZHUNT (called mZHUNT) that has been parameterized to analyze sequences that contain 5-methylcytosine bases and compare the results of the ZHUNT and mZHUNT analyses on native and methylated yeast chromosome 1.
Collapse
|
6
|
BZ Junctions and Its Application as Probe (2AP) to Detect Z-DNA Formation and Its Effector. Methods Mol Biol 2023; 2651:105-113. [PMID: 36892762 DOI: 10.1007/978-1-0716-3084-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
The left-handed Z-DNA is surrounded by right-handed canonical B-DNA, and thus the junction between B- and Z-DNA has been occurred during temporal Z-DNA formation in the genome. The base extrusion structure of the BZ junction may help detect Z-DNA formation in DNAs. Here we describe the BZ junction structural detection by using 2-aminopurine (2AP) fluorescent probe. BZ junction formation can be measured in solution by this method.
Collapse
|
7
|
Kouzine F, Wojtowicz D, Przytycka TM, Levens D. Detection of Z-DNA Structures in Supercoiled Genome. Methods Mol Biol 2023; 2651:179-193. [PMID: 36892768 PMCID: PMC10512777 DOI: 10.1007/978-1-0716-3084-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Z-DNAs are nucleic acid secondary structures that form within a special pattern of nucleotides and are promoted by DNA supercoiling. Through Z-DNA formation, DNA encodes information by dynamic changes in its secondary structure. A growing body of evidence indicates that Z-DNA formation can play a role in gene regulation; it can affect chromatin architecture and demonstrates its association with genomic instability, genetic diseases, and genome evolution. Many functional roles of Z-DNA are yet to be discovered highlighting the need for techniques to detect genome-wide folding of DNA into this structure. Here, we describe an approach to convert linear genome into supercoiled genome sponsoring Z-DNA formation. Applying permanganate-based methodology and high-throughput sequencing to supercoiled genome allows genome-wide detection of single-stranded DNA. Single-stranded DNA is characteristic of the junctions between the classical B-form of DNA and Z-DNA. Consequently, analysis of single-stranded DNA map provides snapshots of the Z-DNA conformation over the whole genome.
Collapse
Affiliation(s)
- Fedor Kouzine
- Laboratory of Pathology, NCI/NIH, Bethesda, MD, USA.
| | | | | | - David Levens
- Laboratory of Pathology, NCI/NIH, Bethesda, MD, USA
| |
Collapse
|
8
|
Tang Q, Rigby RE, Young GR, Hvidt AK, Davis T, Tan TK, Bridgeman A, Townsend AR, Kassiotis G, Rehwinkel J. Adenosine-to-inosine editing of endogenous Z-form RNA by the deaminase ADAR1 prevents spontaneous MAVS-dependent type I interferon responses. Immunity 2021; 54:1961-1975.e5. [PMID: 34525337 PMCID: PMC8459395 DOI: 10.1016/j.immuni.2021.08.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/13/2021] [Accepted: 08/11/2021] [Indexed: 01/05/2023]
Abstract
Nucleic acids are powerful triggers of innate immunity and can adopt the Z-conformation, an unusual left-handed double helix. Here, we studied the biological function(s) of Z-RNA recognition by the adenosine deaminase ADAR1, mutations in which cause Aicardi-Goutières syndrome. Adar1mZα/mZα mice, bearing two point mutations in the Z-nucleic acid binding (Zα) domain that abolish Z-RNA binding, displayed spontaneous induction of type I interferons (IFNs) in multiple organs, including in the lung, where both stromal and hematopoietic cells showed IFN-stimulated gene (ISG) induction. Lung neutrophils expressed ISGs induced by the transcription factor IRF3, indicating an initiating role for neutrophils in this IFN response. The IFN response in Adar1mZα/mZα mice required the adaptor MAVS, implicating cytosolic RNA sensing. Adenosine-to-inosine changes were enriched in transposable elements and revealed a specific requirement of ADAR1's Zα domain in editing of a subset of RNAs. Thus, endogenous RNAs in Z-conformation have immunostimulatory potential curtailed by ADAR1, with relevance to autoinflammatory disease in humans.
