1
|
Rassier DE, Månsson A. Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Physiol Rev 2025; 105:1-93. [PMID: 38451233 DOI: 10.1152/physrev.00014.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called "power stroke" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.
Collapse
Affiliation(s)
- Dilson E Rassier
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Alf Månsson
- Physiology, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
2
|
Schmidt AA, Grosberg AY, Grosberg A. A novel kinetic model to demonstrate the independent effects of ATP and ADP/Pi concentrations on sarcomere function. PLoS Comput Biol 2024; 20:e1012321. [PMID: 39102392 PMCID: PMC11326600 DOI: 10.1371/journal.pcbi.1012321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/15/2024] [Accepted: 07/12/2024] [Indexed: 08/07/2024] Open
Abstract
Understanding muscle contraction mechanisms is a standing challenge, and one of the approaches has been to create models of the sarcomere-the basic contractile unit of striated muscle. While these models have been successful in elucidating many aspects of muscle contraction, they fall short in explaining the energetics of functional phenomena, such as rigor, and in particular, their dependence on the concentrations of the biomolecules involved in the cross-bridge cycle. Our hypothesis posits that the stochastic time delay between ATP adsorption and ADP/Pi release in the cross-bridge cycle necessitates a modeling approach where the rates of these two reaction steps are controlled by two independent parts of the total free energy change of the hydrolysis reaction. To test this hypothesis, we built a two-filament, stochastic-mechanical half-sarcomere model that separates the energetic roles of ATP and ADP/Pi in the cross-bridge cycle's free energy landscape. Our results clearly demonstrate that there is a nontrivial dependence of the cross-bridge cycle's kinetics on the independent concentrations of ATP, ADP, and Pi. The simplicity of the proposed model allows for analytical solutions of the more basic systems, which provide novel insight into the dominant mechanisms driving some of the experimentally observed contractile phenomena.
Collapse
Affiliation(s)
- Andrew A Schmidt
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
- UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California, Irvine, Irvine, California, United States of America
| | - Alexander Y Grosberg
- Department of Physics and Center for Soft Matter Research, New York University, New York, New York, United States of America
| | - Anna Grosberg
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
- UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California, Irvine, Irvine, California, United States of America
- Department of Chemical & Biomolecular Engineering, University of California, Irvine, Irvine, California, United States of America
- The NSF-Simons Center for Multiscale Cell Fate Research and Sue and Bill Gross Stem Cell Research Center and Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| |
Collapse
|
3
|
Adeniran I, Wadee H, Degens H. An In Silico Cardiomyocyte Reveals the Impact of Changes in CaMKII Signalling on Cardiomyocyte Contraction Kinetics in Hypertrophic Cardiomyopathy. BIOMED RESEARCH INTERNATIONAL 2024; 2024:6160554. [PMID: 38567164 PMCID: PMC10985279 DOI: 10.1155/2024/6160554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 02/27/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) is characterised by asymmetric left ventricular hypertrophy, ventricular arrhythmias, and cardiomyocyte dysfunction that may cause sudden death. HCM is associated with mutations in sarcomeric proteins and is usually transmitted as an autosomal-dominant trait. The aim of this in silico study was to assess the mechanisms that underlie the altered electrophysiological activity, contractility, regulation of energy metabolism, and crossbridge cycling in HCM at the single-cell level. To investigate this, we developed a human ventricular cardiomyocyte model that incorporates electrophysiology, metabolism, and force generation. The model was validated by its ability to reproduce the experimentally observed kinetic properties of human HCM induced by (a) remodelling of several ion channels and Ca2+-handling proteins arising from altered Ca2+/calmodulin kinase II signalling pathways and (b) increased Ca2+ sensitivity of the myofilament proteins. Our simulation showed a decreased phosphocreatine-to-ATP ratio (-9%) suggesting a negative mismatch between energy expenditure and supply. Using a spatial myofilament half-sarcomere model, we also compared the fraction of detached, weakly bound, and strongly bound crossbridges in the control and HCM conditions. Our simulations showed that HCM has more crossbridges in force-producing states than in the control condition. In conclusion, our model reveals that impaired crossbridge kinetics is accompanied by a negative mismatch between the ATP supply and demand ratio. This suggests that improving this ratio may reduce the incidence of sudden death in HCM.
Collapse
Affiliation(s)
- Ismail Adeniran
- Centre for Advanced Computational Science, Manchester Metropolitan University, Manchester M15 6BH, UK
| | - Hafsa Wadee
- Centre for Advanced Computational Science, Manchester Metropolitan University, Manchester M15 6BH, UK
| | - Hans Degens
- Department of Life Sciences, Manchester Metropolitan University, Manchester M15 6BH, UK
- Lithuanian Sports University, Sporto 6, LT-44221 Kaunas, Lithuania
| |
Collapse
|
4
|
Tanner BCW. Design Principles and Benefits of Spatially Explicit Models of Myofilament Function. Methods Mol Biol 2024; 2735:43-62. [PMID: 38038843 DOI: 10.1007/978-1-0716-3527-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Spatially explicit models of muscle contraction include fine-scale details about the spatial, kinetic, and/or mechanical properties of the biological processes being represented within the model network. Over the past 25 years, this has primarily consisted of a set of mathematical and computational algorithms representing myosin cross-bridge activity, Ca2+-activation of contraction, and ensemble force production within a half-sarcomere representation of the myofilament network. Herein we discuss basic design principles associated with creating spatially explicit models of myofilament function, as well as model assumptions underlying model development. A brief overview of computational approaches is introduced. Opportunities for new model directions that could investigate coupled regulatory pathways between the thick-filament and thin-filaments are also presented. Given the modular design and flexibility associated with spatially explicit models, we highlight some advantages of this approach compared to other model formulations.
Collapse
Affiliation(s)
- Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA.
| |
Collapse
|
5
|
Wakeling JM, Febrer-Nafría M, De Groote F. A review of the efforts to develop muscle and musculoskeletal models for biomechanics in the last 50 years. J Biomech 2023; 155:111657. [PMID: 37285780 DOI: 10.1016/j.jbiomech.2023.111657] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023]
Abstract
Both the Hill and the Huxley muscle models had already been described by the time the International Society of Biomechanics was founded 50 years ago, but had seen little use before the 1970s due to the lack of computing. As computers and computational methods became available in the 1970s, the field of musculoskeletal modeling developed and Hill type muscle models were adopted by biomechanists due to their relative computational simplicity as compared to Huxley type muscle models. Muscle forces computed by Hill type muscle models provide good agreement in conditions similar to the initial studies, i.e. for small muscles contracting under steady and controlled conditions. However, more recent validation studies have identified that Hill type muscle models are least accurate for natural in vivo locomotor behaviours at submaximal activations, fast speeds and for larger muscles, and thus need to be improved for their use in understanding human movements. Developments in muscle modelling have tackled these shortcomings. However, over the last 50 years musculoskeletal simulations have been largely based on traditional Hill type muscle models or even simplifications of this model that neglected the interaction of the muscle with a compliant tendon. The introduction of direct collocation in musculoskeletal simulations about 15 years ago along with further improvements in computational power and numerical methods enabled the use of more complex muscle models in simulations of whole-body movement. Whereas Hill type models are still the norm, we may finally be ready to adopt more complex muscle models into musculoskeletal simulations of human movement.
