1
|
Abstract
Replication-defective retroviral vectors have been used for more than 25 years as a tool for efficient and stable insertion of therapeutic transgenes in human cells. Patients suffering from severe genetic diseases have been successfully treated by transplantation of autologous hematopoietic stem-progenitor cells (HSPCs) transduced with retroviral vectors, and the first of this class of therapies, Strimvelis, has recently received market authorization in Europe. Some clinical trials, however, resulted in severe adverse events caused by vector-induced proto-oncogene activation, which showed that retroviral vectors may retain a genotoxic potential associated to proviral integration in the human genome. The adverse events sparked a renewed interest in the biology of retroviruses, which led in a few years to a remarkable understanding of the molecular mechanisms underlying retroviral integration site selection within mammalian genomes. This review summarizes the current knowledge on retrovirus-host interactions at the genomic level, and the peculiar mechanisms by which different retroviruses, and their related gene transfer vectors, integrate in, and interact with, the human genome. This knowledge provides the basis for the development of safer and more efficacious retroviral vectors for human gene therapy.
Collapse
Affiliation(s)
| | - Fulvio Mavilio
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
2
|
Gross AM, Jaeger PA, Kreisberg JF, Licon K, Jepsen KL, Khosroheidari M, Morsey BM, Swindells S, Shen H, Ng CT, Flagg K, Chen D, Zhang K, Fox HS, Ideker T. Methylome-wide Analysis of Chronic HIV Infection Reveals Five-Year Increase in Biological Age and Epigenetic Targeting of HLA. Mol Cell 2017; 62:157-168. [PMID: 27105112 DOI: 10.1016/j.molcel.2016.03.019] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 12/29/2015] [Accepted: 03/16/2016] [Indexed: 12/31/2022]
Abstract
HIV-infected individuals are living longer on antiretroviral therapy, but many patients display signs that in some ways resemble premature aging. To investigate and quantify the impact of chronic HIV infection on aging, we report a global analysis of the whole-blood DNA methylomes of 137 HIV+ individuals under sustained therapy along with 44 matched HIV- individuals. First, we develop and validate epigenetic models of aging that are independent of blood cell composition. Using these models, we find that both chronic and recent HIV infection lead to an average aging advancement of 4.9 years, increasing expected mortality risk by 19%. In addition, sustained infection results in global deregulation of the methylome across >80,000 CpGs and specific hypomethylation of the region encoding the human leukocyte antigen locus (HLA). We find that decreased HLA methylation is predictive of lower CD4 / CD8 T cell ratio, linking molecular aging, epigenetic regulation, and disease progression.
Collapse
Affiliation(s)
- Andrew M Gross
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA 92093, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Philipp A Jaeger
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jason F Kreisberg
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Katherine Licon
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kristen L Jepsen
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mahdieh Khosroheidari
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brenda M Morsey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Susan Swindells
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hui Shen
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Cherie T Ng
- aTyr Pharmaceuticals, San Diego, CA 92121, USA
| | - Ken Flagg
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Guangzhou Kang Rui Biological Pharmaceutical Technology Company Ltd., Guangzhou 510005, China
| | - Daniel Chen
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kang Zhang
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Veterans Administration Healthcare System, San Diego, CA 92093, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Howard S Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Trey Ideker
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA 92093, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
3
|
Pellin D, Di Serio C. A novel scan statistics approach for clustering identification and comparison in binary genomic data. BMC Bioinformatics 2016; 17:320. [PMID: 28185547 PMCID: PMC5046198 DOI: 10.1186/s12859-016-1173-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background In biomedical research a relevant issue is to identify time intervals or portions of a n-dimensional support where a particular event of interest is more likely to occur than expected. Algorithms that require to specify a-priori number/dimension/length of clusters assumed for the data suffer from a high degree of arbitrariness whenever no precise information are available, and this may strongly affect final estimation on parameters. Within this framework, spatial scan-statistics have been proposed in the literature, representing a valid non-parametric alternative. Results We adapt the so called Bernoulli-model scan statistic to the genomic field and we propose a multivariate extension, named Relative Scan Statistics, for the comparison of two series of Bernoulli r.v. defined over a common support, with the final goal of highlighting unshared event rate variations. Using a probabilistic approach based on success probability estimates and comparison (likelihood based), we can exploit an hypothesis testing procedure to identify clusters and relative clusters. Both the univariate and the novel multivariate extension of the scan statistic confirm previously published findings. Conclusion The method described in the paper represents a challenging application of scan statistics framework to problem related to genomic data. From a biological perspective, these tools offer the possibility to clinicians and researcher to improve their knowledge on viral vectors integrations process, allowing to focus their attention to restricted over-targeted portion of the genome. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1173-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Danilo Pellin
- University Center of Statistics for the Biomedical Sciences, Vita-Salute San Raffaele University, Via Olgettina 58, Milan, 20132, Italy. .,Johann Bernoulli Institute, University of Groningen, Nijenborgh 9, Groningen, 9747 AG, Netherlands.
