1
|
Luo ZH, Zhu LD, Wang YM, Hu Qian S, Li M, Zhang W, Chen ZX. DSEATM: drug set enrichment analysis uncovering disease mechanisms by biomedical text mining. Brief Bioinform 2022; 23:6605028. [PMID: 35679594 DOI: 10.1093/bib/bbac228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Disease pathogenesis is always a major topic in biomedical research. With the exponential growth of biomedical information, drug effect analysis for specific phenotypes has shown great promise in uncovering disease-associated pathways. However, this method has only been applied to a limited number of drugs. Here, we extracted the data of 4634 diseases, 3671 drugs, 112 809 disease-drug associations and 81 527 drug-gene associations by text mining of 29 168 919 publications. On this basis, we proposed a 'Drug Set Enrichment Analysis by Text Mining (DSEATM)' pipeline and applied it to 3250 diseases, which outperformed the state-of-the-art method. Furthermore, diseases pathways enriched by DSEATM were similar to those obtained using the TCGA cancer RNA-seq differentially expressed genes. In addition, the drug number, which showed a remarkable positive correlation of 0.73 with the AUC, plays a determining role in the performance of DSEATM. Taken together, DSEATM is an auspicious and accurate disease research tool that offers fresh insights.
Collapse
Affiliation(s)
- Zhi-Hui Luo
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.,Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.,Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.,Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Li-Da Zhu
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Ya-Min Wang
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.,Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.,Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.,Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Sheng Hu Qian
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.,Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.,Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.,Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Menglu Li
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Wen Zhang
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Zhen-Xia Chen
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.,Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.,Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.,Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| |
Collapse
|
2
|
Park J, Hescott BJ, Slonim DK. Pathway centrality in protein interaction networks identifies putative functional mediating pathways in pulmonary disease. Sci Rep 2019; 9:5863. [PMID: 30971743 PMCID: PMC6458310 DOI: 10.1038/s41598-019-42299-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/13/2019] [Indexed: 12/17/2022] Open
Abstract
Identification of functional pathways mediating molecular responses may lead to better understanding of disease processes and suggest new therapeutic approaches. We introduce a method to detect such mediating functions using topological properties of protein-protein interaction networks. We define the concept of pathway centrality, a measure of communication between disease genes and differentially expressed genes. Using pathway centrality, we identify mediating pathways in three pulmonary diseases (asthma; bronchopulmonary dysplasia (BPD); and chronic obstructive pulmonary disease (COPD)). We systematically evaluate the significance of all identified central pathways using genetic interactions. Mediating pathways shared by all three pulmonary disorders favor innate immune and inflammation-related processes, including toll-like receptor (TLR) signaling, PDGF- and angiotensin-regulated airway remodeling, the JAK-STAT signaling pathway, and interferon gamma. Disease-specific mediators, such as neurodevelopmental processes in BPD or adhesion molecules in COPD, are also highlighted. Some of our findings implicate pathways already in development as drug targets, while others may suggest new therapeutic approaches.
Collapse
Affiliation(s)
- Jisoo Park
- School of Medicine, University of California, San Diego, CA, 92093, USA.
| | - Benjamin J Hescott
- College of Computer and Information Science, Northeastern University, Boston, MA, 02115, USA
| | - Donna K Slonim
- Department of Computer Science, Tufts University, Medford, MA, 02155, USA.
- Department of Immunology, Tufts University School of Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
3
|
Zlatic SA, Vrailas-Mortimer A, Gokhale A, Carey LJ, Scott E, Burch R, McCall MM, Rudin-Rush S, Davis JB, Hartwig C, Werner E, Li L, Petris M, Faundez V. Rare Disease Mechanisms Identified by Genealogical Proteomics of Copper Homeostasis Mutant Pedigrees. Cell Syst 2018; 6:368-380.e6. [PMID: 29397366 DOI: 10.1016/j.cels.2018.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/28/2017] [Accepted: 01/05/2018] [Indexed: 12/22/2022]
Abstract
Rare neurological diseases shed light onto universal neurobiological processes. However, molecular mechanisms connecting genetic defects to their disease phenotypes are elusive. Here, we obtain mechanistic information by comparing proteomes of cells from individuals with rare disorders with proteomes from their disease-free consanguineous relatives. We use triple-SILAC mass spectrometry to quantify proteomes from human pedigrees affected by mutations in ATP7A, which cause Menkes disease, a rare neurodegenerative and neurodevelopmental disorder stemming from systemic copper depletion. We identified 214 proteins whose expression was altered in ATP7A-/y fibroblasts. Bioinformatic analysis of ATP7A-mutant proteomes identified known phenotypes and processes affected in rare genetic diseases causing copper dyshomeostasis, including altered mitochondrial function. We found connections between copper dyshomeostasis and the UCHL1/PARK5 pathway of Parkinson disease, which we validated with mitochondrial respiration and Drosophila genetics assays. We propose that our genealogical "omics" strategy can be broadly applied to identify mechanisms linking a genomic locus to its phenotypes.