Collapse
Affiliation(s)
- Qiannan Tang
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Rachel E Rigby
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - George R Young
- Bioinformatics and Biostatistics STP, The Francis Crick Institute, London, NW1 1AT, UK
| | - Astrid Korning Hvidt
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Tanja Davis
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Tiong Kit Tan
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Anne Bridgeman
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Alain R Townsend
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK; Centre for Translational Immunology, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, OX3 7FZ, UK
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, London, NW 1AT, UK; Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W2 1NY, UK
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| |
Collapse
|
9
|
Chedin F, Benham CJ. Emerging roles for R-loop structures in the management of topological stress. J Biol Chem 2020; 295:4684-4695. [PMID: 32107311 DOI: 10.1074/jbc.rev119.006364] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
R-loop structures are a prevalent class of alternative non-B DNA structures that form during transcription upon invasion of the DNA template by the nascent RNA. R-loops form universally in the genomes of organisms ranging from bacteriophages, bacteria, and yeasts to plants and animals, including mammals. A growing body of work has linked these structures to both physiological and pathological processes, in particular to genome instability. The rising interest in R-loops is placing new emphasis on understanding the fundamental physicochemical forces driving their formation and stability. Pioneering work in Escherichia coli revealed that DNA topology, in particular negative DNA superhelicity, plays a key role in driving R-loops. A clear role for DNA sequence was later uncovered. Here, we review and synthesize available evidence on the roles of DNA sequence and DNA topology in controlling R-loop formation and stability. Factoring in recent developments in R-loop modeling and single-molecule profiling, we propose a coherent model accounting for the interplay between DNA sequence and DNA topology in driving R-loop structure formation. This model reveals R-loops in a new light as powerful and reversible topological stress relievers, an insight that significantly expands the repertoire of R-loops' potential biological roles under both normal and aberrant conditions.
Collapse
Affiliation(s)
- Frederic Chedin
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616 .,Genome Center, University of California, Davis, California 95616
| | - Craig J Benham
- Genome Center, University of California, Davis, California 95616 .,Departments of Mathematics and Biomedical Engineering, University of California, Davis, California 95616
| |
Collapse
|
10
|
Silva-Santos AR, Alves CP, Monteiro G, Azevedo AM, Prazeres DMF. Multimodal chromatography of supercoiled minicircles: A closer look into DNA-ligand interactions. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
11
|
Abstract
Three-stranded R-loop structures form during transcription when the nascent RNA transcript rehybridizes to the template DNA strand. This creates an RNA:DNA hybrid and forces the nontemplate DNA strand into a single-stranded, looped-out state. R-loops form universally over conserved hotspot regions. To date, the physicochemical bases underlying R-loop formation remain unclear. Using a “first-principle” mathematical approach backed by experimental validation, we elucidated the relative contributions of DNA sequence and DNA topology to R-loop formation. Our work provides a quantitative assessment of the energies underlying R-loop formation and of their interplay. It further reveals these structures as important regulators of the DNA topological state. R-loops are abundant three-stranded nucleic-acid structures that form in cis during transcription. Experimental evidence suggests that R-loop formation is affected by DNA sequence and topology. However, the exact manner by which these factors interact to determine R-loop susceptibility is unclear. To investigate this, we developed a statistical mechanical equilibrium model of R-loop formation in superhelical DNA. In this model, the energy involved in forming an R-loop includes four terms—junctional and base-pairing energies and energies associated with superhelicity and with the torsional winding of the displaced DNA single strand around the RNA:DNA hybrid. This model shows that the significant energy barrier imposed by the formation of junctions can be overcome in two ways. First, base-pairing energy can favor RNA:DNA over DNA:DNA duplexes in favorable sequences. Second, R-loops, by absorbing negative superhelicity, partially or fully relax the rest of the DNA domain, thereby returning it to a lower energy state. In vitro transcription assays confirmed that R-loops cause plasmid relaxation and that negative superhelicity is required for R-loops to form, even in a favorable region. Single-molecule R-loop footprinting following in vitro transcription showed a strong agreement between theoretical predictions and experimental mapping of stable R-loop positions and further revealed the impact of DNA topology on the R-loop distribution landscape. Our results clarify the interplay between base sequence and DNA superhelicity in controlling R-loop stability. They also reveal R-loops as powerful and reversible topology sinks that cells may use to nonenzymatically relieve superhelical stress during transcription.
