1
|
Fabrication of Silica Optical Fibers: Optimal Control Problem Solution. FIBERS 2021. [DOI: 10.3390/fib9120077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work, a new approach to solving problems of optimal control of manufacture procedures for the production of silica optical fiber are proposed. The procedure of silica tubes alloying by the Modified Chemical Vapor Deposition (MCVD) method and optical fiber drawing from a preform are considered. The problems of optimal control are presented as problems of controlling distributed systems with objective functionals and controls of different types. Two problems are formulated and solved. The first of them is the problem of the temperature field optimizing in the silica tubes alloying process in controlling the consumption of the oxygen–hydrogen gas mixture (in the one- and two-dimensional statements), the second problem is the geometric optimization of fiber shape in controlling the drawing velocity of the finished fiber. In both problems, while using an analog to the method of Lagrange, the optimality systems in the form of differential problems in partial derivatives are obtained, as well as formulas for finding the optimal control functions in an explicit form. To acquire optimality systems, the qualities of lower semicontinuity, convexity, and objective functional coercivity are applied. The numerical realization of the obtained systems is conducted by using Comsol Multiphysics.
Collapse
|
2
|
Zhang J, Nie Q, Zhou T. A moment-convergence method for stochastic analysis of biochemical reaction networks. J Chem Phys 2017; 144:194109. [PMID: 27208938 DOI: 10.1063/1.4950767] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Traditional moment-closure methods need to assume that high-order cumulants of a probability distribution approximate to zero. However, this strong assumption is not satisfied for many biochemical reaction networks. Here, we introduce convergent moments (defined in mathematics as the coefficients in the Taylor expansion of the probability-generating function at some point) to overcome this drawback of the moment-closure methods. As such, we develop a new analysis method for stochastic chemical kinetics. This method provides an accurate approximation for the master probability equation (MPE). In particular, the connection between low-order convergent moments and rate constants can be more easily derived in terms of explicit and analytical forms, allowing insights that would be difficult to obtain through direct simulation or manipulation of the MPE. In addition, it provides an accurate and efficient way to compute steady-state or transient probability distribution, avoiding the algorithmic difficulty associated with stiffness of the MPE due to large differences in sizes of rate constants. Applications of the method to several systems reveal nontrivial stochastic mechanisms of gene expression dynamics, e.g., intrinsic fluctuations can induce transient bimodality and amplify transient signals, and slow switching between promoter states can increase fluctuations in spatially heterogeneous signals. The overall approach has broad applications in modeling, analysis, and computation of complex biochemical networks with intrinsic noise.
Collapse
Affiliation(s)
- Jiajun Zhang
- School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Qing Nie
- Department of Mathematics, University of California at Irvine, Irvine, California 92697, USA
| | - Tianshou Zhou
- School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
3
|
Wang LZ, Wu F, Flores K, Lai YC, Wang X. Build to understand: synthetic approaches to biology. Integr Biol (Camb) 2016; 8:394-408. [PMID: 26686885 PMCID: PMC4837018 DOI: 10.1039/c5ib00252d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this review we discuss how synthetic biology facilitates the task of investigating genetic circuits that are observed in naturally occurring biological systems. Specifically, we give examples where experimentation with synthetic gene circuits has been used to understand four fundamental mechanisms intrinsic to development and disease: multistability, stochastic gene expression, oscillations, and cell-cell communication. Within each area, we also discuss how mathematical modeling has been employed as an essential tool to guide the design of novel gene circuits and as a theoretical basis for exploring circuit topologies exhibiting robust behaviors in the presence of noise.
Collapse
Affiliation(s)
- Le-Zhi Wang
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Fuqing Wu
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, USA.
| | - Kevin Flores
- Department of Mathematics, Center for Quantitative Sciences in Biomedicine, Center for Research in Scientific Computation, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Ying-Cheng Lai
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
- Institute for Complex Systems and Mathematical Biology, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Xiao Wang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, USA.
| |
Collapse
|
4
|
Stochastic sensitivity analysis and kernel inference via distributional data. Biophys J 2015; 107:1247-1255. [PMID: 25185560 DOI: 10.1016/j.bpj.2014.07.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/08/2014] [Accepted: 07/15/2014] [Indexed: 12/18/2022] Open
Abstract
Cellular processes are noisy due to the stochastic nature of biochemical reactions. As such, it is impossible to predict the exact quantity of a molecule or other attributes at the single-cell level. However, the distribution of a molecule over a population is often deterministic and is governed by the underlying regulatory networks relevant to the cellular functionality of interest. Recent studies have started to exploit this property to infer network states. To facilitate the analysis of distributional data in a general experimental setting, we introduce a computational framework to efficiently characterize the sensitivity of distributional output to changes in external stimuli. Further, we establish a probability-divergence-based kernel regression model to accurately infer signal level based on distribution measurements. Our methodology is applicable to any biological system subject to stochastic dynamics and can be used to elucidate how population-based information processing may contribute to organism-level functionality. It also lays the foundation for engineering synthetic biological systems that exploit population decoding to more robustly perform various biocomputation tasks, such as disease diagnostics and environmental-pollutant sensing.
