1
|
Fu Y, Takeuchi N. Evolution of the division of labour between templates and catalysts in spatial replicator models. J Evol Biol 2024; 37:1158-1169. [PMID: 39120521 DOI: 10.1093/jeb/voae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/29/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
The central dogma of molecular biology can be conceptualised as the division of labour between templates and catalysts, where templates transmit genetic information, catalysts accelerate chemical reactions, and the information flows from templates to catalysts but not from catalysts to templates. How can template-catalyst division evolve in primordial replicating systems? A previous study has shown that even if the template-catalyst division does not provide an immediate fitness benefit, it can evolve through symmetry breaking between replicating molecules when the molecules are compartmentalised into protocells. However, cellular compartmentalisation may have been absent in primordial replicating systems. Here, we investigate whether cellular compartmentalisation is necessary for the evolution of the template-catalyst division via symmetry breaking using an individual-based model of replicators in a two-dimensional space. Our results show that replicators evolve the template-catalyst division via symmetry breaking when their diffusion constant is sufficiently high, a condition that results in low genetic relatedness between replicators. The evolution of the template-catalyst division reduces the risk of invasion by "cheaters," replicators that have no catalytic activities, encode no catalysts, but replicate to the detriment of local population growth. Our results suggest that the evolution of the template-catalyst division via symmetry breaking does not require cellular compartmentalization and is, instead, a general phenomenon in replicators with structured populations.
Collapse
Affiliation(s)
- Yao Fu
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Nobuto Takeuchi
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Research Center for Complex Systems Biology, Universal Biology Institute, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Luo Y, Liang M, Yu C, Ma W. Circular at the very beginning: on the initial genomes in the RNA world. RNA Biol 2024; 21:17-31. [PMID: 39016036 PMCID: PMC11259081 DOI: 10.1080/15476286.2024.2380130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024] Open
Abstract
It is likely that an RNA world existed in early life, when RNA played both the roles of the genome and functional molecules, thereby undergoing Darwinian evolution. However, even with only one type of polymer, it seems quite necessary to introduce a labour division concerning these two roles because folding is required for functional molecules (ribozymes) but unfavourable for the genome (as a template in replication). Notably, while ribozymes tend to have adopted a linear form for folding without constraints, a circular form, which might have been topologically hindered in folding, seems more suitable for an RNA template. Another advantage of involving a circular genome could have been to resist RNA's end-degradation. Here, we explore the scenario of a circular RNA genome plus linear ribozyme(s) at the precellular stage of the RNA world through computer modelling. The results suggest that a one-gene scene could have been 'maintained', albeit with rather a low efficiency for the circular genome to produce the ribozyme, which required precise chain-break or chain-synthesis. This strict requirement may have been relieved by introducing a 'noncoding' sequence into the genome, which had the potential to derive a second gene through mutation. A two-gene scene may have 'run well' with the two corresponding ribozymes promoting the replication of the circular genome from different respects. Circular genomes with more genes might have arisen later in RNA-based protocells. Therefore, circular genomes, which are common in the modern living world, may have had their 'root' at the very beginning of life.
Collapse
Affiliation(s)
- Yufan Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Minglun Liang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chunwu Yu
- College of Computer Sciences, Wuhan University, Wuhan, China
| | - Wentao Ma
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Colizzi ES, van Dijk B, Merks RMH, Rozen DE, Vroomans RMA. Evolution of genome fragility enables microbial division of labor. Mol Syst Biol 2023; 19:e11353. [PMID: 36727665 PMCID: PMC9996244 DOI: 10.15252/msb.202211353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
Division of labor can evolve when social groups benefit from the functional specialization of its members. Recently, a novel means of coordinating the division of labor was found in the antibiotic-producing bacterium Streptomyces coelicolor, where specialized cells are generated through large-scale genomic re-organization. We investigate how the evolution of a genome architecture enables such mutation-driven division of labor, using a multiscale computational model of bacterial evolution. In this model, bacterial behavior-antibiotic production or replication-is determined by the structure and composition of their genome, which encodes antibiotics, growth-promoting genes, and fragile genomic loci that can induce chromosomal deletions. We find that a genomic organization evolves, which partitions growth-promoting genes and antibiotic-coding genes into distinct parts of the genome, separated by fragile genomic loci. Mutations caused by these fragile sites mostly delete growth-promoting genes, generating sterile, and antibiotic-producing mutants from weakly-producing progenitors, in agreement with experimental observations. This division of labor enhances the competition between colonies by promoting antibiotic diversity. These results show that genomic organization can co-evolve with genomic instabilities to enable reproductive division of labor.