Collapse
|
12
|
Permanganate/S1 Nuclease Footprinting Reveals Non-B DNA Structures with Regulatory Potential across a Mammalian Genome. Cell Syst 2017; 4:344-356.e7. [PMID: 28237796 DOI: 10.1016/j.cels.2017.01.013] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 09/06/2016] [Accepted: 01/13/2017] [Indexed: 12/11/2022]
Abstract
DNA in cells is predominantly B-form double helix. Though certain DNA sequences in vitro may fold into other structures, such as triplex, left-handed Z form, or quadruplex DNA, the stability and prevalence of these structures in vivo are not known. Here, using computational analysis of sequence motifs, RNA polymerase II binding data, and genome-wide potassium permanganate-dependent nuclease footprinting data, we map thousands of putative non-B DNA sites at high resolution in mouse B cells. Computational analysis associates these non-B DNAs with particular structures and indicates that they form at locations compatible with an involvement in gene regulation. Further analyses support the notion that non-B DNA structure formation influences the occupancy and positioning of nucleosomes in chromatin. These results suggest that non-B DNAs contribute to the control of a variety of critical cellular and organismal processes.
Collapse
|
13
|
Abstract
Disruptions in chromatin structure are necessary for the regulation of eukaryotic genomes, from remodelling of nucleosomes at the base pair level through to large-scale chromatin domains that are hundreds of kilobases in size. RNA polymerase is a powerful motor which, prevented from turning with the tight helical pitch of the DNA, generates over-wound DNA ahead of itself and under-wound DNA behind. Mounting evidence supports a central role for transcription-dependent DNA supercoiling in disrupting chromatin structure at all scales. This supercoiling changes the properties of the DNA helix in a manner that substantially alters the binding specificity of DNA binding proteins and complexes, including nucleosomes, polymerases, topoisomerases and transcription factors. For example, transient over-wound DNA destabilises nucleosome core particles ahead of a transcribing polymerase, whereas under-wound DNA facilitates pre-initiation complex formation, transcription factor binding and nucleosome core particle association behind the transcribing polymerase. Importantly, DNA supercoiling can also dissipate through DNA, even in a chromatinised context, to influence both local elements and large chromatin domains. We propose a model in which changes in unconstrained DNA supercoiling influences higher levels of chromatin organisation through the additive effects of DNA supercoiling on both DNA-protein and DNA-nucleosome interactions. This model links small-scale changes in DNA and chromatin to the higher-order fibre and large-scale chromatin structures, providing a mechanism relating gene regulation to chromatin architecture in vivo.
Collapse
|
14
|
Corless S, Gilbert N. Effects of DNA supercoiling on chromatin architecture. Biophys Rev 2016; 8:245-258. [PMID: 27738453 PMCID: PMC5039215 DOI: 10.1007/s12551-016-0210-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/13/2016] [Indexed: 12/28/2022] Open
Abstract
Disruptions in chromatin structure are necessary for the regulation of eukaryotic genomes, from remodelling of nucleosomes at the base pair level through to large-scale chromatin domains that are hundreds of kilobases in size. RNA polymerase is a powerful motor which, prevented from turning with the tight helical pitch of the DNA, generates over-wound DNA ahead of itself and under-wound DNA behind. Mounting evidence supports a central role for transcription-dependent DNA supercoiling in disrupting chromatin structure at all scales. This supercoiling changes the properties of the DNA helix in a manner that substantially alters the binding specificity of DNA binding proteins and complexes, including nucleosomes, polymerases, topoisomerases and transcription factors. For example, transient over-wound DNA destabilises nucleosome core particles ahead of a transcribing polymerase, whereas under-wound DNA facilitates pre-initiation complex formation, transcription factor binding and nucleosome core particle association behind the transcribing polymerase. Importantly, DNA supercoiling can also dissipate through DNA, even in a chromatinised context, to influence both local elements and large chromatin domains. We propose a model in which changes in unconstrained DNA supercoiling influences higher levels of chromatin organisation through the additive effects of DNA supercoiling on both DNA-protein and DNA-nucleosome interactions. This model links small-scale changes in DNA and chromatin to the higher-order fibre and large-scale chromatin structures, providing a mechanism relating gene regulation to chromatin architecture in vivo.
