1
|
Gogl G, Tugaeva KV, Eberling P, Kostmann C, Trave G, Sluchanko NN. Hierarchized phosphotarget binding by the seven human 14-3-3 isoforms. Nat Commun 2021; 12:1677. [PMID: 33723253 PMCID: PMC7961048 DOI: 10.1038/s41467-021-21908-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
The seven 14-3-3 isoforms are highly abundant human proteins encoded by similar yet distinct genes. 14-3-3 proteins recognize phosphorylated motifs within numerous human and viral proteins. Here, we analyze by X-ray crystallography, fluorescence polarization, mutagenesis and fusicoccin-mediated modulation the structural basis and druggability of 14-3-3 binding to four E6 oncoproteins of tumorigenic human papillomaviruses. 14-3-3 isoforms bind variant and mutated phospho-motifs of E6 and unrelated protein RSK1 with different affinities, albeit following an ordered affinity ranking with conserved relative KD ratios. Remarkably, 14-3-3 isoforms obey the same hierarchy when binding to most of their established targets, as supported by literature and a recent human complexome map. This knowledge allows predicting proportions of 14-3-3 isoforms engaged with phosphoproteins in various tissues. Notwithstanding their individual functions, cellular concentrations of 14-3-3 may be collectively adjusted to buffer the strongest phosphorylation outbursts, explaining their expression variations in different tissues and tumors.
Collapse
Affiliation(s)
- Gergo Gogl
- Equipe Labellisee Ligue 2015, Department of Integrated Structural Biology, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Universite de Strasbourg, Illkirch, France.
| | - Kristina V Tugaeva
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Pascal Eberling
- Equipe Labellisee Ligue 2015, Department of Integrated Structural Biology, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Universite de Strasbourg, Illkirch, France
| | - Camille Kostmann
- Equipe Labellisee Ligue 2015, Department of Integrated Structural Biology, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Universite de Strasbourg, Illkirch, France
| | - Gilles Trave
- Equipe Labellisee Ligue 2015, Department of Integrated Structural Biology, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Universite de Strasbourg, Illkirch, France.
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
2
|
Bencivenga D, Stampone E, Aulitto A, Tramontano A, Barone C, Negri A, Roberti D, Perrotta S, Della Ragione F, Borriello A. A cancer-associated CDKN1B mutation induces p27 phosphorylation on a novel residue: a new mechanism for tumor suppressor loss-of-function. Mol Oncol 2021; 15:915-941. [PMID: 33316141 PMCID: PMC8024736 DOI: 10.1002/1878-0261.12881] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/16/2020] [Accepted: 12/11/2020] [Indexed: 01/12/2023] Open
Abstract
CDKN1B haploinsufficiency promotes the development of several human cancers. The gene encodes p27Kip1, a protein playing pivotal roles in the control of growth, differentiation, cytoskeleton dynamics, and cytokinesis. CDKN1B haploinsufficiency has been associated with chromosomal or gene aberrations. However, very few data exist on the mechanisms by which CDKN1B missense mutations facilitate carcinogenesis. Here, we report a functional study on a cancer‐associated germinal p27Kip1 variant, namely glycine9‐>arginine‐p27Kip1 (G9R‐p27Kip1) identified in a parathyroid adenoma. We unexpectedly found that G9R‐p27Kip1 lacks the major tumor suppressor activities of p27Kip1 including its antiproliferative and pro‐apoptotic functions. In addition, G9R‐p27Kip1 transfection in cell lines induces the formation of more numerous and larger spheres when compared to wild‐type p27Kip1‐transfected cells. We demonstrated that the mutation creates a consensus sequence for basophilic kinases causing a massive phosphorylation of G9R‐p27Kip1 on S12, a residue normally never found modified in p27Kip1. The novel S12 phosphorylation appears responsible for the loss of function of G9R‐p27Kip1 since S12AG9R‐p27Kip1 recovers most of the p27Kip1 tumor suppressor activities. In addition, the expression of the phosphomimetic S12D‐p27Kip1 recapitulates G9R‐p27Kip1 properties. Mechanistically, S12 phosphorylation enhances the nuclear localization of the mutant protein and also reduces its cyclin‐dependent kinase (CDK)2/CDK1 inhibition activity. To our knowledge, this is the first reported case of quantitative phosphorylation of a p27Kip1 variant on a physiologically unmodified residue associated with the loss of several tumor suppressor activities. In addition, our findings demonstrate that haploinsufficiency might be due to unpredictable post‐translational modifications due to generation of novel consensus sequences by cancer‐associated missense mutations.
