1
|
Plaper T, Knez Štibler U, Jerala R. Synthetic Biology for Designing Allostery and Its Potential Biomedical Applications. J Mol Biol 2025:169225. [PMID: 40409706 DOI: 10.1016/j.jmb.2025.169225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/16/2025] [Accepted: 05/16/2025] [Indexed: 05/25/2025]
Abstract
Allosteric regulation of protein function, where a perturbation at one site induces a conformational shift or alters dynamics at a distal functional site, plays a key role in numerous biological processes. The ability to introduce allostery using synthetic biology principles holds significant potential both for biomedical and biotechnological applications, and for advancing our understanding of natural allostery. By customizing target proteins for sensing specific chemical or physical signals, including ligand binding and environmental cues, we aim to allosterically modulate the function of a target protein depending on the selected triggers. This approach, unlike active-site targeting, offers greater specificity and selectivity and can allosterically couple diverse physiological processes. Synthetic biology strategies have been developed recently for designed allosteric protein regulation, including the design of allosteric modulators such as domain insertion, generation of de novo allosteric protein switches, and application of engineered allosteric mechanisms to control cellular functions. We examine the application of artificial intelligence (AI)-based generative protein design and other important milestones, challenges and opportunities in this field, highlighting how these approaches could be applied for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Tjaša Plaper
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Urška Knez Štibler
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; Interdisciplinary Doctoral Study of Biomedicine, Medical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; Centre for Technologies of Gene and Cell Therapy, Hajdrihova 19, 1000 Ljubljana, Slovenia.
| |
Collapse
|
2
|
Yazıcı YY, Belkaya S, Timucin E. A small non-interface surface epitope in human IL18 mediates the dynamics and self-assembly of IL18-IL18BP heterodimers. Comput Struct Biotechnol J 2023; 21:3522-3531. [PMID: 37484491 PMCID: PMC10362265 DOI: 10.1016/j.csbj.2023.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/16/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023] Open
Abstract
Interleukin 18 (IL18) is a pro-inflammatory cytokine that modulates innate and adaptive immune responses. IL18 activity is tightly controlled by the constitutively secreted IL18 binding protein (IL18BP). PDB structures of human IL18 showed that a short stretch of amino acids between 68 and 81 adopted a disordered conformation in all IL18-IL18BP complexes while adopting a 310 helical structure in other IL18 structures, including the receptor complexes. The C74 of human IL18, which was reported to form a novel intermolecular disulfide bond in the human tetrameric assembly, is also located in this short epitope. These observations reflected the importance of this short surface epitope for the structure and dynamics of the IL18-IL18BP heterodimers. We have analyzed all known IL18-IL18BP complexes in the PDB by all-atom MD simulations. The analysis also included two computed complex models adopting a helical structure for the surface epitope. Heterodimer simulations showed a stabilizing impact of the small surface region at the helical form by reducing flexibility of the complex backbone. Analysis of the symmetry-related human IL18-IL18BP tetramer showed that the unfolding of this small surface region also contributed to the IL18-IL18BP stability through a completely exposed C74 sidechain to form an intermolecular disulfide bond in the self-assembled human IL18-IL18BP dimer. Our findings showed how the conformation of the short IL18 epitope between amino acids 68 and 81 would affect IL18 activity by mediating the intermolecular interactions of IL18.
Collapse
Affiliation(s)
- Yılmaz Yücehan Yazıcı
- İhsan Doğramacı Bilkent University, Department of Molecular Biology and Genetics, Ankara 06800, Turkey
| | - Serkan Belkaya
- İhsan Doğramacı Bilkent University, Department of Molecular Biology and Genetics, Ankara 06800, Turkey
| | - Emel Timucin
- Acibadem University, School of Medicine, Department of Biostatistics and Medical Informatics, Istanbul 34752, Turkey
| |
Collapse
|
3
|
Zhao L, Lai L, Zhang Z. How calcium ion binding induces the conformational transition of the calmodulin N-terminal domain—an atomic level characterization. Phys Chem Chem Phys 2019; 21:19795-19804. [DOI: 10.1039/c9cp03917a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Ca2+binding and triggering conformation transition of nCaM were detected in unbiased molecular dynamics simulations.