Collapse
Affiliation(s)
- James M Wakeling
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada.
| | - Míriam Febrer-Nafría
- Biomechanical Engineering Lab, Department of Mechanical Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain; Health Technologies and Innovation, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | | |
Collapse
|
6
|
Katti P, Hall AS, Parry HA, Ajayi PT, Kim Y, Willingham TB, Bleck CKE, Wen H, Glancy B. Mitochondrial network configuration influences sarcomere and myosin filament structure in striated muscles. Nat Commun 2022; 13:6058. [PMID: 36229433 PMCID: PMC9561657 DOI: 10.1038/s41467-022-33678-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
Abstract
Sustained muscle contraction occurs through interactions between actin and myosin filaments within sarcomeres and requires a constant supply of adenosine triphosphate (ATP) from nearby mitochondria. However, it remains unclear how different physical configurations between sarcomeres and mitochondria alter the energetic support for contractile function. Here, we show that sarcomere cross-sectional area (CSA) varies along its length in a cell type-dependent manner where the reduction in Z-disk CSA relative to the sarcomere center is closely coordinated with mitochondrial network configuration in flies, mice, and humans. Further, we find myosin filaments near the sarcomere periphery are curved relative to interior filaments with greater curvature for filaments near mitochondria compared to sarcoplasmic reticulum. Finally, we demonstrate variable myosin filament lattice spacing between filament ends and filament centers in a cell type-dependent manner. These data suggest both sarcomere structure and myofilament interactions are influenced by the location and orientation of mitochondria within muscle cells.
Collapse
Affiliation(s)
- Prasanna Katti
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Hailey A Parry
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter T Ajayi
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuho Kim
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - T Bradley Willingham
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher K E Bleck
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Han Wen
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brian Glancy
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health Bethesda, Bethesda, MD, USA.
| |
Collapse
|
7
|
Powers JD, Kirkland NJ, Liu C, Razu SS, Fang X, Engler AJ, Chen J, McCulloch AD. Subcellular Remodeling in Filamin C Deficient Mouse Hearts Impairs Myocyte Tension Development during Progression of Dilated Cardiomyopathy. Int J Mol Sci 2022; 23:871. [PMID: 35055055 PMCID: PMC8779483 DOI: 10.3390/ijms23020871] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 01/15/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a life-threatening form of heart disease that is typically characterized by progressive thinning of the ventricular walls, chamber dilation, and systolic dysfunction. Multiple mutations in the gene encoding filamin C (FLNC), an actin-binding cytoskeletal protein in cardiomyocytes, have been found in patients with DCM. However, the mechanisms that lead to contractile impairment and DCM in patients with FLNC variants are poorly understood. To determine how FLNC regulates systolic force transmission and DCM remodeling, we used an inducible, cardiac-specific FLNC-knockout (icKO) model to produce a rapid onset of DCM in adult mice. Loss of FLNC reduced systolic force development in single cardiomyocytes and isolated papillary muscles but did not affect twitch kinetics or calcium transients. Electron and immunofluorescence microscopy showed significant defects in Z-disk alignment in icKO mice and altered myofilament lattice geometry. Moreover, a loss of FLNC induces a softening myocyte cortex and structural adaptations at the subcellular level that contribute to disrupted longitudinal force production during contraction. Spatially explicit computational models showed that these structural defects could be explained by a loss of inter-myofibril elastic coupling at the Z-disk. Our work identifies FLNC as a key regulator of the multiscale ultrastructure of cardiomyocytes and therefore plays an important role in maintaining systolic mechanotransmission pathways, the dysfunction of which may be key in driving progressive DCM.
Collapse
Affiliation(s)
- Joseph D. Powers
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
| | - Natalie J. Kirkland
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
| | - Canzhao Liu
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (C.L.); (X.F.)
| | - Swithin S. Razu
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
| | - Xi Fang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (C.L.); (X.F.)
| | - Adam J. Engler
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
| | - Ju Chen
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (C.L.); (X.F.)
| | - Andrew D. McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (C.L.); (X.F.)
- Institute for Engineering in Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Cass JA, Williams CD, Irving TC, Lauga E, Malingen S, Daniel TL, Sponberg SN. A mechanism for sarcomere breathing: volume change and advective flow within the myofilament lattice. Biophys J 2021; 120:4079-4090. [PMID: 34384761 DOI: 10.1016/j.bpj.2021.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/19/2021] [Accepted: 08/04/2021] [Indexed: 11/28/2022] Open
Abstract
During muscle contraction, myosin motors anchored to thick filaments bind to and slide actin thin filaments. These motors rely on energy derived from ATP, supplied, in part, by diffusion from the sarcoplasm to the interior of the lattice of actin and myosin filaments. The radial spacing of filaments in this lattice may change or remain constant during contraction. If the lattice is isovolumetric, it must expand when the muscle shortens. If, however, the spacing is constant or has a different pattern of axial and radial motion, then the lattice changes volume during contraction, driving fluid motion and assisting in the transport of molecules between the contractile lattice and the surrounding intracellular space. We first create an advective-diffusive-reaction flow model and show that the flow into and out of the sarcomere lattice would be significant in the absence of lattice expansion. Advective transport coupled to diffusion has the potential to substantially enhance metabolite exchange within the crowded sarcomere. Using time-resolved x-ray diffraction of contracting muscle, we next show that the contractile lattice is neither isovolumetric nor constant in spacing. Instead, lattice spacing is time varying, depends on activation, and can manifest as an effective time-varying Poisson ratio. The resulting fluid flow in the sarcomere lattice of synchronous insect flight muscles is even greater than expected for constant lattice spacing conditions. Lattice spacing depends on a variety of factors that produce radial force, including cross-bridges, titin-like molecules, and other structural proteins. Volume change and advective transport varies with the phase of muscle stimulation during periodic contraction but remains significant at all conditions. Although varying in magnitude, advective transport will occur in all cases in which the sarcomere is not isovolumetric. Akin to "breathing," advective-diffusive transport in sarcomeres is sufficient to promote metabolite exchange and may play a role in the regulation of contraction itself.
Collapse
Affiliation(s)
- Julie A Cass
- Allen Institute for Cell Science, Seattle, Washington; Department of Biology, University of Washington, Seattle, Washington
| | - C David Williams
- Department of Biology, University of Washington, Seattle, Washington; Applied ML Group, Microsoft CSE, Redmond, Washington
| | - Thomas C Irving
- BioCAT and CSRRI, Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Sage Malingen
- Department of Biology, University of Washington, Seattle, Washington
| | - Thomas L Daniel
- Department of Biology, University of Washington, Seattle, Washington.
| | - Simon N Sponberg
- School of Physics & School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia.
| |
Collapse
|
9
|
Why exercise builds muscles: titin mechanosensing controls skeletal muscle growth under load. Biophys J 2021; 120:3649-3663. [PMID: 34389312 PMCID: PMC8456289 DOI: 10.1016/j.bpj.2021.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/29/2021] [Accepted: 07/23/2021] [Indexed: 12/22/2022] Open
Abstract
Muscles sense internally generated and externally applied forces, responding to these in a coordinated hierarchical manner at different timescales. The center of the basic unit of the muscle, the sarcomeric M-band, is perfectly placed to sense the different types of load to which the muscle is subjected. In particular, the kinase domain of titin (TK) located at the M-band is a known candidate for mechanical signaling. Here, we develop a quantitative mathematical model that describes the kinetics of TK-based mechanosensitive signaling and predicts trophic changes in response to exercise and rehabilitation regimes. First, we build the kinetic model for TK conformational changes under force: opening, phosphorylation, signaling, and autoinhibition. We find that TK opens as a metastable mechanosensitive switch, which naturally produces a much greater signal after high-load resistance exercise than an equally energetically costly endurance effort. Next, for the model to be stable and give coherent predictions, in particular for the lag after the onset of an exercise regime, we have to account for the associated kinetics of phosphate (carried by ATP) and for the nonlinear dependence of protein synthesis rates on muscle fiber size. We suggest that the latter effect may occur via the steric inhibition of ribosome diffusion through the sieve-like myofilament lattice. The full model yields a steady-state solution (homeostasis) for muscle cross-sectional area and tension and, a quantitatively plausible hypertrophic response to training, as well as atrophy after an extended reduction in tension.