Collapse
Affiliation(s)
- Debora Bencivenga
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Emanuela Stampone
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Arianna Aulitto
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Annunziata Tramontano
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Clementina Barone
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Aide Negri
- Department of Medicine and Surgery, University of Parma, Italy
| | - Domenico Roberti
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Silverio Perrotta
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fulvio Della Ragione
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Adriana Borriello
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
3
|
Bradley D, Viéitez C, Rajeeve V, Selkrig J, Cutillas PR, Beltrao P. Sequence and Structure-Based Analysis of Specificity Determinants in Eukaryotic Protein Kinases. Cell Rep 2021; 34:108602. [PMID: 33440154 PMCID: PMC7809594 DOI: 10.1016/j.celrep.2020.108602] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/03/2020] [Accepted: 12/14/2020] [Indexed: 01/04/2023] Open
Abstract
Protein kinases lie at the heart of cell-signaling processes and are often mutated in disease. Kinase target recognition at the active site is in part determined by a few amino acids around the phosphoacceptor residue. However, relatively little is known about how most preferences are encoded in the kinase sequence or how these preferences evolved. Here, we used alignment-based approaches to predict 30 specificity-determining residues (SDRs) for 16 preferences. These were studied with structural models and were validated by activity assays of mutant kinases. Cancer mutation data revealed that kinase SDRs are mutated more frequently than catalytic residues. We have observed that, throughout evolution, kinase specificity has been strongly conserved across orthologs but can diverge after gene duplication, as illustrated by the G protein-coupled receptor kinase family. The identified SDRs can be used to predict kinase specificity from sequence and aid in the interpretation of evolutionary or disease-related genomic variants.
Collapse
Affiliation(s)
- David Bradley
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK
| | - Cristina Viéitez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK; European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Vinothini Rajeeve
- Integrative Cell Signalling & Proteomics, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Joel Selkrig
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Pedro R Cutillas
- Integrative Cell Signalling & Proteomics, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | - Pedro Beltrao
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK.
| |
Collapse
|
4
|
Ben-Shimon A, Niv MY. AnchorDock: Blind and Flexible Anchor-Driven Peptide Docking. Structure 2015; 23:929-940. [PMID: 25914054 DOI: 10.1016/j.str.2015.03.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 03/20/2015] [Accepted: 03/22/2015] [Indexed: 12/18/2022]
Abstract
The huge conformational space stemming from the inherent flexibility of peptides is among the main obstacles to successful and efficient computational modeling of protein-peptide interactions. Current peptide docking methods typically overcome this challenge using prior knowledge from the structure of the complex. Here we introduce AnchorDock, a peptide docking approach, which automatically targets the docking search to the most relevant parts of the conformational space. This is done by precomputing the free peptide's structure and by computationally identifying anchoring spots on the protein surface. Next, a free peptide conformation undergoes anchor-driven simulated annealing molecular dynamics simulations around the predicted anchoring spots. In the challenging task of a completely blind docking test, AnchorDock produced exceptionally good results (backbone root-mean-square deviation ≤ 2.2Å, rank ≤15) for 10 of 13 unbound cases tested. The impressive performance of AnchorDock supports a molecular recognition pathway that is driven via pre-existing local structural elements.
Collapse
Affiliation(s)
- Avraham Ben-Shimon
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment and The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Rehovot 76100, Israel
| | - Masha Y Niv
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment and The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Rehovot 76100, Israel.
| |
Collapse
|
5
|
Herren AW, Weber DM, Rigor RR, Margulies KB, Phinney BS, Bers DM. CaMKII Phosphorylation of Na(V)1.5: Novel in Vitro Sites Identified by Mass Spectrometry and Reduced S516 Phosphorylation in Human Heart Failure. J Proteome Res 2015; 14:2298-311. [PMID: 25815641 DOI: 10.1021/acs.jproteome.5b00107] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cardiac voltage-gated sodium channel, Na(V)1.5, drives the upstroke of the cardiac action potential and is a critical determinant of myocyte excitability. Recently, calcium (Ca(2+))/calmodulin(CaM)-dependent protein kinase II (CaMKII) has emerged as a critical regulator of Na(V)1.5 function through phosphorylation of multiple residues including S516, T594, and S571, and these phosphorylation events may be important for the genesis of acquired arrhythmias, which occur in heart failure. However, phosphorylation of full-length human Na(V)1.5 has not been systematically analyzed and Na(V)1.5 phosphorylation in human heart failure is incompletely understood. In the present study, we used label-free mass spectrometry to assess phosphorylation of human Na(V)1.5 purified from HEK293 cells with full coverage of phosphorylatable sites and identified 23 sites that were phosphorylated by CaMKII in vitro. We confirmed phosphorylation of S516 and S571 by LC-MS/MS and found a decrease in S516 phosphorylation in human heart failure, using a novel phospho-specific antibody. This work furthers our understanding of the phosphorylation of Na(V)1.5 by CaMKII under normal and disease conditions, provides novel CaMKII target sites for functional validation, and provides the first phospho-proteomic map of full-length human Na(V)1.5.