Collapse
Affiliation(s)
- Samuel Corless
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH42XU UK
| | - Nick Gilbert
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH42XU UK
| |
Collapse
|
15
|
Kwon AY, Lee NK, Hong SC, Fierling J, Johner A. Annealed random copolymer model of the B-Z transition in DNA: torsional responses. Biophys J 2016; 108:2562-2572. [PMID: 25992734 DOI: 10.1016/j.bpj.2015.03.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 03/10/2015] [Accepted: 03/17/2015] [Indexed: 11/26/2022] Open
Abstract
Both in vivo and in vitro, specific sequences in double-stranded DNA can adopt the left-handed Z-form when underwound. Recently, the B-Z transition of DNA has been studied in detail in magnetic tweezers experiments by several groups. We present a theoretical description of this transition, based on an annealed random copolymer model. The transition of a switchable sequence is discussed as a function of energetic and geometric parameters of the B- and Z-forms, of the applied boundary conditions, and of the characteristics of the B-Z interface. We address a possible torsional softening upon the B-Z transition. The model can be also applied to other biofilaments with annealed torsional/flexural degrees of freedom.
Collapse
Affiliation(s)
- Ah-Young Kwon
- Department of Physics, Sejong University, Seoul, South Korea
| | - Nam-Kyung Lee
- Department of Physics, Sejong University, Seoul, South Korea; Institute Charles Sadron, Centre National de la Recherche Scientifique, Strasbourg, France.
| | | | - Julien Fierling
- Institute Charles Sadron, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Albert Johner
- Department of Physics, Sejong University, Seoul, South Korea; Institute Charles Sadron, Centre National de la Recherche Scientifique, Strasbourg, France
| |
Collapse
|
16
|
|
17
|
Du X, Gertz EM, Wojtowicz D, Zhabinskaya D, Levens D, Benham CJ, Schäffer AA, Przytycka TM. Potential non-B DNA regions in the human genome are associated with higher rates of nucleotide mutation and expression variation. Nucleic Acids Res 2014; 42:12367-79. [PMID: 25336616 PMCID: PMC4227770 DOI: 10.1093/nar/gku921] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
While individual non-B DNA structures have been shown to impact gene expression, their broad regulatory role remains elusive. We utilized genomic variants and expression quantitative trait loci (eQTL) data to analyze genome-wide variation propensities of potential non-B DNA regions and their relation to gene expression. Independent of genomic location, these regions were enriched in nucleotide variants. Our results are consistent with previously observed mutagenic properties of these regions and counter a previous study concluding that G-quadruplex regions have a reduced frequency of variants. While such mutagenicity might undermine functionality of these elements, we identified in potential non-B DNA regions a signature of negative selection. Yet, we found a depletion of eQTL-associated variants in potential non-B DNA regions, opposite to what might be expected from their proposed regulatory role. However, we also observed that genes downstream of potential non-B DNA regions showed higher expression variation between individuals. This coupling between mutagenicity and tolerance for expression variability of downstream genes may be a result of evolutionary adaptation, which allows reconciling mutagenicity of non-B DNA structures with their location in functionally important regions and their potential regulatory role.
Collapse
Affiliation(s)
- Xiangjun Du
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - E Michael Gertz
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Damian Wojtowicz
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Dina Zhabinskaya
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Levens
- UC Davis Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Craig J Benham
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alejandro A Schäffer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Teresa M Przytycka
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
18
|
Abstract
Chromatin is a complex assembly that compacts DNA inside the nucleus while providing the necessary level of accessibility to regulatory factors conscripted by cellular signaling systems. In this superstructure, DNA is the subject of mechanical forces applied by variety of molecular motors. Rather than being a rigid stick, DNA possesses dynamic structural variability that could be harnessed during critical steps of genome functioning. The strong relationship between DNA structure and key genomic processes necessitates the study of physical constrains acting on the double helix. Here we provide insight into the source, dynamics, and biology of DNA topological domains in the eukaryotic cells and summarize their possible involvement in gene transcription. We emphasize recent studies that might inspire and impact future experiments on the involvement of DNA topology in cellular functions.
