1
|
Ji P, Wang Y, Peron T, Li C, Nagler J, Du J. Structure and function in artificial, zebrafish and human neural networks. Phys Life Rev 2023; 45:74-111. [PMID: 37182376 DOI: 10.1016/j.plrev.2023.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/16/2023]
Abstract
Network science provides a set of tools for the characterization of the structure and functional behavior of complex systems. Yet a major problem is to quantify how the structural domain is related to the dynamical one. In other words, how the diversity of dynamical states of a system can be predicted from the static network structure? Or the reverse problem: starting from a set of signals derived from experimental recordings, how can one discover the network connections or the causal relations behind the observed dynamics? Despite the advances achieved over the last two decades, many challenges remain concerning the study of the structure-dynamics interplay of complex systems. In neuroscience, progress is typically constrained by the low spatio-temporal resolution of experiments and by the lack of a universal inferring framework for empirical systems. To address these issues, applications of network science and artificial intelligence to neural data have been rapidly growing. In this article, we review important recent applications of methods from those fields to the study of the interplay between structure and functional dynamics of human and zebrafish brain. We cover the selection of topological features for the characterization of brain networks, inference of functional connections, dynamical modeling, and close with applications to both the human and zebrafish brain. This review is intended to neuroscientists who want to become acquainted with techniques from network science, as well as to researchers from the latter field who are interested in exploring novel application scenarios in neuroscience.
Collapse
Affiliation(s)
- Peng Ji
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Shanghai 200433, China; MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China
| | - Yufan Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Thomas Peron
- Institute of Mathematics and Computer Science, University of São Paulo, São Carlos 13566-590, São Paulo, Brazil.
| | - Chunhe Li
- Shanghai Center for Mathematical Sciences and School of Mathematical Sciences, Fudan University, Shanghai 200433, China; Institute of Science and Technology for Brain-Inspired Intelligence and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China.
| | - Jan Nagler
- Deep Dynamics, Frankfurt School of Finance & Management, Frankfurt, Germany; Centre for Human and Machine Intelligence, Frankfurt School of Finance & Management, Frankfurt, Germany
| | - Jiulin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China.
| |
Collapse
|
2
|
Cazé RD. All neurons can perform linearly non-separable computations. F1000Res 2022; 10:539. [PMID: 35719312 PMCID: PMC9198478 DOI: 10.12688/f1000research.53961.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 11/20/2022] Open
Abstract
Multiple studies have shown how dendrites enable some neurons to perform linearly non-separable computations. These works focus on cells with an extended dendritic arbor where voltage can vary independently, turning dendritic branches into local non-linear subunits. However, these studies leave a large fraction of the nervous system unexplored. Many neurons, e.g. granule cells, have modest dendritic trees and are electrically compact. It is impossible to decompose them into multiple independent subunits. Here, we upgraded the integrate and fire neuron to account for saturation due to interacting synapses. This artificial neuron has a unique membrane voltage and can be seen as a single layer. We present a class of linearly non-separable computations and how our neuron can perform them. We thus demonstrate that even a single layer neuron with interacting synapses has more computational capacity than without. Because all neurons have one or more layer, we show that all neurons can potentially implement linearly non-separable computations.
Collapse
Affiliation(s)
- Romain D. Cazé
- CNRS IEMN UMR 8520, Villeneuve d'ascq, Haut de France, 59650, France
| |
Collapse
|
3
|
Braun W, Memmesheimer RM. High-frequency oscillations and sequence generation in two-population models of hippocampal region CA1. PLoS Comput Biol 2022; 18:e1009891. [PMID: 35176028 PMCID: PMC8890743 DOI: 10.1371/journal.pcbi.1009891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 03/02/2022] [Accepted: 02/02/2022] [Indexed: 11/19/2022] Open
Abstract
Hippocampal sharp wave/ripple oscillations are a prominent pattern of collective activity, which consists of a strong overall increase of activity with superimposed (140 − 200 Hz) ripple oscillations. Despite its prominence and its experimentally demonstrated importance for memory consolidation, the mechanisms underlying its generation are to date not understood. Several models assume that recurrent networks of inhibitory cells alone can explain the generation and main characteristics of the ripple oscillations. Recent experiments, however, indicate that in addition to inhibitory basket cells, the pattern requires in vivo the activity of the local population of excitatory pyramidal cells. Here, we study a model for networks in the hippocampal region CA1 incorporating such a local excitatory population of pyramidal neurons. We start by investigating its ability to generate ripple oscillations using extensive simulations. Using biologically plausible parameters, we find that short pulses of external excitation triggering excitatory cell spiking are required for sharp/wave ripple generation with oscillation patterns similar to in vivo observations. Our model has plausible values for single neuron, synapse and connectivity parameters, random connectivity and no strong feedforward drive to the inhibitory population. Specifically, whereas temporally broad excitation can lead to high-frequency oscillations in the ripple range, sparse pyramidal cell activity is only obtained with pulse-like external CA3 excitation. Further simulations indicate that such short pulses could originate from dendritic spikes in the apical or basal dendrites of CA1 pyramidal cells, which are triggered by coincident spike arrivals from hippocampal region CA3. Finally we show that replay of sequences by pyramidal neurons and ripple oscillations can arise intrinsically in CA1 due to structured connectivity that gives rise to alternating excitatory pulse and inhibitory gap coding; the latter denotes phases of silence in specific basket cell groups, which induce selective disinhibition of groups of pyramidal neurons. This general mechanism for sequence generation leads to sparse pyramidal cell and dense basket cell spiking, does not rely on synfire chain-like feedforward excitation and may be relevant for other brain regions as well.