Collapse
Affiliation(s)
- Enrico Sandro Colizzi
- Mathematical Institute, Leiden University, Leiden, The Netherlands.,Origins Center, Leiden, The Netherlands.,Sainsbury Laboratory, Cambridge University, Cambridge, UK
| | - Bram van Dijk
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Roeland M H Merks
- Mathematical Institute, Leiden University, Leiden, The Netherlands.,Origins Center, Leiden, The Netherlands.,Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Daniel E Rozen
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Renske M A Vroomans
- Origins Center, Leiden, The Netherlands.,Sainsbury Laboratory, Cambridge University, Cambridge, UK.,Informatic Institute, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
A PDE Model for Protocell Evolution and the Origin of Chromosomes via Multilevel Selection. Bull Math Biol 2022; 84:109. [PMID: 36030325 DOI: 10.1007/s11538-022-01062-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 07/28/2022] [Indexed: 11/02/2022]
Abstract
The evolution of complex cellular life involved two major transitions: the encapsulation of self-replicating genetic entities into cellular units and the aggregation of individual genes into a collectively replicating genome. In this paper, we formulate a minimal model of the evolution of proto-chromosomes within protocells. We model a simple protocell composed of two types of genes: a "fast gene" with an advantage for gene-level self-replication and a "slow gene" that replicates more slowly at the gene level, but which confers an advantage for protocell-level reproduction. Protocell-level replication capacity depends on cellular composition of fast and slow genes. We use a partial differential equation to describe how the composition of genes within protocells evolves over time under within-cell and between-cell competition, considering an infinite population of protocells that each contain infinitely many genes. We find that the gene-level advantage of fast replicators casts a long shadow on the multilevel dynamics of protocell evolution: no level of between-protocell competition can produce coexistence of the fast and slow replicators when the two genes are equally needed for protocell-level reproduction. By introducing a "dimer replicator" consisting of a linked pair of the slow and fast genes, we show analytically that coexistence between the two genes can be promoted in pairwise multilevel competition between fast and dimer replicators, and provide numerical evidence for coexistence in trimorphic competition between fast, slow, and dimer replicators. Our results suggest that dimerization, or the formation of a simple chromosome-like dimer replicator, can help to overcome the shadow of lower-level selection and work in concert with deterministic multilevel selection in protocells featuring high gene copy number to allow for the coexistence of two genes that are complementary at the protocell level but compete at the level of individual gene-level replication. These results for the PDE model complement existing results on the benefits of dimerization in the case of low genetic copy number, for which it has been shown that genetic linkage can help to overcome the stochastic loss of necessary genetic templates.