Collapse
Affiliation(s)
- Fedor Kouzine
- Laboratory of Pathology; National Cancer Institute; Bethesda, MD USA
| | - David Levens
- Laboratory of Pathology; National Cancer Institute; Bethesda, MD USA
| | - Laura Baranello
- Laboratory of Pathology; National Cancer Institute; Bethesda, MD USA
| |
Collapse
|
19
|
Burger G, Gray MW, Forget L, Lang BF. Strikingly bacteria-like and gene-rich mitochondrial genomes throughout jakobid protists. Genome Biol Evol 2013; 5:418-38. [PMID: 23335123 PMCID: PMC3590771 DOI: 10.1093/gbe/evt008] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The most bacteria-like mitochondrial genome known is that of the jakobid flagellate Reclinomonas americana NZ. This genome also encodes the largest known gene set among mitochondrial DNAs (mtDNAs), including the RNA subunit of RNase P (transfer RNA processing), a reduced form of transfer-messenger RNA (translational control), and a four-subunit bacteria-like RNA polymerase, which in other eukaryotes is substituted by a nucleus-encoded, single-subunit, phage-like enzyme. Further, protein-coding genes are preceded by potential Shine-Dalgarno translation initiation motifs. Whether similarly ancestral mitochondrial characters also exist in relatives of R. americana NZ is unknown. Here, we report a comparative analysis of nine mtDNAs from five distant jakobid genera: Andalucia, Histiona, Jakoba, Reclinomonas, and Seculamonas. We find that Andalucia godoyi has an even larger mtDNA gene complement than R. americana NZ. The extra genes are rpl35 (a large subunit mitoribosomal protein) and cox15 (involved in cytochrome oxidase assembly), which are nucleus encoded throughout other eukaryotes. Andalucia cox15 is strikingly similar to its homolog in the free-living α-proteobacterium Tistrella mobilis. Similarly, a long, highly conserved gene cluster in jakobid mtDNAs, which is a clear vestige of prokaryotic operons, displays a gene order more closely resembling that in free-living α-proteobacteria than in Rickettsiales species. Although jakobid mtDNAs, overall, are characterized by bacteria-like features, they also display a few remarkably divergent characters, such as 3'-tRNA editing in Seculamonas ecuadoriensis and genome linearization in Jakoba libera. Phylogenetic analysis with mtDNA-encoded proteins strongly supports monophyly of jakobids with Andalucia as the deepest divergence. However, it remains unclear which α-proteobacterial group is the closest mitochondrial relative.
Collapse
Affiliation(s)
- Gertraud Burger
- Department of Biochemistry, Robert-Cedergren Center in Bioinformatics and Genomics, Université de Montréal, Montreal, Quebec, Canada.
| | | | | | | |
Collapse
|
20
|
Zhabinskaya D, Benham CJ. Competitive superhelical transitions involving cruciform extrusion. Nucleic Acids Res 2013; 41:9610-21. [PMID: 23969416 PMCID: PMC3834812 DOI: 10.1093/nar/gkt733] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A DNA molecule under negative superhelical stress becomes susceptible to transitions to alternate structures. The accessible alternate conformations depend on base sequence and compete for occupancy. We have developed a method to calculate equilibrium distributions among the states available to such systems, as well as their average thermodynamic properties. Here we extend this approach to include superhelical cruciform extrusion at both perfect and imperfect inverted repeat (IR) sequences. We find that short IRs do not extrude cruciforms, even in the absence of competition. But as the length of an IR increases, its extrusion can come to dominate both strand separation and B-Z transitions. Although many IRs are present in human genomic DNA, we find that extrusion-susceptible ones occur infrequently. Moreover, their avoidance of transcription start sites in eukaryotes suggests that cruciform formation is rarely involved in mechanisms of gene regulation. We examine a set of clinically important chromosomal translocation breakpoints that occur at long IRs, whose rearrangement has been proposed to be driven by cruciform extrusion. Our results show that the susceptibilities of these IRs to cruciform formation correspond closely with their observed translocation frequencies.
Collapse
Affiliation(s)
- Dina Zhabinskaya
- UC Davis Genome Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | |
Collapse
|
21
|
Du X, Wojtowicz D, Bowers AA, Levens D, Benham CJ, Przytycka TM. The genome-wide distribution of non-B DNA motifs is shaped by operon structure and suggests the transcriptional importance of non-B DNA structures in Escherichia coli. Nucleic Acids Res 2013; 41:5965-77. [PMID: 23620297 PMCID: PMC3695496 DOI: 10.1093/nar/gkt308] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Although the right-handed double helical B-form DNA is most common under physiological conditions, DNA is dynamic and can adopt a number of alternative structures, such as the four-stranded G-quadruplex, left-handed Z-DNA, cruciform and others. Active transcription necessitates strand separation and can induce such non-canonical forms at susceptible genomic sequences. Therefore, it has been speculated that these non-B DNA motifs can play regulatory roles in gene transcription. Such conjecture has been supported in higher eukaryotes by direct studies of several individual genes, as well as a number of large-scale analyses. However, the role of non-B DNA structures in many lower organisms, in particular proteobacteria, remains poorly understood and incompletely documented. In this study, we performed the first comprehensive study of the occurrence of B DNA-non-B DNA transition-susceptible sites (non-B DNA motifs) within the context of the operon structure of the Escherichia coli genome. We compared the distributions of non-B DNA motifs in the regulatory regions of operons with those from internal regions. We found an enrichment of some non-B DNA motifs in regulatory regions, and we show that this enrichment cannot be simply explained by base composition bias in these regions. We also showed that the distribution of several non-B DNA motifs within intergenic regions separating divergently oriented operons differs from the distribution found between convergent ones. In particular, we found a strong enrichment of cruciforms in the termination region of operons; this enrichment was observed for operons with Rho-dependent, as well as Rho-independent terminators. Finally, a preference for some non-B DNA motifs was observed near transcription factor-binding sites. Overall, the conspicuous enrichment of transition-susceptible sites in these specific regulatory regions suggests that non-B DNA structures may have roles in the transcriptional regulation of specific operons within the E. coli genome.