Collapse
Affiliation(s)
| | - Alysia Vrailas-Mortimer
- School of Biological Sciences Illinois State University, Normal, IL 617901, USA; University of Denver, Department of Biological Sciences, Denver, CO 80208, USA
| | - Avanti Gokhale
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Lucas J Carey
- School of Biological Sciences Illinois State University, Normal, IL 617901, USA
| | - Elizabeth Scott
- School of Biological Sciences Illinois State University, Normal, IL 617901, USA
| | - Reid Burch
- School of Biological Sciences Illinois State University, Normal, IL 617901, USA; University of Denver, Department of Biological Sciences, Denver, CO 80208, USA
| | - Morgan M McCall
- School of Biological Sciences Illinois State University, Normal, IL 617901, USA
| | | | | | - Cortnie Hartwig
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; Department of Chemistry, Agnes Scott College, Decatur, GA 30030, USA
| | - Erica Werner
- Department of Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Lian Li
- Department of Pharmacology, Emory University, Atlanta, GA 30322, USA
| | - Michael Petris
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
4
|
Krishnan ML, Van Steenwinckel J, Schang AL, Yan J, Arnadottir J, Le Charpentier T, Csaba Z, Dournaud P, Cipriani S, Auvynet C, Titomanlio L, Pansiot J, Ball G, Boardman JP, Walley AJ, Saxena A, Mirza G, Fleiss B, Edwards AD, Petretto E, Gressens P. Integrative genomics of microglia implicates DLG4 (PSD95) in the white matter development of preterm infants. Nat Commun 2017; 8:428. [PMID: 28874660 PMCID: PMC5585205 DOI: 10.1038/s41467-017-00422-w] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 06/28/2017] [Indexed: 12/12/2022] Open
Abstract
Preterm birth places infants in an adverse environment that leads to abnormal brain development and cerebral injury through a poorly understood mechanism known to involve neuroinflammation. In this study, we integrate human and mouse molecular and neuroimaging data to investigate the role of microglia in preterm white matter damage. Using a mouse model where encephalopathy of prematurity is induced by systemic interleukin-1β administration, we undertake gene network analysis of the microglial transcriptomic response to injury, extend this by analysis of protein-protein interactions, transcription factors and human brain gene expression, and translate findings to living infants using imaging genomics. We show that DLG4 (PSD95) protein is synthesised by microglia in immature mouse and human, developmentally regulated, and modulated by inflammation; DLG4 is a hub protein in the microglial inflammatory response; and genetic variation in DLG4 is associated with structural differences in the preterm infant brain. DLG4 is thus apparently involved in brain development and impacts inter-individual susceptibility to injury after preterm birth.Inflammation mediated by microglia plays a key role in brain injury associated with preterm birth, but little is known about the microglial response in preterm infants. Here, the authors integrate molecular and imaging data from animal models and preterm infants, and find that microglial expression of DLG4 plays a role.
Collapse
Affiliation(s)
- Michelle L Krishnan
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Juliette Van Steenwinckel
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Anne-Laure Schang
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Jun Yan
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Johanna Arnadottir
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Tifenn Le Charpentier
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Zsolt Csaba
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Pascal Dournaud
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Sara Cipriani
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Constance Auvynet
- Pierre and Marie Curie University, UMRS-1135, Sorbonne Paris Cité, F-75006, Paris, France
| | - Luigi Titomanlio
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
| | - Julien Pansiot
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Gareth Ball
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - James P Boardman
- Medical Research Council/University of Edinburgh Centre for Reproductive Health, Edinburgh, EH16 4TJ, UK
| | - Andrew J Walley
- Cell Biology and Genetics Research Centre, St. George's University of London, London, SW17 0RE, UK
| | - Alka Saxena
- Genomics Core Facility, NIHR Biomedical Research Centre, Guy's and St. Thomas' NHS Foundation Trust, London, SE1 9RT, UK
| | - Ghazala Mirza
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, WC1N 3BG, UK
- Epilepsy Society, Chalfont-St-Peter, Bucks, SL9 0RJ, UK
| | - Bobbi Fleiss
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - A David Edwards
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.
| | - Enrico Petretto
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| | - Pierre Gressens
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France.