| | - Clelia Di Serio
- University Center of Statistics for the Biomedical Sciences, Vita-Salute San Raffaele University, Via Olgettina 58, Milan, 20132, Italy
| |
Collapse
|
4
|
Chira S, Jackson CS, Oprea I, Ozturk F, Pepper MS, Diaconu I, Braicu C, Raduly LZ, Calin GA, Berindan-Neagoe I. Progresses towards safe and efficient gene therapy vectors. Oncotarget 2016; 6:30675-703. [PMID: 26362400 PMCID: PMC4741561 DOI: 10.18632/oncotarget.5169] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/22/2015] [Indexed: 12/11/2022] Open
Abstract
The emergence of genetic engineering at the beginning of the 1970′s opened the era of biomedical technologies, which aims to improve human health using genetic manipulation techniques in a clinical context. Gene therapy represents an innovating and appealing strategy for treatment of human diseases, which utilizes vehicles or vectors for delivering therapeutic genes into the patients' body. However, a few past unsuccessful events that negatively marked the beginning of gene therapy resulted in the need for further studies regarding the design and biology of gene therapy vectors, so that this innovating treatment approach can successfully move from bench to bedside. In this paper, we review the major gene delivery vectors and recent improvements made in their design meant to overcome the issues that commonly arise with the use of gene therapy vectors. At the end of the manuscript, we summarized the main advantages and disadvantages of common gene therapy vectors and we discuss possible future directions for potential therapeutic vectors.
Collapse
Affiliation(s)
- Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania
| | - Carlo S Jackson
- Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Iulian Oprea
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Ferhat Ozturk
- Department of Molecular Biology and Genetics, Canik Başari University, Samsun, Turkey
| | - Michael S Pepper
- Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania
| | - Lajos-Zsolt Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Physiopathology, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, Cluj Napoca, Romania
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Immunology, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, Oncological Institute "Prof. Dr. Ion Chiricuţă", Cluj Napoca, Romania.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
Hyland KA, Olson ER, McIvor RS. Sleeping Beauty-Mediated Drug Resistance Gene Transfer in Human Hematopoietic Progenitor Cells. Hum Gene Ther 2015; 26:657-63. [PMID: 26176276 DOI: 10.1089/hum.2015.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Sleeping Beauty (SB) transposon system can insert sequences into mammalian chromosomes, supporting long-term expression of both reporter and therapeutic genes. Hematopoietic progenitor cells (HPCs) are an ideal therapeutic gene transfer target as they are used in therapy for a variety of hematologic and metabolic conditions. As successful SB-mediated gene transfer into human CD34(+) HPCs has been reported by several laboratories, we sought to extend these studies to the introduction of a therapeutic gene conferring resistance to methotrexate (MTX), potentially providing a chemoprotective effect after engraftment. SB-mediated transposition of hematopoietic progenitors, using a transposon encoding an L22Y variant dihydrofolate reductase fused to green fluorescent protein, conferred resistance to methotrexate and dipyridamole, a nucleoside transport inhibitor that tightens MTX selection conditions, as assessed by in vitro hematopoietic colony formation. Transposition of individual transgenes was confirmed by sequence analysis of transposon-chromosome junctions recovered by linear amplification-mediated PCR. These studies demonstrate the potential of SB-mediated transposition of HPCs for expression of drug resistance genes for selective and chemoprotective applications.