Collapse
|
10
|
Vander Roest AS, Liu C, Morck MM, Kooiker KB, Jung G, Song D, Dawood A, Jhingran A, Pardon G, Ranjbarvaziri S, Fajardo G, Zhao M, Campbell KS, Pruitt BL, Spudich JA, Ruppel KM, Bernstein D. Hypertrophic cardiomyopathy β-cardiac myosin mutation (P710R) leads to hypercontractility by disrupting super relaxed state. Proc Natl Acad Sci U S A 2021. [PMID: 34117120 DOI: 10.1073/pnas.2025030118/suppl_file/pnas.2025030118.sm02.avi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited form of heart disease, associated with over 1,000 mutations, many in β-cardiac myosin (MYH7). Molecular studies of myosin with different HCM mutations have revealed a diversity of effects on ATPase and load-sensitive rate of detachment from actin. It has been difficult to predict how such diverse molecular effects combine to influence forces at the cellular level and further influence cellular phenotypes. This study focused on the P710R mutation that dramatically decreased in vitro motility velocity and actin-activated ATPase, in contrast to other MYH7 mutations. Optical trap measurements of single myosin molecules revealed that this mutation reduced the step size of the myosin motor and the load sensitivity of the actin detachment rate. Conversely, this mutation destabilized the super relaxed state in longer, two-headed myosin constructs, freeing more heads to generate force. Micropatterned human induced pluripotent derived stem cell (hiPSC)-cardiomyocytes CRISPR-edited with the P710R mutation produced significantly increased force (measured by traction force microscopy) compared with isogenic control cells. The P710R mutation also caused cardiomyocyte hypertrophy and cytoskeletal remodeling as measured by immunostaining and electron microscopy. Cellular hypertrophy was prevented in the P710R cells by inhibition of ERK or Akt. Finally, we used a computational model that integrated the measured molecular changes to predict the measured traction forces. These results confirm a key role for regulation of the super relaxed state in driving hypercontractility in HCM with the P710R mutation and demonstrate the value of a multiscale approach in revealing key mechanisms of disease.
Collapse
Affiliation(s)
- Alison Schroer Vander Roest
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305
- Department of Bioengineering, School of Engineering and School of Medicine, Stanford University, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Chao Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Makenna M Morck
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Kristina Bezold Kooiker
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
- School of Medicine, University of Washington, Seattle, WA 98109
| | - Gwanghyun Jung
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Dan Song
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Aminah Dawood
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Arnav Jhingran
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
| | - Gaspard Pardon
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305
- Department of Bioengineering, School of Engineering and School of Medicine, Stanford University, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Sara Ranjbarvaziri
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Giovanni Fajardo
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Mingming Zhao
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Kenneth S Campbell
- Department of Physiology, University of Kentucky, Lexington, KY 40536
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY 40536
| | - Beth L Pruitt
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305
- Department of Bioengineering, School of Engineering and School of Medicine, Stanford University, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Mechanical and Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106
| | - James A Spudich
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305;
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Kathleen M Ruppel
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Daniel Bernstein
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304;
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
11
|
Vander Roest AS, Liu C, Morck MM, Kooiker KB, Jung G, Song D, Dawood A, Jhingran A, Pardon G, Ranjbarvaziri S, Fajardo G, Zhao M, Campbell KS, Pruitt BL, Spudich JA, Ruppel KM, Bernstein D. Hypertrophic cardiomyopathy β-cardiac myosin mutation (P710R) leads to hypercontractility by disrupting super relaxed state. Proc Natl Acad Sci U S A 2021; 118:e2025030118. [PMID: 34117120 PMCID: PMC8214707 DOI: 10.1073/pnas.2025030118] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited form of heart disease, associated with over 1,000 mutations, many in β-cardiac myosin (MYH7). Molecular studies of myosin with different HCM mutations have revealed a diversity of effects on ATPase and load-sensitive rate of detachment from actin. It has been difficult to predict how such diverse molecular effects combine to influence forces at the cellular level and further influence cellular phenotypes. This study focused on the P710R mutation that dramatically decreased in vitro motility velocity and actin-activated ATPase, in contrast to other MYH7 mutations. Optical trap measurements of single myosin molecules revealed that this mutation reduced the step size of the myosin motor and the load sensitivity of the actin detachment rate. Conversely, this mutation destabilized the super relaxed state in longer, two-headed myosin constructs, freeing more heads to generate force. Micropatterned human induced pluripotent derived stem cell (hiPSC)-cardiomyocytes CRISPR-edited with the P710R mutation produced significantly increased force (measured by traction force microscopy) compared with isogenic control cells. The P710R mutation also caused cardiomyocyte hypertrophy and cytoskeletal remodeling as measured by immunostaining and electron microscopy. Cellular hypertrophy was prevented in the P710R cells by inhibition of ERK or Akt. Finally, we used a computational model that integrated the measured molecular changes to predict the measured traction forces. These results confirm a key role for regulation of the super relaxed state in driving hypercontractility in HCM with the P710R mutation and demonstrate the value of a multiscale approach in revealing key mechanisms of disease.
Collapse
Affiliation(s)
- Alison Schroer Vander Roest
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305
- Department of Bioengineering, School of Engineering and School of Medicine, Stanford University, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Chao Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Makenna M Morck
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Kristina Bezold Kooiker
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
- School of Medicine, University of Washington, Seattle, WA 98109
| | - Gwanghyun Jung
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Dan Song
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Aminah Dawood
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Arnav Jhingran
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
| | - Gaspard Pardon
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305
- Department of Bioengineering, School of Engineering and School of Medicine, Stanford University, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Sara Ranjbarvaziri
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Giovanni Fajardo
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Mingming Zhao
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Kenneth S Campbell
- Department of Physiology, University of Kentucky, Lexington, KY 40536
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY 40536
| | - Beth L Pruitt
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305
- Department of Bioengineering, School of Engineering and School of Medicine, Stanford University, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Mechanical and Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106
| | - James A Spudich
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305;
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Kathleen M Ruppel
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Daniel Bernstein
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304;
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
12
|
Powers JD, Malingen SA, Regnier M, Daniel TL. The Sliding Filament Theory Since Andrew Huxley: Multiscale and Multidisciplinary Muscle Research. Annu Rev Biophys 2021; 50:373-400. [PMID: 33637009 DOI: 10.1146/annurev-biophys-110320-062613] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Two groundbreaking papers published in 1954 laid out the theory of the mechanism of muscle contraction based on force-generating interactions between myofilaments in the sarcomere that cause filaments to slide past one another during muscle contraction. The succeeding decades of research in muscle physiology have revealed a unifying interest: to understand the multiscale processes-from atom to organ-that govern muscle function. Such an understanding would have profound consequences for a vast array of applications, from developing new biomimetic technologies to treating heart disease. However, connecting structural and functional properties that are relevant at one spatiotemporal scale to those that are relevant at other scales remains a great challenge. Through a lens of multiscale dynamics, we review in this article current and historical research in muscle physiology sparked by the sliding filament theory.