- PremUP, F-75006, Paris, France.
| |
Collapse
|
5
|
The Proteome of BLOC-1 Genetic Defects Identifies the Arp2/3 Actin Polymerization Complex to Function Downstream of the Schizophrenia Susceptibility Factor Dysbindin at the Synapse. J Neurosci 2017; 36:12393-12411. [PMID: 27927957 DOI: 10.1523/jneurosci.1321-16.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 10/01/2016] [Accepted: 10/20/2016] [Indexed: 12/16/2022] Open
Abstract
Proteome modifications downstream of monogenic or polygenic disorders have the potential to uncover novel molecular mechanisms participating in pathogenesis and/or extragenic modification of phenotypic expression. We tested this idea by determining the proteome sensitive to genetic defects in a locus encoding dysbindin, a protein required for synapse biology and implicated in schizophrenia risk. We applied quantitative mass spectrometry to identify proteins expressed in neuronal cells the abundance of which was altered after downregulation of the schizophrenia susceptibility factor dysbindin (Bloc1s8) or two other dysbindin-interacting polypeptides, which assemble into the octameric biogenesis of lysosome-related organelles complex 1 (BLOC-1). We found 491 proteins sensitive to dysbindin and BLOC-1 loss of function. Gene ontology of these 491 proteins singled out the actin cytoskeleton and the actin polymerization factor, the Arp2/3 complex, as top statistical molecular pathways contained within the BLOC-1-sensitive proteome. Subunits of the Arp2/3 complex were downregulated by BLOC-1 loss of function, thus affecting actin dynamics in early endosomes of BLOC-1-deficient cells. Furthermore, we demonstrated that Arp2/3, dysbindin, and subunits of the BLOC-1 complex biochemically and genetically interact, modulating Drosophila melanogaster synapse morphology and homeostatic synaptic plasticity. Our results indicate that ontologically prioritized proteomics identifies novel pathways that modify synaptic phenotypes associated with neurodevelopmental disorder gene defects. SIGNIFICANCE STATEMENT The mechanisms associated with schizophrenia are mostly unknown despite the increasing number of genetic loci identified that increase disease risk. We present an experimental strategy that impartially and comprehensively interrogates the proteome of neurons to identify effects of genetic mutations in a schizophrenia risk factor, dysbindin. We find that the expression of the actin polymerization complex Arp2/3 is reduced in dysbindin-deficient cells, thus affecting actin-dependent phenotypes in two cellular compartments where dysbindin resides, endosomes and presynapses. Our studies indicate that a central cellular structure affected by schizophrenia susceptibility loci is the actin cytoskeleton, an organelle necessary for synaptic function in the presynaptic and postsynaptic compartment.
Collapse
|
6
|
Park J, Hescott BJ, Slonim DK. Towards a more molecular taxonomy of disease. J Biomed Semantics 2017; 8:25. [PMID: 28750648 PMCID: PMC5530939 DOI: 10.1186/s13326-017-0134-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 07/17/2017] [Indexed: 02/05/2023] Open
Abstract
Background Disease taxonomies have been designed for many applications, but they tend not to fully incorporate the growing amount of molecular-level knowledge of disease processes, inhibiting research efforts. Understanding the degree to which we can infer disease relationships from molecular data alone may yield insights into how to ultimately construct more modern taxonomies that integrate both physiological and molecular information. Results We introduce a new technique we call Parent Promotion to infer hierarchical relationships between disease terms using disease-gene data. We compare this technique with both an established ontology inference method (CliXO) and a minimum weight spanning tree approach. Because there is no gold standard molecular disease taxonomy available, we compare our inferred hierarchies to both the Medical Subject Headings (MeSH) category C forest of diseases and to subnetworks of the Disease Ontology (DO). This comparison provides insights about the inference algorithms, choices of evaluation metrics, and the existing molecular content of various subnetworks of MeSH and the DO. Our results suggest that the Parent Promotion method performs well in most cases. Performance across MeSH trees is also correlated between inference methods. Specifically, inferred relationships are more consistent with those in smaller MeSH disease trees than larger ones, but there are some notable exceptions that may correlate with higher molecular content in MeSH. Conclusions Our experiments provide insights about learning relationships between diseases from disease genes alone. Future work should explore the prospect of disease term discovery from molecular data and how best to integrate molecular data with anatomical and clinical knowledge. This study nonetheless suggests that disease gene information has the potential to form an important part of the foundation for future representations of the disease landscape. Electronic supplementary material The online version of this article (doi:10.1186/s13326-017-0134-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jisoo Park
- Department of Computer Science, Tufts University, 161 College Avenue, Medford, 02155, MA, USA.