Collapse
Affiliation(s)
- Likun Zhao
- College of Life Science
- University of Chinese Academy of Sciences
- Beijing
- China
| | - Luhua Lai
- BNLMS, and Peking-Tsinghua Center for Life Sciences at the College of Chemistry and Molecular Engineering
- Peking University
- Beijing
- China
- Center for Quantitative Biology
| | - Zhuqing Zhang
- College of Life Science
- University of Chinese Academy of Sciences
- Beijing
- China
| |
Collapse
|
4
|
Kuttner YY, Engel S. Complementarity of stability patches at the interfaces of protein complexes: Implication for the structural organization of energetic hot spots. Proteins 2017; 86:229-236. [DOI: 10.1002/prot.25430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/08/2017] [Accepted: 11/22/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Yosef Y. Kuttner
- Department of Clinical Biochemistry and Pharmacology; Faculty of Health Sciences, Ben-Gurion University of the Negev; Beer-Sheva Israel
| | - Stanislav Engel
- Department of Clinical Biochemistry and Pharmacology; Faculty of Health Sciences, Ben-Gurion University of the Negev; Beer-Sheva Israel
| |
Collapse
|
5
|
Banerjee V, Oren O, Ben-Zeev E, Taube R, Engel S, Papo N. A computational combinatorial approach identifies a protein inhibitor of superoxide dismutase 1 misfolding, aggregation, and cytotoxicity. J Biol Chem 2017; 292:15777-15788. [PMID: 28768772 DOI: 10.1074/jbc.m117.789610] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/21/2017] [Indexed: 12/12/2022] Open
Abstract
Molecular agents that specifically bind and neutralize misfolded and toxic superoxide dismutase 1 (SOD1) mutant proteins may find application in attenuating the disease progression of familial amyotrophic lateral sclerosis. However, high structural similarities between the wild-type and mutant SOD1 proteins limit the utility of this approach. Here we addressed this challenge by converting a promiscuous natural human IgG-binding domain, the hyperthermophilic variant of protein G (HTB1), into a highly specific aggregation inhibitor (designated HTB1M) of two familial amyotrophic lateral sclerosis-linked SOD1 mutants, SOD1G93A and SOD1G85R We utilized a computational algorithm for mapping protein surfaces predisposed to HTB1 intermolecular interactions to construct a focused HTB1 library, complemented with an experimental platform based on yeast surface display for affinity and specificity screening. HTB1M displayed high binding specificity toward SOD1 mutants, inhibited their amyloid aggregation in vitro, prevented the accumulation of misfolded proteins in living cells, and reduced the cytotoxicity of SOD1G93A expressed in motor neuron-like cells. Competition assays and molecular docking simulations suggested that HTB1M binds to SOD1 via both its α-helical and β-sheet domains at the native dimer interface that becomes exposed upon mutated SOD1 misfolding and monomerization. Our results demonstrate the utility of computational mapping of the protein-protein interaction potential for designing focused protein libraries to be used in directed evolution. They also provide new insight into the mechanism of conversion of broad-spectrum immunoglobulin-binding proteins, such as HTB1, into target-specific proteins, thereby paving the way for the development of new selective drugs targeting the amyloidogenic proteins implicated in a variety of human diseases.
Collapse
Affiliation(s)
- Victor Banerjee
- From the Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Ofek Oren
- From the Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.,the Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel, and
| | - Efrat Ben-Zeev
- the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovoth 76100, Israel
| | - Ran Taube
- the Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel, and
| | - Stanislav Engel
- the Department of Clinical Biochemistry and Pharmacology and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Niv Papo
- From the Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel,
| |
Collapse
|
6
|
Mazumder A, Batabyal S, Mondal M, Mondol T, Choudhury S, Ghosh R, Chatterjee T, Bhattacharyya D, Pal SK, Roy S. Specific DNA sequences allosterically enhance protein-protein interaction in a transcription factor through modulation of protein dynamics: implications for specificity of gene regulation. Phys Chem Chem Phys 2017; 19:14781-14792. [PMID: 28548177 DOI: 10.1039/c7cp01193h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Most genes are regulated by multiple transcription factors, often assembling into multi-protein complexes in the gene regulatory region. Understanding of the molecular origin of specificity of gene regulatory complex formation in the context of the whole genome is currently inadequate. A phage transcription factor λ-CI forms repressive multi-protein complexes by binding to multiple binding sites in the genome to regulate the lifecycle of the phage. The protein-protein interaction between two DNA-bound λ-CI molecules is stronger when they are bound to the correct pair of binding sites, suggesting allosteric transmission of recognition of correct DNA sequences to the protein-protein interaction interface. Exploration of conformation and dynamics by time-resolved fluorescence anisotropy decay and molecular dynamics suggests a change in protein dynamics to be a crucial factor in mediating allostery. A lattice-based model suggests that DNA-sequence induced allosteric effects could be crucial underlying factors in differentially stabilizing the correct site-specific gene regulatory complexes. We conclude that transcription factors have evolved multiple mechanisms to augment the specificity of DNA-protein interactions in order to achieve an extraordinarily high degree of spatial and temporal specificities of gene regulatory complexes, and DNA-sequence induced allostery plays an important role in the formation of sequence-specific gene regulatory complexes.