Collapse
Affiliation(s)
- Joseph D Powers
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Sage A Malingen
- Department of Biology, University of Washington, Seattle, Washington 98195, USA;
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington 98185, USA
- Center for Translational Muscle Research, University of Washington, Seattle, Washington 98185, USA
| | - Thomas L Daniel
- Department of Biology, University of Washington, Seattle, Washington 98195, USA;
- Department of Bioengineering, University of Washington, Seattle, Washington 98185, USA
- Center for Translational Muscle Research, University of Washington, Seattle, Washington 98185, USA
| |
Collapse
|
13
|
Fenwick AJ, Wood AM, Tanner BCW. The spatial distribution of thin filament activation influences force development and myosin activity in computational models of muscle contraction. Arch Biochem Biophys 2021; 703:108855. [PMID: 33781771 DOI: 10.1016/j.abb.2021.108855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 03/03/2021] [Accepted: 03/18/2021] [Indexed: 01/22/2023]
Abstract
Striated muscle contraction is initiated by Ca2+ binding to, and activating, thin filament regulatory units (RU) within the sarcomere, which then allows myosin cross-bridges from the opposing thick filament to bind actin and generate force. The amount of overlap between the filaments dictates how many potential cross-bridges are capable of binding, and thus how force is generated by the sarcomere. Myopathies and atrophy can impair muscle function by limiting cross-bridge interactions between the filaments, which can occur when the length of the thin filament is reduced or when RU function is disrupted. To investigate how variations in thin filament length and RU density affect ensemble cross-bridge behavior and force production, we simulated muscle contraction using a spatially explicit computational model of the half-sarcomere. Thin filament RUs were disabled either uniformly from the pointed end of the filament (to model shorter thin filament length) or randomly throughout the length of the half-sarcomere. Both uniform and random RU 'knockout' schemes decreased overall force generation during maximal and submaximal activation. The random knockout scheme also led to decreased calcium sensitivity and cooperativity of the force-pCa relationship. We also found that the rate of force development slowed with the random RU knockout, compared to the uniform RU knockout or conditions of normal RU activation. These findings imply that the relationship between RU density and force production within the sarcomere involves more complex coordination than simply the raw number of RUs available for myosin cross-bridge binding, and that the spatial pattern in which activatable RU are distributed throughout the sarcomere influences the dynamics of force production.
Collapse
Affiliation(s)
- Axel J Fenwick
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, 99164, USA
| | - Alexander M Wood
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, 99164, USA
| | - Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
14
|
Hypothesis: Single Actomyosin Properties Account for Ensemble Behavior in Active Muscle Shortening and Isometric Contraction. Int J Mol Sci 2020; 21:ijms21218399. [PMID: 33182367 PMCID: PMC7664901 DOI: 10.3390/ijms21218399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 11/17/2022] Open
Abstract
Muscle contraction results from cyclic interactions between myosin II motors and actin with two sets of proteins organized in overlapping thick and thin filaments, respectively, in a nearly crystalline lattice in a muscle sarcomere. However, a sarcomere contains a huge number of other proteins, some with important roles in muscle contraction. In particular, these include thin filament proteins, troponin and tropomyosin; thick filament proteins, myosin binding protein C; and the elastic protein, titin, that connects the thin and thick filaments. Furthermore, the order and 3D organization of the myofilament lattice may be important per se for contractile function. It is possible to model muscle contraction based on actin and myosin alone with properties derived in studies using single molecules and biochemical solution kinetics. It is also possible to reproduce several features of muscle contraction in experiments using only isolated actin and myosin, arguing against the importance of order and accessory proteins. Therefore, in this paper, it is hypothesized that “single molecule actomyosin properties account for the contractile properties of a half sarcomere during shortening and isometric contraction at almost saturating Ca concentrations”. In this paper, existing evidence for and against this hypothesis is reviewed and new modeling results to support the arguments are presented. Finally, further experimental tests are proposed, which if they corroborate, at least approximately, the hypothesis, should significantly benefit future effective analysis of a range of experimental studies, as well as drug discovery efforts.
Collapse
|
15
|
McCabe KJ, Aboelkassem Y, Teitgen AE, Huber GA, McCammon JA, Regnier M, McCulloch AD. Predicting the effects of dATP on cardiac contraction using multiscale modeling of the sarcomere. Arch Biochem Biophys 2020; 695:108582. [PMID: 32956632 DOI: 10.1016/j.abb.2020.108582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/30/2020] [Accepted: 09/04/2020] [Indexed: 11/26/2022]
Abstract
2'-deoxy-ATP (dATP) is a naturally occurring small molecule that has shown promise as a therapeutic because it significantly increases cardiac myocyte force development even at low dATP/ATP ratios. To investigate mechanisms by which dATP alters myosin crossbridge dynamics, we used Brownian dynamics simulations to calculate association rates between actin and ADP- or dADP-bound myosin. These rates were then directly incorporated in a mechanistic Monte Carlo Markov Chain model of cooperative sarcomere contraction. A unique combination of increased powerstroke and detachment rates was required to match experimental steady-state and kinetic data for dATP force production in rat cardiac myocytes when the myosin attachment rate in the model was constrained by the results of a Brownian dynamics simulation. Nearest-neighbor cooperativity was seen to contribute to, but not fully explain, the steep relationship between dATP/ATP ratio and steady-state force-development observed at lower dATP concentrations. Dynamic twitch simulations performed using measured calcium transients as inputs showed that the effects of dATP on the crossbridge alone were not sufficient to explain experimentally observed enhancement of relaxation kinetics by dATP treatment. Hence, dATP may also affect calcium handling even at low concentrations. By enabling the effects of dATP on sarcomere mechanics to be predicted, this multi-scale modeling framework may elucidate the molecular mechanisms by which dATP can have therapeutic effects on cardiac contractile dysfunction.