Collapse
Affiliation(s)
- Anthony W Herren
- †Department of Pharmacology, University of California Davis, Genome Building 3513, Davis, California 95616, United States
| | - Darren M Weber
- §UC Davis Genome Center, University of California Davis, 451 Health Science Drive, Davis, California 95616, United States
| | - Robert R Rigor
- †Department of Pharmacology, University of California Davis, Genome Building 3513, Davis, California 95616, United States
| | - Kenneth B Margulies
- ∥Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, Pennsylvania 19104, United States
| | - Brett S Phinney
- §UC Davis Genome Center, University of California Davis, 451 Health Science Drive, Davis, California 95616, United States
| | - Donald M Bers
- †Department of Pharmacology, University of California Davis, Genome Building 3513, Davis, California 95616, United States
| |
Collapse
|
6
|
Resjö S, Ali A, Meijer HJG, Seidl MF, Snel B, Sandin M, Levander F, Govers F, Andreasson E. Quantitative Label-Free Phosphoproteomics of Six Different Life Stages of the Late Blight Pathogen Phytophthora infestans Reveals Abundant Phosphorylation of Members of the CRN Effector Family. J Proteome Res 2014; 13:1848-59. [DOI: 10.1021/pr4009095] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Svante Resjö
- Department
of Plant Protection Biology, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden
| | - Ashfaq Ali
- Department
of Plant Protection Biology, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden
| | - Harold J. G. Meijer
- Laboratory
of Phytopathology, Wageningen University, 6700 EE Wageningen, The Netherlands
| | - Michael F. Seidl
- Laboratory
of Phytopathology, Wageningen University, 6700 EE Wageningen, The Netherlands
- Theoretical
Biology and Bioinformatics, Department of Biology, Utrecht University, 3508
TC Utrecht, The Netherlands
- Centre
for BioSystems
Genomics, 6700 AB Wageningen, The Netherlands
| | - Berend Snel
- Theoretical
Biology and Bioinformatics, Department of Biology, Utrecht University, 3508
TC Utrecht, The Netherlands
- Centre
for BioSystems
Genomics, 6700 AB Wageningen, The Netherlands
| | - Marianne Sandin
- Department
of Immunotechnology, Lund University, S-223 81 Lund, Sweden
| | - Fredrik Levander
- Department
of Immunotechnology, Lund University, S-223 81 Lund, Sweden
| | - Francine Govers
- Laboratory
of Phytopathology, Wageningen University, 6700 EE Wageningen, The Netherlands
- Centre
for BioSystems
Genomics, 6700 AB Wageningen, The Netherlands
| | - Erik Andreasson
- Department
of Plant Protection Biology, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden
| |
Collapse
|
7
|
Temmerman K, de Diego I, Pogenberg V, Simon B, Jonko W, Li X, Wilmanns M. A PEF/Y Substrate Recognition and Signature Motif Plays a Critical Role in DAPK-Related Kinase Activity. ACTA ACUST UNITED AC 2014; 21:264-73. [DOI: 10.1016/j.chembiol.2013.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 12/06/2013] [Accepted: 12/08/2013] [Indexed: 10/25/2022]
|
8
|
London N, Raveh B, Schueler-Furman O. Peptide docking and structure-based characterization of peptide binding: from knowledge to know-how. Curr Opin Struct Biol 2013; 23:894-902. [PMID: 24138780 DOI: 10.1016/j.sbi.2013.07.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 07/04/2013] [Accepted: 07/08/2013] [Indexed: 11/25/2022]
Abstract
Peptide-mediated interactions are gaining increased attention due to their predominant roles in the many regulatory processes that involve dynamic interactions between proteins. The structures of such interactions provide an excellent starting point for their characterization and manipulation, and can provide leads for targeted inhibitor design. The relatively few experimentally determined structures of peptide-protein complexes can be complemented with an outburst of modeling approaches that have been introduced in recent years, with increasing accuracy and applicability to ever more systems. We review different methods to address the considerable challenges in modeling the binding of a short yet highly flexible peptide to its partner. These methods apply an array of sampling strategies and draw from a recent amassing of knowledge about the biophysical nature of peptide-protein interactions. We elaborate on applications of these structure-based approaches and in particular on the characterization of peptide binding specificity to different peptide-binding domains and enzymes. Such applications can identify new biological targets and thus complement our current view of protein-protein interactions in living organisms. Accurate peptide-protein docking is of particular importance in the light of increased appreciation of the crucial functional roles of disordered regions and the many linear binding motifs embedded within.