Collapse
Affiliation(s)
| | - Erik R Olson
- 1 Discovery Genomics, Inc. , Minneapolis, Minnesota
| | - R Scott McIvor
- 1 Discovery Genomics, Inc. , Minneapolis, Minnesota.,2 Department of Genetics, Cell Biology and Development, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
6
|
Cell cycle status of CD34(+) hemopoietic stem cells determines lentiviral integration in actively transcribed and development-related genes. Mol Ther 2014; 23:683-96. [PMID: 25523760 DOI: 10.1038/mt.2014.246] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/09/2014] [Indexed: 01/03/2023] Open
Abstract
Gene therapy utilizing lentiviral-vectors (LVs) is postulated as a dynamic therapeutic alternative for monogenic diseases. However, retroviral gene transfer may cause insertional mutagenesis. Although, such risks had been originally estimated as extremely low, several reports of leukemias or clonal dominance, have led to a re-evaluation of the mechanisms operating in insertional mutagenesis. Therefore, unraveling the mechanism of retroviral integration is mandatory toward safer gene therapy applications. In the present study, we undertook an experimental approach which enabled direct correlation of the cell cycle stage of the target cell with the integration profile of LVs. CD34(+) cells arrested at different stages of cell cycle, were transduced with a GFP-LV. LAM-PCR was employed for integration site detection, followed by microarray analysis to correlate transcribed genes with integration sites. The results indicate that ~10% of integration events occurred in actively transcribed genes and that the cell cycle stage of target cells affects integration pattern. Specifically, use of thymine promoted a safer profile, since it significantly reduced integration within cell cycle-related genes, while we observed increased possibility for integration into genes related to development, and decreased possibility for integration within cell cycle and cancer-related genes, when transduction occurs during mitosis.
Collapse
|
7
|
McAllister RG, Liu J, Woods MW, Tom SK, Rupar CA, Barr SD. Lentivector integration sites in ependymal cells from a model of metachromatic leukodystrophy: non-B DNA as a new factor influencing integration. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e187. [PMID: 25158091 PMCID: PMC4221599 DOI: 10.1038/mtna.2014.39] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/07/2014] [Indexed: 02/07/2023]
Abstract
The blood–brain barrier controls the passage of molecules from the blood into the central nervous system (CNS) and is a major challenge for treatment of neurological diseases. Metachromatic leukodystrophy is a neurodegenerative lysosomal storage disease caused by loss of arylsulfatase A (ARSA) activity. Gene therapy via intraventricular injection of a lentiviral vector is a potential approach to rapidly and permanently deliver therapeutic levels of ARSA to the CNS. We present the distribution of integration sites of a lentiviral vector encoding human ARSA (LV-ARSA) in murine brain choroid plexus and ependymal cells, administered via a single intracranial injection into the CNS. LV-ARSA did not exhibit a strong preference for integration in or near actively transcribed genes, but exhibited a strong preference for integration in or near satellite DNA. We identified several genomic hotspots for LV-ARSA integration and identified a consensus target site sequence characterized by two G-quadruplex-forming motifs flanking the integration site. In addition, our analysis identified several other non-B DNA motifs as new factors that potentially influence lentivirus integration, including human immunodeficiency virus type-1 in human cells. Together, our data demonstrate a clinically favorable integration site profile in the murine brain and identify non-B DNA as a potential new host factor that influences lentiviral integration in murine and human cells.