Collapse
Affiliation(s)
- Kimberly J McCabe
- Simula Research Laboratory, Department of Computational Physiology, PO Box 134, 1325, Lysaker, Norway.
| | - Yasser Aboelkassem
- San Diego State University, Department of Mechanical Engineering, 5500 Campanile Drive San Diego, CA, 92182, USA
| | - Abigail E Teitgen
- University of California San Diego, Department of Bioengineering, 9500 Gilman Drive MC 0412 La Jolla, CA, 92093, USA
| | - Gary A Huber
- University of California San Diego, Department of Chemistry & Biochemistry, 9500 Gilman Drive, MC 0303 La Jolla, CA, 92093, USA
| | - J Andrew McCammon
- University of California San Diego, Department of Chemistry & Biochemistry, 9500 Gilman Drive, MC 0303 La Jolla, CA, 92093, USA
| | - Michael Regnier
- University of Washington, Department of Bioengineering, Box 355061 Seattle, WA, 98195, USA
| | - Andrew D McCulloch
- University of California San Diego, Department of Bioengineering, 9500 Gilman Drive MC 0412 La Jolla, CA, 92093, USA
| |
Collapse
|
16
|
Malingen SA, Asencio AM, Cass JA, Ma W, Irving TC, Daniel TL. In vivo X-ray diffraction and simultaneous EMG reveal the time course of myofilament lattice dilation and filament stretch. J Exp Biol 2020; 223:jeb224188. [PMID: 32709625 PMCID: PMC7490515 DOI: 10.1242/jeb.224188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/02/2020] [Indexed: 01/03/2023]
Abstract
Muscle function within an organism depends on the feedback between molecular and meter-scale processes. Although the motions of muscle's contractile machinery are well described in isolated preparations, only a handful of experiments have documented the kinematics of the lattice occurring when multi-scale interactions are fully intact. We used time-resolved X-ray diffraction to record the kinematics of the myofilament lattice within a normal operating context: the tethered flight of Manduca sexta As the primary flight muscles of M.sexta are synchronous, we used these results to reveal the timing of in vivo cross-bridge recruitment, which occurred 24 ms (s.d. 26) following activation. In addition, the thick filaments stretched an average of 0.75% (s.d. 0.32) and thin filaments stretched 1.11% (s.d. 0.65). In contrast to other in vivo preparations, lattice spacing changed an average of 2.72% (s.d. 1.47). Lattice dilation of this magnitude significantly affects shortening velocity and force generation, and filament stretching tunes force generation. While the kinematics were consistent within individual trials, there was extensive variation between trials. Using a mechanism-free machine learning model we searched for patterns within and across trials. Although lattice kinematics were predictable within trials, the model could not create predictions across trials. This indicates that the variability we see across trials may be explained by latent variables occurring in this naturally functioning system. The diverse kinematic combinations we documented mirror muscle's adaptability and may facilitate its robust function in unpredictable conditions.
Collapse
Affiliation(s)
- Sage A Malingen
- Department of Biology, University of Washington, Seattle, WA 98105, USA
| | - Anthony M Asencio
- Department of Biology, University of Washington, Seattle, WA 98105, USA
| | - Julie A Cass
- Allen Institute for Cell Science, Seattle, WA 98109, USA
| | - Weikang Ma
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Thomas C Irving
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Thomas L Daniel
- Department of Biology, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
17
|
Wakeling JM, Ross SA, Ryan DS, Bolsterlee B, Konno R, Domínguez S, Nigam N. The Energy of Muscle Contraction. I. Tissue Force and Deformation During Fixed-End Contractions. Front Physiol 2020; 11:813. [PMID: 32982762 PMCID: PMC7487973 DOI: 10.3389/fphys.2020.00813] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022] Open
Abstract
During contraction the energy of muscle tissue increases due to energy from the hydrolysis of ATP. This energy is distributed across the tissue as strain-energy potentials in the contractile elements, strain-energy potential from the 3D deformation of the base-material tissue (containing cellular and extracellular matrix effects), energy related to changes in the muscle's nearly incompressible volume and external work done at the muscle surface. Thus, energy is redistributed through the muscle's tissue as it contracts, with only a component of this energy being used to do mechanical work and develop forces in the muscle's longitudinal direction. Understanding how the strain-energy potentials are redistributed through the muscle tissue will help enlighten why the mechanical performance of whole muscle in its longitudinal direction does not match the performance that would be expected from the contractile elements alone. Here we demonstrate these physical effects using a 3D muscle model based on the finite element method. The tissue deformations within contracting muscle are large, and so the mechanics of contraction were explained using the principles of continuum mechanics for large deformations. We present simulations of a contracting medial gastrocnemius muscle, showing tissue deformations that mirror observations from magnetic resonance imaging. This paper tracks the redistribution of strain-energy potentials through the muscle tissue during fixed-end contractions, and shows how fibre shortening, pennation angle, transverse bulging and anisotropy in the stress and strain of the muscle tissue are all related to the interaction between the material properties of the muscle and the action of the contractile elements.
Collapse
Affiliation(s)
- James M Wakeling
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.,Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
| | - Stephanie A Ross
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - David S Ryan
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Bart Bolsterlee
- Neuroscience Research Australia, Randwick, NSW, Australia.,University of New South Wales, Graduate School of Biomedical Engineering, Randwick, NSW, Australia
| | - Ryan Konno
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | | | - Nilima Nigam
- Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
18
|
Roberts TJ, Eng CM, Sleboda DA, Holt NC, Brainerd EL, Stover KK, Marsh RL, Azizi E. The Multi-Scale, Three-Dimensional Nature of Skeletal Muscle Contraction. Physiology (Bethesda) 2020; 34:402-408. [PMID: 31577172 DOI: 10.1152/physiol.00023.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Muscle contraction is a three-dimensional process, as anyone who has observed a bulging muscle knows. Recent studies suggest that the three-dimensional nature of muscle contraction influences its mechanical output. Shape changes and radial forces appear to be important across scales of organization. Muscle architectural gearing is an emerging example of this process.
Collapse
Affiliation(s)
- Thomas J Roberts
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island
| | - Carolyn M Eng
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island
| | - David A Sleboda
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island
| | - Natalie C Holt
- Department of Evolution, Ecology and Organismal Biology, University of California-Riverside, Riverside, California
| | - Elizabeth L Brainerd
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island
| | - Kristin K Stover
- Department of Ecology and Evolutionary Biology, University of California-Irvine, Irvine, California
| | - Richard L Marsh
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island
| | - Emanuel Azizi
- Department of Ecology and Evolutionary Biology, University of California-Irvine, Irvine, California
| |
Collapse
|
19
|
Culver D, Glaz B, Stanton S. A Dynamic Escape Problem of Molecular Motors. J Biomech Eng 2020; 142:051004. [PMID: 31513699 DOI: 10.1115/1.4044580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Indexed: 11/08/2022]
Abstract
Animal skeletal muscle exhibits very interesting behavior at near-stall forces (when the muscle is loaded so strongly that it can barely contract). Near this physical limit, the myosin II proteins may be unable to reach advantageous actin binding sites through simple attractive forces. It has been shown that the advantageous utilization of thermal agitation is a likely source for an increased force-production capacity and reach in myosin-V (a processing motor protein), and here we explore the dynamics of a molecular motor without hand-over-hand motion including Brownian motion to show how local elastic energy well boundaries may be overcome. We revisit a spatially two-dimensional mechanical model to illustrate how thermal agitation can be harvested for useful mechanical work in molecular machinery inspired by this biomechanical phenomenon without rate functions or empirically inspired spatial potential functions. Additionally, the model accommodates variable lattice spacing, and it paves the way for a full three-dimensional model of cross-bridge interactions where myosin II may be azimuthally misaligned with actin binding sites. With potential energy sources based entirely on realizable components, this model lends itself to the design of artificial, molecular-scale motors.