Collapse
|
5
|
Robin AN, Denton KK, Horna Lowell ES, Dulay T, Ebrahimi S, Johnson GC, Mai D, O’Fallon S, Philson CS, Speck HP, Zhang XP, Nonacs P. Major Evolutionary Transitions and the Roles of Facilitation and Information in Ecosystem Transformations. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.711556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A small number of extraordinary “Major Evolutionary Transitions” (METs) have attracted attention among biologists. They comprise novel forms of individuality and information, and are defined in relation to organismal complexity, irrespective of broader ecosystem-level effects. This divorce between evolutionary and ecological consequences qualifies unicellular eukaryotes, for example, as a MET although they alone failed to significantly alter ecosystems. Additionally, this definition excludes revolutionary innovations not fitting into either MET type (e.g., photosynthesis). We recombine evolution with ecology to explore how and why entire ecosystems were newly created or radically altered – as Major System Transitions (MSTs). In doing so, we highlight important morphological adaptations that spread through populations because of their immediate, direct-fitness advantages for individuals. These are Major Competitive Transitions, or MCTs. We argue that often multiple METs and MCTs must be present to produce MSTs. For example, sexually-reproducing, multicellular eukaryotes (METs) with anisogamy and exoskeletons (MCTs) significantly altered ecosystems during the Cambrian. Therefore, we introduce the concepts of Facilitating Evolutionary Transitions (FETs) and Catalysts as key events or agents that are insufficient themselves to set a MST into motion, but are essential parts of synergies that do. We further elucidate the role of information in MSTs as transitions across five levels: (I) Encoded; (II) Epigenomic; (III) Learned; (IV) Inscribed; and (V) Dark Information. The latter is ‘authored’ by abiotic entities rather than biological organisms. Level IV has arguably allowed humans to produce a MST, and V perhaps makes us a FET for a future transition that melds biotic and abiotic life into one entity. Understanding the interactive processes involved in past major transitions will illuminate both current events and the surprising possibilities that abiotically-created information may produce.
Collapse
|
6
|
Yanni D, Jacobeen S, Márquez-Zacarías P, Weitz JS, Ratcliff WC, Yunker PJ. Topological constraints in early multicellularity favor reproductive division of labor. eLife 2020; 9:e54348. [PMID: 32940598 PMCID: PMC7609046 DOI: 10.7554/elife.54348] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 09/17/2020] [Indexed: 12/23/2022] Open
Abstract
Reproductive division of labor (e.g. germ-soma specialization) is a hallmark of the evolution of multicellularity, signifying the emergence of a new type of individual and facilitating the evolution of increased organismal complexity. A large body of work from evolutionary biology, economics, and ecology has shown that specialization is beneficial when further division of labor produces an accelerating increase in absolute productivity (i.e. productivity is a convex function of specialization). Here we show that reproductive specialization is qualitatively different from classical models of resource sharing, and can evolve even when the benefits of specialization are saturating (i.e. productivity is a concave function of specialization). Through analytical theory and evolutionary individual-based simulations, we demonstrate that reproductive specialization is strongly favored in sparse networks of cellular interactions that reflect the morphology of early, simple multicellular organisms, highlighting the importance of restricted social interactions in the evolution of reproductive specialization.
Collapse
Affiliation(s)
- David Yanni
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| | - Shane Jacobeen
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| | - Pedro Márquez-Zacarías
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of TechnologyAtlantaUnited States
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Joshua S Weitz
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Peter J Yunker
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| |
Collapse
|
7
|
Synak J, Rybarczyk A, Blazewicz J. Multi-agent approach to sequence structure simulation in the RNA World hypothesis. PLoS One 2020; 15:e0238253. [PMID: 32857812 PMCID: PMC7455006 DOI: 10.1371/journal.pone.0238253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/12/2020] [Indexed: 12/03/2022] Open
Abstract
The origins of life on Earth have been the subject of inquiry since the early days of philosophical thought and are still intensively investigated by the researchers around the world. One of the theories explaining the life emergence, that gained the most attention recently is the RNA World hypothesis, which assumes that life on Earth was sparked by replicating RNA chains. Since wet lab analysis is time-consuming, many mathematical and computational approaches have been proposed that try to explain the origins of life. Recently proposed one, based on the work by Takeuchi and Hogeweg, addresses the problem of interplay between RNA replicases and RNA parasitic species, which is crucial for understanding the first steps of prebiotic evolution. In this paper, the aforementioned model has been extended and modified by introducing RNA sequence (structure) information and mutation rate close to real one. It allowed to observe the simple evolution mechanisms, which could have led to the more complicated systems and eventually, to the formation of the first cells. The main goal of this study was to determine the conditions that allowed the spontaneous emergence and evolution of the prebiotic replicases equipped with simple functional domains within a large population. Here we show that polymerase ribozymes could have appeared randomly and then quickly started to copy themselves in order for the system to reach equilibrium. It has been shown that evolutionary selection works even in the simplest systems.