Collapse
Affiliation(s)
- Nir London
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
9
|
Chugunov AO, Koromyslova AD, Berkut AA, Peigneur S, Tytgat J, Polyansky AA, Pentkovsky VM, Vassilevski AA, Grishin EV, Efremov RG. Modular organization of α-toxins from scorpion venom mirrors domain structure of their targets, sodium channels. J Biol Chem 2013; 288:19014-27. [PMID: 23637230 DOI: 10.1074/jbc.m112.431650] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To gain success in the evolutionary "arms race," venomous animals such as scorpions produce diverse neurotoxins selected to hit targets in the nervous system of prey. Scorpion α-toxins affect insect and/or mammalian voltage-gated sodium channels (Na(v)s) and thereby modify the excitability of muscle and nerve cells. Although more than 100 α-toxins are known and a number of them have been studied into detail, the molecular mechanism of their interaction with Na(v)s is still poorly understood. Here, we employ extensive molecular dynamics simulations and spatial mapping of hydrophobic/hydrophilic properties distributed over the molecular surface of α-toxins. It is revealed that despite the small size and relatively rigid structure, these toxins possess modular organization from structural, functional, and evolutionary perspectives. The more conserved and rigid "core module" is supplemented with the "specificity module" (SM) that is comparatively flexible and variable and determines the taxon (mammal versus insect) specificity of α-toxin activity. We further show that SMs in mammal toxins are more flexible and hydrophilic than in insect toxins. Concomitant sequence-based analysis of the extracellular loops of Na(v)s suggests that α-toxins recognize the channels using both modules. We propose that the core module binds to the voltage-sensing domain IV, whereas the more versatile SM interacts with the pore domain in repeat I of Na(v)s. These findings corroborate and expand the hypothesis on different functional epitopes of toxins that has been reported previously. In effect, we propose that the modular structure in toxins evolved to match the domain architecture of Na(v)s.
Collapse
Affiliation(s)
- Anton O Chugunov
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Differential phosphorylation of perilipin 1A at the initiation of lipolysis revealed by novel monoclonal antibodies and high content analysis. PLoS One 2013; 8:e55511. [PMID: 23405163 PMCID: PMC3566132 DOI: 10.1371/journal.pone.0055511] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 01/02/2013] [Indexed: 12/03/2022] Open
Abstract
Lipolysis in adipocytes is regulated by phosphorylation of lipid droplet-associated proteins, including perilipin 1A and hormone-sensitive lipase (HSL). Perilipin 1A is potentially phosphorylated by cAMP(adenosine 3′,5′-cyclic monophosphate)-dependent protein kinase (PKA) on several sites, including conserved C-terminal residues, serine 497 (PKA-site 5) and serine 522 (PKA-site 6). To characterize perilipin 1A phosphorylation, novel monoclonal antibodies were developed, which selectively recognize perilipin 1A phosphorylation at PKA-site 5 and PKA-site 6. Utilizing these novel antibodies, as well as antibodies selectively recognizing HSL phosphorylation at serine 563 or serine 660, we used high content analysis to examine the phosphorylation of perilipin 1A and HSL in adipocytes exposed to lipolytic agents. We found that perilipin PKA-site 5 and HSL-serine 660 were phosphorylated to a similar extent in response to forskolin (FSK) and L-γ-melanocyte stimulating hormone (L-γ-MSH). In contrast, perilipin PKA-site 6 and HSL-serine 563 were phosphorylated more slowly and L-γ-MSH was a stronger agonist for these sites compared to FSK. When a panel of lipolytic agents was tested, including multiple concentrations of isoproterenol, FSK, and L-γ-MSH, the pattern of results was virtually identical for perilipin PKA-site 5 and HSL-serine 660, whereas a distinct pattern was observed for perilipin PKA-site 6 and HSL-serine 563. Notably, perilipin PKA-site 5 and HSL-serine 660 feature two arginine residues upstream from the phospho-acceptor site, which confers high affinity for PKA, whereas perilipin PKA-site 6 and HSL-serine 563 feature only a single arginine. Thus, we suggest perilipin 1A and HSL are differentially phosphorylated in a similar manner at the initiation of lipolysis and arginine residues near the target serines may influence this process.
Collapse
|
11
|
Audie J, Swanson J. Advances in the Prediction of Protein-Peptide Binding Affinities: Implications for Peptide-Based Drug Discovery. Chem Biol Drug Des 2012; 81:50-60. [DOI: 10.1111/cbdd.12076] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|