Collapse
Affiliation(s)
- Abhishek Mazumder
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700 032, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Banerjee V, Shani T, Katzman B, Vyazmensky M, Papo N, Israelson A, Engel S. Superoxide Dismutase 1 (SOD1)-Derived Peptide Inhibits Amyloid Aggregation of Familial Amyotrophic Lateral Sclerosis SOD1 Mutants. ACS Chem Neurosci 2016; 7:1595-1606. [PMID: 27540759 DOI: 10.1021/acschemneuro.6b00227] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that leads to the death of the upper and lower motor neurons. Superoxide dismutase 1 (SOD1) is an ALS pathogenic protein, whose misfolding results in the formation of amyloid aggregates. The mechanism underlying SOD1 pathogenesis in ALS remains obscure, but one possible mechanism involves gain-of-interaction, in which the misfolded soluble SOD1 forms abnormal protein-protein interactions (PPIs) with various cellular proteins, including with other SOD1 molecules, thereby interfering with their function. The structural basis of this gain-of-interaction mechanism is unknown. Here, we characterized the backbone dynamics landscape of misfolded SOD1 to pinpoint surface areas predisposed to aberrant PPIs. This analysis enabled us to formulate a working hypothesis for the mechanism of the gain-of-function of misfolded SOD1, according to which an abnormal PPI potential results from the increased mobility of the SOD1 surface backbone. Guided by the backbone dynamics landscape, we have identified a SOD1-derived peptide that can bind SOD1 proteins and divert the typical amyloid aggregation of ALS-related SOD1 mutants toward a potentially less toxic amorphous aggregation pathway.
Collapse
Affiliation(s)
- Victor Banerjee
- Department
of Biotechnology Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- National
Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Tom Shani
- Department
of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Bella Katzman
- Department
of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Maria Vyazmensky
- Department
of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- National
Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Niv Papo
- Department
of Biotechnology Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- National
Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Adrian Israelson
- Department
of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Stanislav Engel
- Department
of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- National
Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
8
|
Kalescky R, Zhou H, Liu J, Tao P. Rigid Residue Scan Simulations Systematically Reveal Residue Entropic Roles in Protein Allostery. PLoS Comput Biol 2016; 12:e1004893. [PMID: 27115535 PMCID: PMC4846164 DOI: 10.1371/journal.pcbi.1004893] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/01/2016] [Indexed: 12/22/2022] Open
Abstract
Intra-protein information is transmitted over distances via allosteric processes. This ubiquitous protein process allows for protein function changes due to ligand binding events. Understanding protein allostery is essential to understanding protein functions. In this study, allostery in the second PDZ domain (PDZ2) in the human PTP1E protein is examined as model system to advance a recently developed rigid residue scan method combining with configurational entropy calculation and principal component analysis. The contributions from individual residues to whole-protein dynamics and allostery were systematically assessed via rigid body simulations of both unbound and ligand-bound states of the protein. The entropic contributions of individual residues to whole-protein dynamics were evaluated based on covariance-based correlation analysis of all simulations. The changes of overall protein entropy when individual residues being held rigid support that the rigidity/flexibility equilibrium in protein structure is governed by the La Châtelier's principle of chemical equilibrium. Key residues of PDZ2 allostery were identified with good agreement with NMR studies of the same protein bound to the same peptide. On the other hand, the change of entropic contribution from each residue upon perturbation revealed intrinsic differences among all the residues. The quasi-harmonic and principal component analyses of simulations without rigid residue perturbation showed a coherent allosteric mode from unbound and bound states, respectively. The projection of simulations with rigid residue perturbation onto coherent allosteric modes demonstrated the intrinsic shifting of ensemble distributions supporting the population-shift theory of protein allostery. Overall, the study presented here provides a robust and systematic approach to estimate the contribution of individual residue internal motion to overall protein dynamics and allostery.
Collapse
Affiliation(s)
- Robert Kalescky
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), Center for Scientific Computation, Southern Methodist University, Dallas, Texas, United States of America
| | - Hongyu Zhou
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), Center for Scientific Computation, Southern Methodist University, Dallas, Texas, United States of America
| | - Jin Liu
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), Center for Scientific Computation, Southern Methodist University, Dallas, Texas, United States of America
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
- * E-mail: (JL); (PT)
| | - Peng Tao
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), Center for Scientific Computation, Southern Methodist University, Dallas, Texas, United States of America
- * E-mail: (JL); (PT)
| |
Collapse
|
9
|
Osman R, Mezei M, Engel S. The role of protein “Stability patches” in molecular recognition: A case study of the human growth hormone-receptor complex. J Comput Chem 2015; 37:913-9. [DOI: 10.1002/jcc.24276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/22/2015] [Accepted: 11/23/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Roman Osman
- Department of Structural and Chemical Biology; Icahn School of Medicine at Mount Sinai; New York
| | - Mihaly Mezei
- Department of Structural and Chemical Biology; Icahn School of Medicine at Mount Sinai; New York
| | - Stanislav Engel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences; National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev; Beer-Sheva Israel
| |
Collapse
|