Collapse
Affiliation(s)
- Xiangjun Du
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health 8600 Rockville Pike, Bethesda, MD 20894, USA
| | | | | | | | | | | |
Collapse
|
22
|
Bothe JR, Lowenhaupt K, Al-Hashimi HM. Incorporation of CC steps into Z-DNA: interplay between B-Z junction and Z-DNA helical formation. Biochemistry 2012; 51:6871-9. [PMID: 22873788 DOI: 10.1021/bi300785b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The left-handed DNA structure, Z-DNA, is believed to play important roles in gene expression and regulation. Z-DNA forms sequence-specifically with a preference for sequences rich in pyrimidine/purine dinucleotide steps. In vivo, Z-DNA is generated in the presence of negative supercoiling or upon binding proteins that absorb the high energetic cost of the B-to-Z transition, including the creation of distorted junctions between B-DNA and Z-DNA. To date, the sequence preferences for the B-to-Z transition have primarily been studied in the context of sequence repeats lacking B-Z junctions. Here, we develop a method for characterizing sequence-specific preferences for Z-DNA formation and B-Z junction localization within heterogeneous DNA duplexes that is based on combining 2-aminopurine fluorescence measurements with a new quantitative application of circular dichroism spectroscopy for determining the fraction of B- versus Z-DNA. Using this approach, we show that at least three consecutive CC dinucleotide steps, traditionally thought to disfavor Z-DNA, can be incorporated within heterogeneous Z-DNA containing B-Z junctions upon binding to the Zα domain of the RNA adenosine deaminase protein. Our results indicate that the incorporation of CC steps into Z-DNA is driven by favorable sequence-specific Z-Z and B-Z stacking interactions as well as by sequence-specific energetics that localize the distorted B-Z junction at flexible sites. Together, our results expose higher-order complexities in the Z-DNA code within heterogeneous sequences and suggest that Z-DNA can in principle propagate into a wider range of genomic sequence elements than previously thought.
Collapse
Affiliation(s)
- Jameson R Bothe
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
23
|
Bryant Z, Oberstrass FC, Basu A. Recent developments in single-molecule DNA mechanics. Curr Opin Struct Biol 2012; 22:304-12. [PMID: 22658779 DOI: 10.1016/j.sbi.2012.04.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 04/26/2012] [Indexed: 12/11/2022]
Abstract
Over the past two decades, measurements on individual stretched and twisted DNA molecules have helped define the basic elastic properties of the double helix and enabled real-time functional assays of DNA-associated molecular machines. Recently, new magnetic tweezers approaches for simultaneously measuring freely fluctuating twist and extension have begun to shed light on the structural dynamics of large nucleoprotein complexes. Related technical advances have facilitated direct measurements of DNA torque, contributing to a better understanding of abrupt structural transitions in mechanically stressed DNA. The new measurements have also been exploited in studies that hint at a developing synergistic relationship between single-molecule manipulation and structural DNA nanotechnology.