Collapse
Affiliation(s)
- Robert G McAllister
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Center for Human Immunology, Western University, London, Ontario, Canada
| | - Jiahui Liu
- Department of Biochemistry, Western University, London, Ontario, Canada
| | - Matthew W Woods
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Center for Human Immunology, Western University, London, Ontario, Canada
| | - Sean K Tom
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Center for Human Immunology, Western University, London, Ontario, Canada
| | - C Anthony Rupar
- 1] Department of Biochemistry, Western University, London, Ontario, Canada [2] Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada [3] Department of Pediatrics, Western University, London, Ontario, Canada [4] Children's Health Research Institute, Western University, London, Ontario, Canada
| | - Stephen D Barr
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Center for Human Immunology, Western University, London, Ontario, Canada
| |
Collapse
|
8
|
Antoniadis A, Glad I, Mohammed H. Local comparison of empirical distributions via nonparametric regression. J STAT COMPUT SIM 2014. [DOI: 10.1080/00949655.2014.929133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Moiani A, Suerth JD, Gandolfi F, Rizzi E, Severgnini M, De Bellis G, Schambach A, Mavilio F. Genome-wide analysis of alpharetroviral integration in human hematopoietic stem/progenitor cells. Genes (Basel) 2014; 5:415-29. [PMID: 24840152 PMCID: PMC4094940 DOI: 10.3390/genes5020415] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/30/2014] [Accepted: 05/06/2014] [Indexed: 01/12/2023] Open
Abstract
Gene transfer vectors derived from gamma-retroviruses or lentiviruses are currently used for the gene therapy of genetic or acquired diseases. Retroviral vectors display a non-random integration pattern in the human genome, targeting either regulatory regions (gamma-retroviruses) or the transcribed portion of expressed genes (lentiviruses), and have the potential to deregulate gene expression at the transcriptional or post-transcriptional level. A recently developed alternative vector system derives from the avian sarcoma-leukosis alpha-retrovirus (ASLV) and shows favorable safety features compared to both gamma-retroviral and lentiviral vectors in preclinical models. We performed a high-throughput analysis of the integration pattern of self-inactivating (SIN) alpha-retroviral vectors in human CD34+ hematopoietic stem/progenitor cells (HSPCs) and compared it to previously reported gamma-retroviral and lentiviral vectors integration profiles obtained in the same experimental setting. Compared to gamma-retroviral and lentiviral vectors, the SIN-ASLV vector maintains a preference for open chromatin regions, but shows no bias for transcriptional regulatory elements or transcription units, as defined by genomic annotations and epigenetic markers (H3K4me1 and H3K4me3 histone modifications). Importantly, SIN-ASLV integrations do not cluster in hot spots and target potentially dangerous genomic loci, such as the EVI2A/B, RUNX1 and LMO2 proto-oncogenes at a virtually random frequency. These characteristics predict a safer profile for ASLV-derived vectors for clinical applications.
Collapse
Affiliation(s)
- Arianna Moiani
- Genethon, 1bis Rue de l'Internationale, 91020 Evry, France.
| | - Julia Debora Suerth
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str.1, D-30625 Hannover, Germany.
| | | | - Ermanno Rizzi
- Institute for Biomedical Technologies, Consiglio Nazionale delle Ricerche, Milan 20132, Italy.
| | - Marco Severgnini
- Institute for Biomedical Technologies, Consiglio Nazionale delle Ricerche, Milan 20132, Italy.
| | - Gianluca De Bellis
- Institute for Biomedical Technologies, Consiglio Nazionale delle Ricerche, Milan 20132, Italy.
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str.1, D-30625 Hannover, Germany.
| | - Fulvio Mavilio
- Genethon, 1bis Rue de l'Internationale, 91020 Evry, France.