Collapse
Affiliation(s)
- Dean Culver
- U.S. Army Research Laboratory, Vehicle Technology Directorate, Interdisciplinary Mechanics Group, Aberdeen, MD 21001
| | - Bryan Glaz
- U.S. Army Research Laboratory, Vehicle Technology Directorate, Interdisciplinary Mechanics Group, Aberdeen, MD 21001
| | - Samuel Stanton
- U.S. Army Research Office, Engineering Sciences Directorate, Complex Systems and Dynamics, Durham, NC 27703
| |
Collapse
|
20
|
Arellano CJ, Konow N, Gidmark NJ, Roberts TJ. Evidence of a tunable biological spring: elastic energy storage in aponeuroses varies with transverse strain in vivo. Proc Biol Sci 2019; 286:20182764. [PMID: 30966986 DOI: 10.1098/rspb.2018.2764] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tendinous structures are generally thought of as biological springs that operate with a fixed stiffness, yet recent observations on the mechanical behaviour of aponeuroses (broad, sheet-like tendons) have challenged this general assumption. During in situ contractions, aponeuroses undergo changes in both length and width and changes in aponeuroses width can drive changes in longitudinal stiffness. Here, we explore if changes in aponeuroses width can modulate elastic energy (EE) storage in the longitudinal direction. We tested this idea in vivo by quantifying muscle and aponeuroses mechanical behaviour in the turkey lateral gastrocnemius during landing and jumping, activities that require rapid rates of energy dissipation and generation, respectively. We discovered that when aponeurosis width increased (as opposed to decreased), apparent longitudinal stiffness was 34% higher and the capacity of aponeuroses to store EE when stretched in the longitudinal direction was 15% lower. These data reveal that biaxial loading of aponeuroses allows for variation in tendon stiffness and energy storage for different locomotor behaviours.
Collapse
Affiliation(s)
- Christopher J Arellano
- 1 Department of Health and Human Performance, University of Houston , Houston, TX 77023 , USA
| | - Nicolai Konow
- 2 Department of Biological Science, University of Massachusetts , Lowell, MA 01854 , USA
| | | | - Thomas J Roberts
- 4 Department of Ecology and Evolutionary Biology, Brown University , Providence, RI 02912 , USA
| |
Collapse
|
21
|
Månsson A. Comparing models with one versus multiple myosin-binding sites per actin target zone: The power of simplicity. J Gen Physiol 2019; 151:578-592. [PMID: 30872560 PMCID: PMC6445577 DOI: 10.1085/jgp.201812301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/16/2019] [Indexed: 01/21/2023] Open
Abstract
Mechanokinetic statistical models describe the mechanisms of muscle contraction on the basis of the average behavior of a large ensemble of actin-myosin motors. Such models often assume that myosin II motor domains bind to regularly spaced, discrete target zones along the actin-based thin filaments and develop force in a series of strain-dependent transitions under the turnover of ATP. The simplest models assume that there is just one myosin-binding site per target zone and a uniform spatial distribution of the myosin motor domains in relation to each site. However, most of the recently developed models assume three myosin-binding sites per target zone, and some models include a spatially explicit 3-D treatment of the myofilament lattice and thereby of the geometry of the actin-myosin contact points. Here, I show that the predictions for steady-state contractile behavior of muscle are very similar whether one or three myosin-binding sites per target zone is assumed, provided that the model responses are appropriately scaled to the number of sites. Comparison of the model predictions for isometrically contracting mammalian muscle cells suggests that each target zone contains three or more myosin-binding sites. Finally, I discuss the strengths and weaknesses of one-site spatially inexplicit models in relation to three-site models, including those that take into account the detailed 3-D geometry of the myofilament lattice. The results of this study suggest that single-site models, with reduced computational cost compared with multisite models, are useful for several purposes, e.g., facilitated molecular mechanistic insights.
Collapse
Affiliation(s)
- Alf Månsson
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
22
|
Eng CM, Azizi E, Roberts TJ. Structural Determinants of Muscle Gearing During Dynamic Contractions. Integr Comp Biol 2019; 58:207-218. [PMID: 29889236 DOI: 10.1093/icb/icy054] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In skeletal muscle, interactions between contractile and connective tissue elements at multiple scales result in emergent properties that determine mechanical performance. One of these phenomena is architectural gearing, which is quantified as the ratio of muscle velocity to muscle fiber velocity. Many pennate muscles operate with a gear ratio greater than one because muscles shorten through a combination of muscle fiber shortening and fiber rotation. Within a muscle, gearing is variable across contractions. During low force contractions, muscles operate at high gear while muscles operate at low gear during high force contractions. This variable gearing has a significant impact on muscle performance as muscle architectural changes favor muscle speed during fast contractions and muscle force during slow, high force contractions. We hypothesize that gearing in any given contraction is determined by the dynamic interaction of fiber-generated forces, fluid force transmission, and the elastic behavior of intramuscular connective tissues. Because muscle is isovolumetric, muscle fibers must bulge radially when they shorten. Radial bulging and fiber-generated forces off-axis from the muscle line of action exert forces that load connective tissues that ensheath fibers, fascicles, and the whole muscle. The way in which fluid pressures and fiber forces interact to load connective tissues in three-dimensions remains poorly understood because of the complex and multiscale nature of these interactions. Here we review evidence for variable gearing in pennate muscles, present a conceptual model that describes the fundamental interactions that determine gearing, and discuss where gaps remain in our understanding of the determinants and consequences of muscle shape change and variable gearing.
Collapse
Affiliation(s)
- Carolyn M Eng
- Department of Ecology and Evolutionary Biology, Brown University, 171 Meeting St, Box GB204, Providence, RI 02912, USA
| | - Emanuel Azizi
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA
| | - Thomas J Roberts
- Department of Ecology and Evolutionary Biology, Brown University, 171 Meeting St, Box GB204, Providence, RI 02912, USA
| |
Collapse
|
23
|
Powers JD, Williams CD, Regnier M, Daniel TL. A Spatially Explicit Model Shows How Titin Stiffness Modulates Muscle Mechanics and Energetics. Integr Comp Biol 2019; 58:186-193. [PMID: 29897447 DOI: 10.1093/icb/icy055] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In striated muscle, the giant protein titin spans the entire length of a half-sarcomere and extends from the backbone of the thick filament, reversibly attaches to the thin filaments, and anchors to the dense protein network of the z-disk capping the end of the half-sarcomere. However, little is known about the relationship between the basic mechanical properties of titin and muscle contractility. Here, we build upon our previous multi-filament, spatially explicit computational model of the half-sarcomere by incorporating the nonlinear mechanics of titin filaments in the I-band. We vary parameters of the nonlinearity to understand the effects of titin stiffness on contraction dynamics and efficiency. We do so by simulating isometric contraction for a range of sarcomere lengths (SLs; 1.6-3.25 µm). Intermediate values of titin stiffness accurately reproduce the passive force-SL relation for skeletal muscle. The maximum force-SL relation is not affected by titin for SL≤2.5 µm. However, as titin stiffness increases, maximum force for the four thick filament system at SL = 3.0 µm significantly decreases from 103.2 ± 2 to 58.8 ± 1 pN. Additionally, by monitoring ATP consumption, we measure contraction efficiency as a function of titin stiffness. We find that at SL = 3.0 µm, efficiency significantly decreases from 13.9 ± 0.4 to 7.0 ± 0.3 pN/ATP when increasing titin stiffness, with little or no effect below 2.5 µm. Taken together, our results suggest that, despite an increase in the fraction of motors bound to actin along the descending limb when titin is stiffer, the force-generating capacity of the motors is reduced. These results suggest that titin stiffness has the potential to affect contractile efficiency.