Collapse
Affiliation(s)
- Zev Bryant
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
24
|
Zhabinskaya D, Benham CJ. Theoretical analysis of competing conformational transitions in superhelical DNA. PLoS Comput Biol 2012; 8:e1002484. [PMID: 22570598 PMCID: PMC3343103 DOI: 10.1371/journal.pcbi.1002484] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 03/05/2012] [Indexed: 01/16/2023] Open
Abstract
We develop a statistical mechanical model to analyze the competitive behavior of transitions to multiple alternate conformations in a negatively supercoiled DNA molecule of kilobase length and specified base sequence. Since DNA superhelicity topologically couples together the transition behaviors of all base pairs, a unified model is required to analyze all the transitions to which the DNA sequence is susceptible. Here we present a first model of this type. Our numerical approach generalizes the strategy of previously developed algorithms, which studied superhelical transitions to a single alternate conformation. We apply our multi-state model to study the competition between strand separation and B-Z transitions in superhelical DNA. We show this competition to be highly sensitive to temperature and to the imposed level of supercoiling. Comparison of our results with experimental data shows that, when the energetics appropriate to the experimental conditions are used, the competition between these two transitions is accurately captured by our algorithm. We analyze the superhelical competition between B-Z transitions and denaturation around the c-myc oncogene, where both transitions are known to occur when this gene is transcribing. We apply our model to explore the correlation between stress-induced transitions and transcriptional activity in various organisms. In higher eukaryotes we find a strong enhancement of Z-forming regions immediately 5′ to their transcription start sites (TSS), and a depletion of strand separating sites in a broad region around the TSS. The opposite patterns occur around transcript end locations. We also show that susceptibility to each type of transition is different in eukaryotes and prokaryotes. By analyzing a set of untranscribed pseudogenes we show that the Z-susceptibility just downstream of the TSS is not preserved, suggesting it may be under selection pressure. The stresses imposed on DNA within organisms can drive the molecule from its standard B-form double-helical structure into other conformations at susceptible sites within the sequence. We present a theoretical method to calculate this transition behavior due to stresses induced by supercoiling. We also develop a numerical algorithm that calculates the transformation probability of each base pair in a user-specified DNA sequence under stress. We apply this method to analyze the competition between transitions to strand separated and left-handed Z-form structures. We find that these two conformations are both competitive under physiological environmental conditions, and that this competition is especially sensitive to temperature. By comparing its results to experimental data we also show that the algorithm properly describes the competition between melting and Z-DNA formation. Analysis of large gene sets from various organisms shows a correlation between sites of stress-induced transitions and locations that are involved in regulating gene expression.
Collapse
Affiliation(s)
- Dina Zhabinskaya
- UC Davis Genome Center, University of California, Davis, California, United States of America.
| | | |
Collapse
|
25
|
The importance of being supercoiled: how DNA mechanics regulate dynamic processes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:632-8. [PMID: 22233557 DOI: 10.1016/j.bbagrm.2011.12.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/13/2011] [Accepted: 12/14/2011] [Indexed: 12/22/2022]
Abstract
Through dynamic changes in structure resulting from DNA-protein interactions and constraints given by the structural features of the double helix, chromatin accommodates and regulates different DNA-dependent processes. All DNA transactions (such as transcription, DNA replication and chromosomal segregation) are necessarily linked to strong changes in the topological state of the double helix known as torsional stress or supercoiling. As virtually all DNA transactions are in turn affected by the torsional state of DNA, these changes have the potential to serve as regulatory signals detected by protein partners. This two-way relationship indicates that DNA dynamics may contribute to the regulation of many events occurring during cell life. In this review we will focus on the role of DNA supercoiling in the cellular processes, with particular emphasis on transcription. Besides giving an overview on the multiplicity of factors involved in the generation and dissipation of DNA torsional stress, we will discuss recent studies which give new insight into the way cells use DNA dynamics to perform functions otherwise not achievable. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
|
26
|
Abstract
A vast literature has explored the genetic interactions among the cellular components regulating gene expression in many organisms. Early on, in the absence of any biochemical definition, regulatory modules were conceived using the strict formalism of genetics to designate the modifiers of phenotype as either cis- or trans-acting depending on whether the relevant genes were embedded in the same or separate DNA molecules. This formalism distilled gene regulation down to its essence in much the same way that consideration of an ideal gas reveals essential thermodynamic and kinetic principles. Yet just as the anomalous behavior of materials may thwart an engineer who ignores their non-ideal properties, schemes to control and manipulate the genetic and epigenetic programs of cells may falter without a fuller and more quantitative elucidation of the physical and chemical characteristics of DNA and chromatin in vivo.
Collapse
Affiliation(s)
- David Levens
- Laboratory of Pathology, National Cancer Institute, 10 Center Drive, Building 10, Room 2N106, Bethesda, MD 20892-1500, USA.
| | | |
Collapse
|