| |
Collapse
|
10
|
Tubsuwan A, Abed S, Deichmann A, Kardel MD, Bartholomä C, Cheung A, Negre O, Kadri Z, Fucharoen S, von Kalle C, Payen E, Chrétien S, Schmidt M, Eaves CJ, Leboulch P, Maouche-Chrétien L. Parallel assessment of globin lentiviral transfer in induced pluripotent stem cells and adult hematopoietic stem cells derived from the same transplanted β-thalassemia patient. Stem Cells 2014; 31:1785-94. [PMID: 23712774 DOI: 10.1002/stem.1436] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 04/21/2013] [Accepted: 05/02/2013] [Indexed: 02/03/2023]
Abstract
A patient with β(E)/β(0) -thalassemia major was converted to transfusion-independence 4.5 years ago by lentiviral gene transfer in hematopoietic stem cells while showing a myeloid-biased cell clone. Induced pluripotent stem cells (iPSCs) are a potential alternative source of hematopoietic stem cells. If fetal to adult globin class, switching does not occur in vivo in iPSC-derived erythroid cells, β-globin gene transfer would be unnecessary. To investigate both vector integration skewing and the potential use of iPSCs for the treatment of thalassemia, we derived iPSCs from the thalassemia gene therapy patient and compared iPSC-derived hematopoietic cells to their natural isogenic somatic counterparts. In NSG immunodeficient mice, embryonic to fetal and a partial fetal to adult globin class switching were observed, indicating that the gene transfer is likely necessary for iPSC-based therapy of the β-hemoglobinopathies. Lentivector integration occurred in regions of low and high genotoxicity. Surprisingly, common integration sites (CIS) were identified across those iPSCs and cells retrieved from isogenic and nonisogenic gene therapy patients with β-thalassemia and adrenoleukodystrophy, respectively. This suggests that CIS observed in the absence of overt tumorigenesis result from nonrandom lentiviral integration rather than oncogenic in vivo selection. These findings bring the use of iPSCs closer to practicality and further clarify our interpretation of genome-wide lentivector integration.
Collapse
Affiliation(s)
- Alisa Tubsuwan
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Fontenay aux Roses, France; INSERM U962 and University Paris Sud 11; Thalassemia Research Centre, Institute of Molecular Biosciences, Mahidol University, Nakornpathom, Thailand; Department of Biochemistry, Faculty of Medicine, Siriraj Hospital, Mahidol University, Nakornpathom, Thailand
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Gene transfer vectors derived from oncoretroviruses or lentiviruses are the most robust and reliable tools to stably integrate therapeutic transgenes in human cells for clinical applications. Integration of these vectors in the genome may, however, have undesired effects caused by insertional deregulation of gene expression at the transcriptional or post-transcriptional level. The occurrence of severe adverse events in several clinical trials involving the transplantation of stem cells genetically corrected with retroviral vectors showed that insertional mutagenesis is not just a theoretical event, and that retroviral transgenesis is associated with a finite risk of genotoxicity. In addressing these issues, the gene therapy community offered a spectacular example of how scientific knowledge and technology can be put to work to understand the causes of unpredicted side effects, design new vectors, and develop tools and models to predict their safety and efficacy. As an added benefit, these efforts brought new basic knowledge on virus-host interactions and on the biology and dynamics of human somatic stem cells. This review summarizes the current knowledge on the interactions between retroviruses and the human genome and addresses the impact of target site selection on the safety of retroviral vector-mediated gene therapy.
Collapse
Affiliation(s)
- Alessia Cavazza
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | | | | |
Collapse
|
12
|
Understanding lentiviral vector chromatin targeting: working to reduce insertional mutagenic potential for gene therapy. Gene Ther 2012; 20:581-8. [PMID: 23171920 DOI: 10.1038/gt.2012.88] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Replication-deficient retroviruses have been successfully utilized as vectors, offering an efficient, stable method of therapeutic gene delivery. Many examples exist proving this mode of integrative gene transfer is both effective and safe in cultured systems and clinical trials. Along with their success, severe side effects have occurred with early retroviral vectors causing a shift in the approach to vector design before further clinical testing. Several alternative delivery methods are available but lentiviral vectors (LV) are among the most favorable as they are already well understood. LV offer safer integration site selection profiles and a lower degree of genotoxicity, compared with γ-retroviral vectors. Following their introduction, development of the self-inactivating vector configuration was a huge step to this mode of therapy but did not confer full protection against insertional mutagenesis. As a result integration, modeling must be improved to eventually avoid this possibility. The cellular factor LEDGF/p75 seems to play an essential role in the process of LV site selection and its interactions with chromatin are being quickly resolved. LEDGF/p75 is at the center of one example directed integration effort where recombinant products bias the integration event, a step toward fully directed integration into pre-determined benign loci. A more accurate picture of the details of LEDGF/p75 in the natural integration process is emerging, including new binding specificities, chromatin interaction kinetics and additional cellular factors. Together with next-generation sequencing technology and bio-informatics to analyze integration patterns, these advancements will lead to highly focused directed integration, accelerating wide-spread acceptance of LV for gene therapy.