| | - Benjamin J Hescott
- Department of Computer Science, Tufts University, 161 College Avenue, Medford, 02155, MA, USA
| | - Donna K Slonim
- Department of Computer Science, Tufts University, 161 College Avenue, Medford, 02155, MA, USA.,Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 145 Harrison Avenue, Boston, 02111, MA, USA
| |
Collapse
|
7
|
Comstra HS, McArthy J, Rudin-Rush S, Hartwig C, Gokhale A, Zlatic SA, Blackburn JB, Werner E, Petris M, D'Souza P, Panuwet P, Barr DB, Lupashin V, Vrailas-Mortimer A, Faundez V. The interactome of the copper transporter ATP7A belongs to a network of neurodevelopmental and neurodegeneration factors. eLife 2017; 6. [PMID: 28355134 PMCID: PMC5400511 DOI: 10.7554/elife.24722] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/28/2017] [Indexed: 02/04/2023] Open
Abstract
Genetic and environmental factors, such as metals, interact to determine neurological traits. We reasoned that interactomes of molecules handling metals in neurons should include novel metal homeostasis pathways. We focused on copper and its transporter ATP7A because ATP7A null mutations cause neurodegeneration. We performed ATP7A immunoaffinity chromatography and identified 541 proteins co-isolating with ATP7A. The ATP7A interactome concentrated gene products implicated in neurodegeneration and neurodevelopmental disorders, including subunits of the Golgi-localized conserved oligomeric Golgi (COG) complex. COG null cells possess altered content and subcellular localization of ATP7A and CTR1 (SLC31A1), the transporter required for copper uptake, as well as decreased total cellular copper, and impaired copper-dependent metabolic responses. Changes in the expression of ATP7A and COG subunits in Drosophila neurons altered synapse development in larvae and copper-induced mortality of adult flies. We conclude that the ATP7A interactome encompasses a novel COG-dependent mechanism to specify neuronal development and survival.
Collapse
Affiliation(s)
- Heather S Comstra
- Departments of Cell Biology, Emory University, Atlanta, United States
| | - Jacob McArthy
- School of Biological Sciences, Illinois State University, Normal, United States
| | | | - Cortnie Hartwig
- Department of Chemistry, Agnes Scott College, Decatur, Georgia
| | - Avanti Gokhale
- Departments of Cell Biology, Emory University, Atlanta, United States
| | | | - Jessica B Blackburn
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, United States
| | - Erica Werner
- Department of Biochemistry, Emory University, Atlanta, United States
| | - Michael Petris
- Department of Biochemistry, University of Missouri, Columbia, United States
| | - Priya D'Souza
- Rollins School of Public Health, Emory University, Atlanta, United States
| | - Parinya Panuwet
- Rollins School of Public Health, Emory University, Atlanta, United States
| | - Dana Boyd Barr
- Rollins School of Public Health, Emory University, Atlanta, United States
| | - Vladimir Lupashin
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, United States
| | | | - Victor Faundez
- Departments of Cell Biology, Emory University, Atlanta, United States
| |
Collapse
|
8
|
Abstract
Premature infants suffer significant respiratory morbidity during infancy with long-term negative consequences on health, quality of life, and health care costs. Enhanced susceptibility to a variety of infections and inflammation play a large role in early and prolonged lung disease following premature birth, although the mechanisms of susceptibility and immune dysregulation are active areas of research. This article reviews aspects of host-pathogen interactions and immune responses that are altered by preterm birth and that impact chronic respiratory morbidity in these children.
Collapse
Affiliation(s)
- Gloria S. Pryhuber
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 651, Rochester, NY 14642, USA,Department of Environmental Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA,Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 651, Rochester, NY 14642.
| |
Collapse
|
9
|
Dawson S, Charles AK, Bower C, de Klerk NH, Milne E. Risk of cancer among children with birth defects: a novel approach. ACTA ACUST UNITED AC 2015; 103:284-91. [PMID: 25808250 DOI: 10.1002/bdra.23364] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Associations between birth defects (BDs) and childhood cancers have been studied previously and have identified several specific birth defect-cancer associations. No studies have examined the risk after exclusion of known associations. METHODS We analyzed data from high-quality population-based registers of BDs and cancers for Western Australian births 1982 to 2007. The cohort comprised 641,036 babies still alive at 90 days. Two experts independently reviewed all 120 births with a BD and a cancer to determine whether the cancer was congenital, caused by the BD, known to be associated with the BD or otherwise. These categories were used in sensitivity analyses. Cox regression was used to estimate hazard ratios (HRs) for any cancer and specific cancers associated with any BD and specific BDs. RESULTS The HR for any cancer among children with any BD was 1.96 (95% confidence interval, 1.59-2.43). The HR for any cancer among children with a BD not known to be related to a cancer (n = 57) was 1.19 (95% confidence interval, 0.91-1.56). The HR for the latter association among children diagnosed with cancer before 5 years of age was 1.74 (95% confidence interval, 1.28-2.37). CONCLUSION This novel approach aimed to prevent inflated HRs arising from reverse causation, and allow identification of associations beyond those already well documented. Larger studies using this method are needed to explore currently undocumented associations between BDs and cancers.
Collapse
Affiliation(s)
- Somer Dawson
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | | | | | | | | |
Collapse
|