Collapse
Affiliation(s)
- Wilhelm Braun
- Neural Network Dynamics and Computation, Institute of Genetics, University of Bonn, Bonn, Germany
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail: (WB); (R-MM)
| | - Raoul-Martin Memmesheimer
- Neural Network Dynamics and Computation, Institute of Genetics, University of Bonn, Bonn, Germany
- * E-mail: (WB); (R-MM)
| |
Collapse
|
4
|
Kim CM, Chow CC. Learning recurrent dynamics in spiking networks. eLife 2018; 7:37124. [PMID: 30234488 PMCID: PMC6195349 DOI: 10.7554/elife.37124] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/14/2018] [Indexed: 01/27/2023] Open
Abstract
Spiking activity of neurons engaged in learning and performing a task show complex spatiotemporal dynamics. While the output of recurrent network models can learn to perform various tasks, the possible range of recurrent dynamics that emerge after learning remains unknown. Here we show that modifying the recurrent connectivity with a recursive least squares algorithm provides sufficient flexibility for synaptic and spiking rate dynamics of spiking networks to produce a wide range of spatiotemporal activity. We apply the training method to learn arbitrary firing patterns, stabilize irregular spiking activity in a network of excitatory and inhibitory neurons respecting Dale's law, and reproduce the heterogeneous spiking rate patterns of cortical neurons engaged in motor planning and movement. We identify sufficient conditions for successful learning, characterize two types of learning errors, and assess the network capacity. Our findings show that synaptically-coupled recurrent spiking networks possess a vast computational capability that can support the diverse activity patterns in the brain.
Collapse
Affiliation(s)
- Christopher M Kim
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaUnited States
| | - Carson C Chow
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaUnited States
| |
Collapse
|
5
|
Chua Y, Morrison A. Effects of Calcium Spikes in the Layer 5 Pyramidal Neuron on Coincidence Detection and Activity Propagation. Front Comput Neurosci 2016; 10:76. [PMID: 27499740 PMCID: PMC4957534 DOI: 10.3389/fncom.2016.00076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 07/07/2016] [Indexed: 11/13/2022] Open
Abstract
The role of dendritic spiking mechanisms in neural processing is so far poorly understood. To investigate the role of calcium spikes in the functional properties of the single neuron and recurrent networks, we investigated a three compartment neuron model of the layer 5 pyramidal neuron with calcium dynamics in the distal compartment. By performing single neuron simulations with noisy synaptic input and occasional large coincident input at either just the distal compartment or at both somatic and distal compartments, we show that the presence of calcium spikes confers a substantial advantage for coincidence detection in the former case and a lesser advantage in the latter. We further show that the experimentally observed critical frequency phenomenon, in which action potentials triggered by stimuli near the soma above a certain frequency trigger a calcium spike at distal dendrites, leading to further somatic depolarization, is not exhibited by a neuron receiving realistically noisy synaptic input, and so is unlikely to be a necessary component of coincidence detection. We next investigate the effect of calcium spikes in propagation of spiking activities in a feed-forward network (FFN) embedded in a balanced recurrent network. The excitatory neurons in the network are again connected to either just the distal, or both somatic and distal compartments. With purely distal connectivity, activity propagation is stable and distinguishable for a large range of recurrent synaptic strengths if the feed-forward connections are sufficiently strong, but propagation does not occur in the absence of calcium spikes. When connections are made to both the somatic and the distal compartments, activity propagation is achieved for neurons with active calcium dynamics at a much smaller number of neurons per pool, compared to a network of passive neurons, but quickly becomes unstable as the strength of recurrent synapses increases. Activity propagation at higher scaling factors can be stabilized by increasing network inhibition or introducing short term depression in the excitatory synapses, but the signal to noise ratio remains low. Our results demonstrate that the interaction of synchrony with dendritic spiking mechanisms can have profound consequences for the dynamics on the single neuron and network level.