Collapse
|
5
|
Aviziotis IG, Kavousanakis ME, Boudouvis AG. Effect of Intrinsic Noise on the Phenotype of Cell Populations Featuring Solution Multiplicity: An Artificial lac Operon Network Paradigm. PLoS One 2015; 10:e0132946. [PMID: 26185999 PMCID: PMC4506119 DOI: 10.1371/journal.pone.0132946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 06/21/2015] [Indexed: 11/19/2022] Open
Abstract
Heterogeneity in cell populations originates from two fundamentally different sources: the uneven distribution of intracellular content during cell division, and the stochastic fluctuations of regulatory molecules existing in small amounts. Discrete stochastic models can incorporate both sources of cell heterogeneity with sufficient accuracy in the description of an isogenic cell population; however, they lack efficiency when a systems level analysis is required, due to substantial computational requirements. In this work, we study the effect of cell heterogeneity in the behaviour of isogenic cell populations carrying the genetic network of lac operon, which exhibits solution multiplicity over a wide range of extracellular conditions. For such systems, the strategy of performing solely direct temporal solutions is a prohibitive task, since a large ensemble of initial states needs to be tested in order to drive the system--through long time simulations--to possible co-existing steady state solutions. We implement a multiscale computational framework, the so-called "equation-free" methodology, which enables the performance of numerical tasks, such as the computation of coarse steady state solutions and coarse bifurcation analysis. Dynamically stable and unstable solutions are computed and the effect of intrinsic noise on the range of bistability is efficiently investigated. The results are compared with the homogeneous model, which neglects all sources of heterogeneity, with the deterministic cell population balance model, as well as with a stochastic model neglecting the heterogeneity originating from intrinsic noise effects. We show that when the effect of intrinsic source of heterogeneity is intensified, the bistability range shifts towards higher extracellular inducer concentration values.
Collapse
Affiliation(s)
- Ioannis G. Aviziotis
- School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | | | - Andreas G. Boudouvis
- School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| |
Collapse
|
6
|
|
7
|
Combined model of intrinsic and extrinsic variability for computational network design with application to synthetic biology. PLoS Comput Biol 2013; 9:e1002960. [PMID: 23555205 PMCID: PMC3610654 DOI: 10.1371/journal.pcbi.1002960] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 01/16/2013] [Indexed: 12/19/2022] Open
Abstract
Biological systems are inherently variable, with their dynamics influenced by intrinsic and extrinsic sources. These systems are often only partially characterized, with large uncertainties about specific sources of extrinsic variability and biochemical properties. Moreover, it is not yet well understood how different sources of variability combine and affect biological systems in concert. To successfully design biomedical therapies or synthetic circuits with robust performance, it is crucial to account for uncertainty and effects of variability. Here we introduce an efficient modeling and simulation framework to study systems that are simultaneously subject to multiple sources of variability, and apply it to make design decisions on small genetic networks that play a role of basic design elements of synthetic circuits. Specifically, the framework was used to explore the effect of transcriptional and post-transcriptional autoregulation on fluctuations in protein expression in simple genetic networks. We found that autoregulation could either suppress or increase the output variability, depending on specific noise sources and network parameters. We showed that transcriptional autoregulation was more successful than post-transcriptional in suppressing variability across a wide range of intrinsic and extrinsic magnitudes and sources. We derived the following design principles to guide the design of circuits that best suppress variability: (i) high protein cooperativity and low miRNA cooperativity, (ii) imperfect complementarity between miRNA and mRNA was preferred to perfect complementarity, and (iii) correlated expression of mRNA and miRNA--for example, on the same transcript--was best for suppression of protein variability. Results further showed that correlations in kinetic parameters between cells affected the ability to suppress variability, and that variability in transient states did not necessarily follow the same principles as variability in the steady state. Our model and findings provide a general framework to guide design principles in synthetic biology.