Collapse
|
13
|
Yamagata Y, Parietti V, Stockholm D, Corre G, Poinsignon C, Touleimat N, Delafoy D, Besse C, Tost J, Galy A, Paldi A. Lentiviral transduction of CD34(+) cells induces genome-wide epigenetic modifications. PLoS One 2012; 7:e48943. [PMID: 23145033 PMCID: PMC3492239 DOI: 10.1371/journal.pone.0048943] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/02/2012] [Indexed: 02/01/2023] Open
Abstract
Epigenetic modifications may occur during in vitro manipulations of stem cells but these effects have remained unexplored in the context of cell and gene therapy protocols. In an experimental model of ex vivo gene modification for hematopoietic gene therapy, human CD34+ cells were cultured shortly in the presence of cytokines then with a gene transfer lentiviral vector (LV) expected to transduce cells but to have otherwise limited biological effects on the cells. At the end of the culture, the population of cells remained largely similar at the phenotypic level but some epigenetic changes were evident. Exposure of CD34+ cells to cytokines increased nuclear expression of epigenetic regulators SIRT1 or DNMT1 and caused genome-wide DNA methylation changes. Surprisingly, the LV caused additional and distinct effects. Large-scale genomic DNA methylation analysis showed that balanced methylation changes occurred in about 200 genes following culture of CD34+ cells in the presence of cytokines but 900 genes were modified following addition of the LV, predominantly increasing CpG methylation. Epigenetic effects resulting from ex vivo culture and from the use of LV may constitute previously unsuspected sources of biological effects in stem cells and may provide new biomarkers to rationally optimize gene and cell therapy protocols.
Collapse
Affiliation(s)
- Yoshiaki Yamagata
- Inserm, U951, Genethon, Evry, France
- Ecole Pratique des Hautes Etudes, UMRS_951, Genethon, Evry, France
- Department of Obstetrics and Gynaecology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Véronique Parietti
- Inserm, U951, Genethon, Evry, France
- Ecole Pratique des Hautes Etudes, UMRS_951, Genethon, Evry, France
| | - Daniel Stockholm
- Inserm, U951, Genethon, Evry, France
- Ecole Pratique des Hautes Etudes, UMRS_951, Genethon, Evry, France
| | - Guillaume Corre
- Inserm, U951, Genethon, Evry, France
- Ecole Pratique des Hautes Etudes, UMRS_951, Genethon, Evry, France
| | - Catherine Poinsignon
- Inserm, U951, Genethon, Evry, France
- Université Evry Val d’Essonne, UMRS_951, Genethon, Evry, France
| | - Nizar Touleimat
- Centre National de Génotypage, CEA – Institut de Génomique, Evry, France
| | - Damien Delafoy
- Centre National de Génotypage, CEA – Institut de Génomique, Evry, France
| | - Céline Besse
- Centre National de Génotypage, CEA – Institut de Génomique, Evry, France
| | - Jörg Tost
- Centre National de Génotypage, CEA – Institut de Génomique, Evry, France
- Fondation Jean Dausset- CEPH, Paris, France
| | - Anne Galy
- Inserm, U951, Genethon, Evry, France
- Ecole Pratique des Hautes Etudes, UMRS_951, Genethon, Evry, France
- Université Evry Val d’Essonne, UMRS_951, Genethon, Evry, France
- * E-mail: (AP); (AG)
| | - András Paldi
- Inserm, U951, Genethon, Evry, France
- Ecole Pratique des Hautes Etudes, UMRS_951, Genethon, Evry, France
- * E-mail: (AP); (AG)
| |
Collapse
|
14
|
Gabriel R, Schmidt M, von Kalle C. Integration of retroviral vectors. Curr Opin Immunol 2012; 24:592-7. [DOI: 10.1016/j.coi.2012.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/23/2012] [Indexed: 11/26/2022]
|