Collapse
Affiliation(s)
- Jaroslaw Synak
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
- European Center for Bioinformatics and Genomics, Poznan, Poland
| | - Agnieszka Rybarczyk
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- European Center for Bioinformatics and Genomics, Poznan, Poland
- * E-mail: (JB); (AR)
| | - Jacek Blazewicz
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- European Center for Bioinformatics and Genomics, Poznan, Poland
- * E-mail: (JB); (AR)
| |
Collapse
|
8
|
Dynamics and stability in prebiotic information integration: an RNA World model from first principles. Sci Rep 2020; 10:51. [PMID: 31919467 PMCID: PMC6952369 DOI: 10.1038/s41598-019-56986-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/17/2019] [Indexed: 11/08/2022] Open
Abstract
The robust coevolution of catalytically active, metabolically cooperating prebiotic RNA replicators were investigated using an RNA World model of the origin of life based on physically and chemically plausible first principles. The Metabolically Coupled Replicator System assumes RNA replicators to supply metabolically essential catalytic activities indispensable to produce nucleotide monomers for their own template replication. Using external chemicals as the resource and the necessary ribozyme activities, Watson-Crick type replication produces complementary strands burdened by high-rate point mutations (insertions, deletions, substitutions). Metabolic ribozyme activities, replicabilities and decay rates are assigned to certain sequence and/or folding (thermodynamical) properties of single-stranded RNA molecules. Short and loosely folded sequences are given replication advantage, longer and tightly folded ones are better metabolic ribozymes and more resistant to hydrolytic decay. We show that the surface-bound MCRS evolves stable and metabolically functional communities of replicators of almost equal lengths, replicabilities and ribozyme activities. Being highly resistant to the invasion of parasitic (non-functional) replicators, it is also stable in the evolutionary sense. The template replication mechanism selects for catalytic “promiscuity”: the two (complementary) strands of the same evolved replicator will often carry more than a single catalytically active motif, thus maximizing functionality in a minimum of genetic information.
Collapse
|
9
|
The evolutionary dynamics of metabolic protocells. PLoS Comput Biol 2018; 14:e1006265. [PMID: 30028838 PMCID: PMC6070278 DOI: 10.1371/journal.pcbi.1006265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 08/01/2018] [Accepted: 06/04/2018] [Indexed: 12/04/2022] Open
Abstract
Protocell multilevel selection models have been proposed to study the evolutionary dynamics of vesicles encapsulating a set of replicating, competing and mutating sequences. The frequency of the different sequence types determines protocell survival through a fitness function. One of the defining features of these models is the genetic load generated when the protocell divides and its sequences are assorted between the offspring vesicles. However, these stochastic assortment effects disappear when the redundancy of each sequence type is sufficiently high. The fitness dependence of the vesicle with its sequence content is usually defined without considering a realistic account on how the lower level dynamics would specify the protocell fitness. Here, we present a protocell model with a fitness function determined by the output flux of a simple metabolic network with the aim of understanding how the evolution of both kinetic and topological features of metabolism would have been constrained by the particularities of the protocell evolutionary dynamics. In our model, the sequences inside the vesicle are both the carriers of information and Michaelis-Menten catalysts exhibiting saturation. We found that the saturation of the catalysts controlling the metabolic fluxes, achievable by modifying the kinetic or stoichiometric parameters, provides a mechanism to ameliorate the assortment load by increasing the redundancy of the catalytic sequences required to achieve the maximum flux. Regarding the network architecture, we conclude that combinations of parallel network motifs and bimolecular catalysts are a robust way to increase the complexity of the metabolism enclosed by the protocell. The protocell hypothesis conjectures the existence of a vesicle containing catalytic and replicating sequences as the primordial cellular organization during the early stages of the evolution of life. Mathematical models of protocells traditionally consider RNA sequences being encapsulated and having both an informational and a catalytic role in the same molecule. Because of this dual function, the protocell sequences are evolutionarily constrained. Mathematical models have been extensively used to study the evolutionary dynamics of protocells with a focus on the processes, like mutation or stochastic sequence assortment upon division, that affect the protocell information capacity in terms of the coexistence of different sequence types. Here we introduce a simple model of metabolic networks whose output determines the survival of the protocell with the aim of studying the effect of modifying the kinetic and architectural properties of the network on sequence coexistence. We find that stochastic assortment and mutation limit the architectures able to be encapsulated by the protocell with a given fraction of the population harbouring all possible sequence types.