Collapse
Affiliation(s)
- Joseph D Powers
- Department of Bioengineering, University of Washington, 3720 15th Avenue NE, Seattle, WA 98105, USA
| | | | - Michael Regnier
- Department of Bioengineering, University of Washington, 3720 15th Avenue NE, Seattle, WA 98105, USA
| | - Thomas L Daniel
- Department of Bioengineering, University of Washington, 3720 15th Avenue NE, Seattle, WA 98105, USA.,Department of Biology, 24 Kincaid Hall, Seattle, WA 98105, USA
| |
Collapse
|
24
|
Abstract
In the collision between a striking implement and ball, the term "sweet spot" represents the impact location producing best results. In football kicking, it is not known if a sweet spot exists on the foot because no method to measure impact location in three-dimensional space exists. Therefore, the aims were: (1) develop a method to measure impact location on the foot in three-dimensional space; (2) determine if players impacted the ball with a particular location; (3) determine the relationship between impact location with kick performance; (4) discuss if a sweet spot exists on the foot. An intra-individual analysis was performed on foot-ball impact characteristics of ten players performing 30 Australian football drop punt kicks toward a target. (1) A method to measure impact location was developed and validated. (2) The impact locations were normally distributed, evidenced by non-significant results of the Shapiro-Wilk test (p > 0.05) and inspection of histograms, meaning players targeted a location on their foot. (3) Impact location influenced foot-ball energy transfer, ball flight trajectory and ankle plantar/dorsal flexion. (4) These results indicate a sweet spot exists on the foot for the Australian football drop punt kick. In conclusion, the impact location is an important impact characteristic.
Collapse
Affiliation(s)
- James Peacock
- a Institute for Health and Sport (IHES), Victoria University , Melbourne , Australia
| | - Kevin Ball
- a Institute for Health and Sport (IHES), Victoria University , Melbourne , Australia
| |
Collapse
|
25
|
Fenwick AJ, Wood AM, Tanner BCW. Effects of cross-bridge compliance on the force-velocity relationship and muscle power output. PLoS One 2017; 12:e0190335. [PMID: 29284062 PMCID: PMC5746261 DOI: 10.1371/journal.pone.0190335] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/12/2017] [Indexed: 11/19/2022] Open
Abstract
Muscles produce force and power by utilizing chemical energy through ATP hydrolysis. During concentric contractions (shortening), muscles generate less force compared to isometric contractions, but consume greater amounts of energy as shortening velocity increases. Conversely, more force is generated and less energy is consumed during eccentric muscle contractions (lengthening). This relationship between force, energy use, and the velocity of contraction has important implications for understanding muscle efficiency, but the molecular mechanisms underlying this behavior remain poorly understood. Here we used spatially-explicit, multi-filament models of Ca2+-regulated force production within a half-sarcomere to simulate how force production, energy utilization, and the number of bound cross-bridges are affected by dynamic changes in sarcomere length. These computational simulations show that cross-bridge binding increased during slow-velocity concentric and eccentric contractions, compared to isometric contractions. Over the full ranges of velocities that we simulated, cross-bridge cycling and energy utilization (i.e. ATPase rates) increased during shortening, and decreased during lengthening. These findings are consistent with the Fenn effect, but arise from a complicated relationship between velocity-dependent cross-bridge recruitment and cross-bridge cycling kinetics. We also investigated how force production, power output, and energy utilization varied with cross-bridge and myofilament compliance, which is impossible to address under typical experimental conditions. These important simulations show that increasing cross-bridge compliance resulted in greater cross-bridge binding and ATPase activity, but less force was generated per cross-bridge and throughout the sarcomere. These data indicate that the efficiency of force production decreases in a velocity-dependent manner, and that this behavior is sensitive to cross-bridge compliance. In contrast, significant effects of myofilament compliance on force production were only observed during isometric contractions, suggesting that changes in myofilament compliance may not influence power output during non-isometric contractions as greatly as changes in cross-bridge compliance. These findings advance our understanding of how cross-bridge and myofilament properties underlie velocity-dependent changes in contractile efficiency during muscle movement.
Collapse
Affiliation(s)
- Axel J. Fenwick
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, United States of America
| | - Alexander M. Wood
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, United States of America
| | - Bertrand C. W. Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
26
|
Myosin MgADP Release Rate Decreases as Sarcomere Length Increases in Skinned Rat Soleus Muscle Fibers. Biophys J 2017; 111:2011-2023. [PMID: 27806282 DOI: 10.1016/j.bpj.2016.09.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/15/2016] [Accepted: 09/20/2016] [Indexed: 11/21/2022] Open
Abstract
Actin-myosin cross-bridges use chemical energy from MgATP hydrolysis to generate force and shortening in striated muscle. Previous studies show that increases in sarcomere length can reduce thick-to-thin filament spacing in skinned muscle fibers, thereby increasing force production at longer sarcomere lengths. However, it is unclear how changes in sarcomere length and lattice spacing affect cross-bridge kinetics at fundamental steps of the cross-bridge cycle, such as the MgADP release rate. We hypothesize that decreased lattice spacing, achieved through increased sarcomere length or osmotic compression of the fiber via dextran T-500, could slow MgADP release rate and increase cross-bridge attachment duration. To test this, we measured cross-bridge cycling and MgADP release rates in skinned soleus fibers using stochastic length-perturbation analysis at 2.5 and 2.0 μm sarcomere lengths as pCa and [MgATP] varied. In the absence of dextran, the force-pCa relationship showed greater Ca2+ sensitivity for 2.5 vs. 2.0 μm sarcomere length fibers (pCa50 = 5.68 ± 0.01 vs. 5.60 ± 0.01). When fibers were compressed with 4% dextran, the length-dependent increase in Ca2+ sensitivity of force was attenuated, though the Ca2+ sensitivity of the force-pCa relationship at both sarcomere lengths was greater with osmotic compression via 4% dextran compared to no osmotic compression. Without dextran, the cross-bridge detachment rate slowed by ∼15% as sarcomere length increased, due to a slower MgADP release rate (11.2 ± 0.5 vs. 13.5 ± 0.7 s-1). In the presence of dextran, cross-bridge detachment was ∼20% slower at 2.5 vs. 2.0 μm sarcomere length due to a slower MgADP release rate (10.1 ± 0.6 vs. 12.9 ± 0.5 s-1). However, osmotic compression of fibers at either 2.5 or 2.0 μm sarcomere length produced only slight (and statistically insignificant) slowing in the rate of MgADP release. These data suggest that skeletal muscle exhibits sarcomere-length-dependent changes in cross-bridge kinetics and MgADP release that are separate from, or complementary to, changes in lattice spacing.
Collapse
|
27
|
Campbell KS. Compliance Accelerates Relaxation in Muscle by Allowing Myosin Heads to Move Relative to Actin. Biophys J 2017; 110:661-668. [PMID: 26840730 DOI: 10.1016/j.bpj.2015.12.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/07/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022] Open
Abstract
The mechanisms that limit the speed at which striated muscles relax are poorly understood. This work presents, to our knowledge, novel simulations that show that the time course of relaxation is accelerated by interfilamentary movement resulting from series compliance; force drops faster when myosin heads move relative to actin during relaxation. This insight was obtained by using cross-bridge distribution techniques to simulate the mechanical behavior of half-sarcomeres that were connected in series with springs of varying stiffness. (The springs mimic the combined effects of half-sarcomere heterogeneity and muscle's series elastic component.) Half-sarcomeres that shortened by >∼10 nm when they were activated subsequently relaxed with a biphasic profile; force initially declined slowly and approximately linearly before collapsing with a fast exponential time course. Stretches imposed during the linear phase quickened relaxation, while shortening movements prolonged the time course. These predictions are consistent with data from experiments performed by many other groups using single muscle fibers and isolated myofibrils. When half-sarcomeres were linked to stiff springs (so that they did not shorten appreciably during the simulations), force relaxed with a slow exponential time course and did not show biphasic behavior. Together, these results suggest that fast relaxation of striated muscle is an emergent property that reflects multiscale interactions within the muscle architecture. The nonlinear behavior during relaxation reflects perturbations to the dynamic coupling of regulated binding sites and cycling myosin heads that are induced by interfilamentary movement.