Collapse
|
8
|
Caravagna G, Mauri G, d'Onofrio A. The interplay of intrinsic and extrinsic bounded noises in biomolecular networks. PLoS One 2013; 8:e51174. [PMID: 23437034 PMCID: PMC3578938 DOI: 10.1371/journal.pone.0051174] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 10/30/2012] [Indexed: 01/09/2023] Open
Abstract
After being considered as a nuisance to be filtered out, it became recently clear that biochemical noise plays a complex role, often fully functional, for a biomolecular network. The influence of intrinsic and extrinsic noises on biomolecular networks has intensively been investigated in last ten years, though contributions on the co-presence of both are sparse. Extrinsic noise is usually modeled as an unbounded white or colored gaussian stochastic process, even though realistic stochastic perturbations are clearly bounded. In this paper we consider Gillespie-like stochastic models of nonlinear networks, i.e. the intrinsic noise, where the model jump rates are affected by colored bounded extrinsic noises synthesized by a suitable biochemical state-dependent Langevin system. These systems are described by a master equation, and a simulation algorithm to analyze them is derived. This new modeling paradigm should enlarge the class of systems amenable at modeling. We investigated the influence of both amplitude and autocorrelation time of a extrinsic Sine-Wiener noise on: (i) the Michaelis-Menten approximation of noisy enzymatic reactions, which we show to be applicable also in co-presence of both intrinsic and extrinsic noise, (ii) a model of enzymatic futile cycle and (iii) a genetic toggle switch. In (ii) and (iii) we show that the presence of a bounded extrinsic noise induces qualitative modifications in the probability densities of the involved chemicals, where new modes emerge, thus suggesting the possible functional role of bounded noises.
Collapse
Affiliation(s)
- Giulio Caravagna
- Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli Studi Milano-Bicocca, Milan, Italy
| | - Giancarlo Mauri
- Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli Studi Milano-Bicocca, Milan, Italy
| | - Alberto d'Onofrio
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| |
Collapse
|
9
|
Stephenson RO, Rossant J, Tam PPL. Intercellular interactions, position, and polarity in establishing blastocyst cell lineages and embryonic axes. Cold Spring Harb Perspect Biol 2012; 4:4/11/a008235. [PMID: 23125013 DOI: 10.1101/cshperspect.a008235] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The formation of the three lineages of the mouse blastocyst provides a powerful model system to study interactions among cell behavior, cell signaling, and lineage development. Hippo signaling differences between the inner and outer cells of the early cleavage stages, combined with establishment of a stably polarized outer epithelium, lead to the establishment of the inner cell mass and the trophectoderm, whereas FGF signaling differences among the individual cells of the ICM lead to gradual separation and segregation of the epiblast and primitive endoderm lineages. Events in the late blastocyst lead to the formation of a special subset of cells from the primitive endoderm that are key sources for the signals that establish the subsequent body axis. The slow pace of mouse early development, the ability to culture embryos over this time period, the increasing availability of live cell imaging tools, and the ability to modify gene expression at will are providing increasing insights into the cell biology of early cell fate decisions.
Collapse
Affiliation(s)
- Robert O Stephenson
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | | | | |
Collapse
|
10
|
Bayesian learning from marginal data in bionetwork models. Stat Appl Genet Mol Biol 2011; 10:/j/sagmb.2011.10.issue-1/1544-6115.1684/1544-6115.1684.xml. [PMID: 23089812 DOI: 10.2202/1544-6115.1684] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In studies of dynamic molecular networks in systems biology, experiments are increasingly exploiting technologies such as flow cytometry to generate data on marginal distributions of a few network nodes at snapshots in time. For example, levels of intracellular expression of a few genes, or cell surface protein markers, can be assayed at a series of interim time points and assumed steady-states under experimentally stimulated growth conditions in small cellular systems. Such marginal data on a small number of cellular markers will typically carry very limited information on the parameters and structure of dynamic network models, though experiments will typically be designed to expose variation in cellular phenotypes that are inherently related to some aspects of model parametrization and structure. Our work addresses statistical questions of how to integrate such data with dynamic stochastic models in order to properly quantify the information-or lack of information-it carries relative to models assumed. We present a Bayesian computational strategy coupled with a novel approach to summarizing and numerically characterizing biological phenotypes that are represented in terms of the resulting sample distributions of cellular markers. We build on Bayesian simulation methods and mixture modeling to define the approach to linking mechanistic mathematical models of network dynamics to snapshot data, using a toggle switch example integrating simulated and real data as context.
Collapse
|