Collapse
Affiliation(s)
- Yansong Chua
- Institute for Advanced Simulation (IAS-6), Theoretical Neuroscience and Institute of Neuroscience and Medicine (INM-6), Computational and Systems Neuroscience, Jülich Research Center and Jülich Aachen Research AllianceJülich, Germany; Faculty of Biology, Albert-Ludwig University of FreiburgFreiburg im Breisgau, Germany; Bernstein Center Freiburg, Albert-Ludwig University of FreiburgFreiburg im Breisgau, Germany; Institute for Infocomm Research, Agency for Science, Technology and Research (ASTAR)Singapore, Singapore
| | - Abigail Morrison
- Institute for Advanced Simulation (IAS-6), Theoretical Neuroscience and Institute of Neuroscience and Medicine (INM-6), Computational and Systems Neuroscience, Jülich Research Center and Jülich Aachen Research AllianceJülich, Germany; Bernstein Center Freiburg, Albert-Ludwig University of FreiburgFreiburg im Breisgau, Germany; Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr-University BochumBochum, Germany
| |
Collapse
|
6
|
Abstract
UNLABELLED Hippocampal activity is fundamental for episodic memory formation and consolidation. During phases of rest and sleep, it exhibits sharp-wave/ripple (SPW/R) complexes, which are short episodes of increased activity with superimposed high-frequency oscillations. Simultaneously, spike sequences reflecting previous behavior, such as traversed trajectories in space, are replayed. Whereas these phenomena are thought to be crucial for the formation and consolidation of episodic memory, their neurophysiological mechanisms are not well understood. Here we present a unified model showing how experience may be stored and thereafter replayed in association with SPW/Rs. We propose that replay and SPW/Rs are tightly interconnected as they mutually generate and support each other. The underlying mechanism is based on the nonlinear dendritic computation attributable to dendritic sodium spikes that have been prominently found in the hippocampal regions CA1 and CA3, where SPW/Rs and replay are also generated. Besides assigning SPW/Rs a crucial role for replay and thus memory processing, the proposed mechanism also explains their characteristic features, such as the oscillation frequency and the overall wave form. The results shed a new light on the dynamical aspects of hippocampal circuit learning. SIGNIFICANCE STATEMENT During phases of rest and sleep, the hippocampus, the "memory center" of the brain, generates intermittent patterns of strongly increased overall activity with high-frequency oscillations, the so-called sharp-wave/ripples. We investigate their role in learning and memory processing. They occur together with replay of activity sequences reflecting previous behavior. Developing a unifying computational model, we propose that both phenomena are tightly linked, by mutually generating and supporting each other. The underlying mechanism depends on nonlinear amplification of synchronous inputs that has been prominently found in the hippocampus. Besides assigning sharp-wave/ripples a crucial role for replay generation and thus memory processing, the proposed mechanism also explains their characteristic features, such as the oscillation frequency and the overall wave form.
Collapse
|
7
|
Jahnke S, Memmesheimer RM, Timme M. Oscillation-induced signal transmission and gating in neural circuits. PLoS Comput Biol 2014; 10:e1003940. [PMID: 25503492 PMCID: PMC4263355 DOI: 10.1371/journal.pcbi.1003940] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 09/26/2014] [Indexed: 11/19/2022] Open
Abstract
Reliable signal transmission constitutes a key requirement for neural circuit function. The propagation of synchronous pulse packets through recurrent circuits is hypothesized to be one robust form of signal transmission and has been extensively studied in computational and theoretical works. Yet, although external or internally generated oscillations are ubiquitous across neural systems, their influence on such signal propagation is unclear. Here we systematically investigate the impact of oscillations on propagating synchrony. We find that for standard, additive couplings and a net excitatory effect of oscillations, robust propagation of synchrony is enabled in less prominent feed-forward structures than in systems without oscillations. In the presence of non-additive coupling (as mediated by fast dendritic spikes), even balanced oscillatory inputs may enable robust propagation. Here, emerging resonances create complex locking patterns between oscillations and spike synchrony. Interestingly, these resonances make the circuits capable of selecting specific pathways for signal transmission. Oscillations may thus promote reliable transmission and, in co-action with dendritic nonlinearities, provide a mechanism for information processing by selectively gating and routing of signals. Our results are of particular interest for the interpretation of sharp wave/ripple complexes in the hippocampus, where previously learned spike patterns are replayed in conjunction with global high-frequency oscillations. We suggest that the oscillations may serve to stabilize the replay. Rhythmic activity in the brain is ubiquitous, its functions are debated. Here we show that it may contribute to the reliable transmission of information within brain areas. We find that its effect is particularly strong if we take nonlinear coupling into account. This experimentally found neuronal property implies that inputs which arrive nearly simultaneously can have a much stronger impact than expected from the sum of their individuals strengths. In such systems, rhythmic activity supports information transmission even if its positive and negative part exactly cancels all the time. Further, the information transmission can adapt to the oscillation frequency to optimally benefit from it. Finally, we show that rhythms with different frequencies may enable or disable communication channels, and are thus suitable for the steering of information flow.