Collapse
Affiliation(s)
- Kenneth S Campbell
- Division of Cardiovascular Medicine, Department of Physiology, University of Kentucky, Lexington, Kentucky.
| |
Collapse
|
28
|
Mijailovich SM, Kayser-Herold O, Stojanovic B, Nedic D, Irving TC, Geeves MA. Three-dimensional stochastic model of actin-myosin binding in the sarcomere lattice. J Gen Physiol 2016; 148:459-488. [PMID: 27864330 PMCID: PMC5129740 DOI: 10.1085/jgp.201611608] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 09/01/2016] [Accepted: 11/04/2016] [Indexed: 11/29/2022] Open
Abstract
The effect of molecule tethering in three-dimensional (3-D) space on bimolecular binding kinetics is rarely addressed and only occasionally incorporated into models of cell motility. The simplest system that can quantitatively determine this effect is the 3-D sarcomere lattice of the striated muscle, where tethered myosin in thick filaments can only bind to a relatively small number of available sites on the actin filament, positioned within a limited range of thermal movement of the myosin head. Here we implement spatially explicit actomyosin interactions into the multiscale Monte Carlo platform MUSICO, specifically defining how geometrical constraints on tethered myosins can modulate state transition rates in the actomyosin cycle. The simulations provide the distribution of myosin bound to sites on actin, ensure conservation of the number of interacting myosins and actin monomers, and most importantly, the departure in behavior of tethered myosin molecules from unconstrained myosin interactions with actin. In addition, MUSICO determines the number of cross-bridges in each actomyosin cycle state, the force and number of attached cross-bridges per myosin filament, the range of cross-bridge forces and accounts for energy consumption. At the macroscopic scale, MUSICO simulations show large differences in predicted force-velocity curves and in the response during early force recovery phase after a step change in length comparing to the two simplest mass action kinetic models. The origin of these differences is rooted in the different fluxes of myosin binding and corresponding instantaneous cross-bridge distributions and quantitatively reflects a major flaw of the mathematical description in all mass action kinetic models. Consequently, this new approach shows that accurate recapitulation of experimental data requires significantly different binding rates, number of actomyosin states, and cross-bridge elasticity than typically used in mass action kinetic models to correctly describe the biochemical reactions of tethered molecules and their interaction energetics.
Collapse
Affiliation(s)
- Srboljub M Mijailovich
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115
- Department of Medicine, Tufts University School of Medicine, Boston, MA 021115
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115
| | - Oliver Kayser-Herold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Boban Stojanovic
- Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Djordje Nedic
- Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Thomas C Irving
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616
| | - Michael A Geeves
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, England, UK
| |
Collapse
|
29
|
Multidimensional models for predicting muscle structure and fascicle pennation. J Theor Biol 2015; 382:57-63. [DOI: 10.1016/j.jtbi.2015.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 05/05/2015] [Accepted: 06/02/2015] [Indexed: 11/24/2022]
|
30
|
Tanner BCW, McNabb M, Palmer BM, Toth MJ, Miller MS. Random myosin loss along thick-filaments increases myosin attachment time and the proportion of bound myosin heads to mitigate force decline in skeletal muscle. Arch Biochem Biophys 2014; 552-553:117-27. [PMID: 24486373 DOI: 10.1016/j.abb.2014.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/19/2013] [Accepted: 01/16/2014] [Indexed: 10/25/2022]
Abstract
Diminished skeletal muscle performance with aging, disuse, and disease may be partially attributed to the loss of myofilament proteins. Several laboratories have found a disproportionate loss of myosin protein content relative to other myofilament proteins, but due to methodological limitations, the structural manifestation of this protein loss is unknown. To investigate how variations in myosin content affect ensemble cross-bridge behavior and force production we simulated muscle contraction in the half-sarcomere as myosin was removed either (i) uniformly, from the Z-line end of thick-filaments, or (ii) randomly, along the length of thick-filaments. Uniform myosin removal decreased force production, showing a slightly steeper force-to-myosin content relationship than the 1:1 relationship that would be expected from the loss of cross-bridges. Random myosin removal also decreased force production, but this decrease was less than observed with uniform myosin loss, largely due to increased myosin attachment time (ton) and fractional cross-bridge binding with random myosin loss. These findings support our prior observations that prolonged ton may augment force production in single fibers with randomly reduced myosin content from chronic heart failure patients. These simulations also illustrate that the pattern of myosin loss along thick-filaments influences ensemble cross-bridge behavior and maintenance of force throughout the sarcomere.
Collapse
Affiliation(s)
- Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, United States.
| | - Mark McNabb
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, United States
| | - Bradley M Palmer
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, United States
| | - Michael J Toth
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, United States; Department of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - Mark S Miller
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, United States
| |
Collapse
|
31
|
Williams CD, Salcedo MK, Irving TC, Regnier M, Daniel TL. The length-tension curve in muscle depends on lattice spacing. Proc Biol Sci 2013; 280:20130697. [PMID: 23843386 DOI: 10.1098/rspb.2013.0697] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Classic interpretations of the striated muscle length-tension curve focus on how force varies with overlap of thin (actin) and thick (myosin) filaments. New models of sarcomere geometry and experiments with skinned synchronous insect flight muscle suggest that changes in the radial distance between the actin and myosin filaments, the filament lattice spacing, are responsible for between 20% and 50% of the change in force seen between sarcomere lengths of 1.4 and 3.4 µm. Thus, lattice spacing is a significant force regulator, increasing the slope of muscle's force-length dependence.
Collapse
Affiliation(s)
- C David Williams
- Department of Physiology and Biophysics, University of Washington, , Seattle, WA, USA.
| | | | | | | | | |
Collapse
|
32
|
George NT, Irving TC, Williams CD, Daniel TL. The cross-bridge spring: can cool muscles store elastic energy? Science 2013; 340:1217-20. [PMID: 23618763 DOI: 10.1126/science.1229573] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Muscles not only generate force. They may act as springs, providing energy storage to drive locomotion. Although extensible myofilaments are implicated as sites of energy storage, we show that intramuscular temperature gradients may enable molecular motors (cross-bridges) to store elastic strain energy. By using time-resolved small-angle x-ray diffraction paired with in situ measurements of mechanical energy exchange in flight muscles of Manduca sexta, we produced high-speed movies of x-ray equatorial reflections, indicating cross-bridge association with myofilaments. A temperature gradient within the flight muscle leads to lower cross-bridge cycling in the cooler regions. Those cross-bridges could elastically return energy at the extrema of muscle lengthening and shortening, helping drive cyclic wing motions. These results suggest that cross-bridges can perform functions other than contraction, acting as molecular links for elastic energy storage.
Collapse
Affiliation(s)
- N T George
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA.
| | | | | | | |
Collapse
|