Collapse
Affiliation(s)
- Sven Jahnke
- Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), Göttingen, Germany
- Bernstein Center for Computational Neuroscience (BCCN), Göttingen, Germany
- Institute for Nonlinear Dynamics, Fakultät für Physik, Georg-August Universität Göttingen, Göttingen Germany
- * E-mail:
| | | | - Marc Timme
- Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), Göttingen, Germany
- Bernstein Center for Computational Neuroscience (BCCN), Göttingen, Germany
- Institute for Nonlinear Dynamics, Fakultät für Physik, Georg-August Universität Göttingen, Göttingen Germany
| |
Collapse
|
8
|
Brunel N, Hakim V, Richardson MJE. Single neuron dynamics and computation. Curr Opin Neurobiol 2014; 25:149-55. [PMID: 24492069 DOI: 10.1016/j.conb.2014.01.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/18/2013] [Accepted: 01/05/2014] [Indexed: 12/14/2022]
Abstract
At the single neuron level, information processing involves the transformation of input spike trains into an appropriate output spike train. Building upon the classical view of a neuron as a threshold device, models have been developed in recent years that take into account the diverse electrophysiological make-up of neurons and accurately describe their input-output relations. Here, we review these recent advances and survey the computational roles that they have uncovered for various electrophysiological properties, for dendritic arbor anatomy as well as for short-term synaptic plasticity.
Collapse
Affiliation(s)
- Nicolas Brunel
- Departments of Statistics and Neurobiology, University of Chicago, Chicago, USA.
| | - Vincent Hakim
- Laboratoire de Physique Statistique, CNRS, University Pierre et Marie Curie, Ecole Normale Supérieure, Paris, France
| | | |
Collapse
|
9
|
Jahnke S, Memmesheimer RM, Timme M. Propagating synchrony in feed-forward networks. Front Comput Neurosci 2013; 7:153. [PMID: 24298251 PMCID: PMC3828753 DOI: 10.3389/fncom.2013.00153] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 10/11/2013] [Indexed: 11/13/2022] Open
Abstract
Coordinated patterns of precisely timed action potentials (spikes) emerge in a variety of neural circuits but their dynamical origin is still not well understood. One hypothesis states that synchronous activity propagating through feed-forward chains of groups of neurons (synfire chains) may dynamically generate such spike patterns. Additionally, synfire chains offer the possibility to enable reliable signal transmission. So far, mostly densely connected chains, often with all-to-all connectivity between groups, have been theoretically and computationally studied. Yet, such prominent feed-forward structures have not been observed experimentally. Here we analytically and numerically investigate under which conditions diluted feed-forward chains may exhibit synchrony propagation. In addition to conventional linear input summation, we study the impact of non-linear, non-additive summation accounting for the effect of fast dendritic spikes. The non-linearities promote synchronous inputs to generate precisely timed spikes. We identify how non-additive coupling relaxes the conditions on connectivity such that it enables synchrony propagation at connectivities substantially lower than required for linearly coupled chains. Although the analytical treatment is based on a simple leaky integrate-and-fire neuron model, we show how to generalize our methods to biologically more detailed neuron models and verify our results by numerical simulations with, e.g., Hodgkin Huxley type neurons.
Collapse
Affiliation(s)
- Sven Jahnke
- Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS) Göttingen, Germany ; Bernstein Center for Computational Neuroscience (BCCN) Göttingen, Germany ; Fakultät für Physik, Georg-August-Universität Göttingen Göttingen, Germany
| | | | | |
Collapse
|
10
|
Oscillation induced propagation of synchrony in structured neural networks. BMC Neurosci 2013. [PMCID: PMC3704895 DOI: 10.1186/1471-2202-14-s1-p390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|