Collapse
|
10
|
Attwater J, Raguram A, Morgunov AS, Gianni E, Holliger P. Ribozyme-catalysed RNA synthesis using triplet building blocks. eLife 2018; 7:35255. [PMID: 29759114 PMCID: PMC6003772 DOI: 10.7554/elife.35255] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/09/2018] [Indexed: 12/18/2022] Open
Abstract
RNA-catalyzed RNA replication is widely believed to have supported a primordial biology. However, RNA catalysis is dependent upon RNA folding, and this yields structures that can block replication of such RNAs. To address this apparent paradox, we have re-examined the building blocks used for RNA replication. We report RNA-catalysed RNA synthesis on structured templates when using trinucleotide triphosphates (triplets) as substrates, catalysed by a general and accurate triplet polymerase ribozyme that emerged from in vitro evolution as a mutualistic RNA heterodimer. The triplets cooperatively invaded and unraveled even highly stable RNA secondary structures, and support non-canonical primer-free and bidirectional modes of RNA synthesis and replication. Triplet substrates thus resolve a central incongruity of RNA replication, and here allow the ribozyme to synthesise its own catalytic subunit ‘+’ and ‘–’ strands in segments and assemble them into a new active ribozyme. Life as we know it relies on three types of molecules: DNA, which stores genetic information; proteins that carry out the chemical reactions necessary for life; and RNA, which relays information between the two. However, some scientists think that before life adopted DNA and proteins, it relied primarily on RNA. Like DNA, strands of RNA contain genetic data. Yet, some RNA strands can also fold to form ribozymes, 3D structures that could have guided life’s chemical processes the way proteins do now. For early life to be built on RNA, though, this molecule must have had the ability to make copies of itself. This duplication is a chemical reaction that could be driven by an ‘RNA replicase’ ribozyme. RNA strands are made of four different letters attached to each other in a specific order. When RNA is copied, one strand acts as a template, and a replicase ribozyme would accurately guide which letters are added to the strand under construction. However, no replicase ribozyme has been observed in existing life forms; this has led scientists to try to artificially create RNA replicase ribozymes that could copy themselves. Until now, the best approaches have assumed that a replicase would add building blocks formed of a single letter one by one to grow a new strand. Yet, although ribozymes can be made to copy straight RNA templates this way, folded RNA templates – including the replicase ribozyme itself – impede copying. In this apparent paradox, a ribozyme needs to fold to copy RNA, but when folded, is itself copied poorly. Here, Attwater et al. wondered if choosing different building blocks might overcome this contradiction. Biochemical techniques were used to engineer a ribozyme that copies RNA strands by adding letters not one-by-one, but three-by-three. Using three-letter ‘triplet’ building blocks, this new ribozyme can copy various folded RNA strands, including the active part of its own sequence. This is because triplet building blocks have different, and sometimes unexpected, chemical properties compared to single-letter blocks. For example, these triplets work together to bind tightly to RNA strands and unravel structures that block RNA copying. All life on Earth today uses a triplet RNA code to make proteins from DNA, and these experiments showed how RNA triplets might have helped RNA sustain early life forms. Further work is now needed to improve the ribozyme designed by Attwater et al. for efficient self-copying.
Collapse
Affiliation(s)
- James Attwater
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Aditya Raguram
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Alexey S Morgunov
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Edoardo Gianni
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Philipp Holliger
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
11
|
von der Dunk SHA, Colizzi ES, Hogeweg P. Evolutionary Conflict Leads to Innovation: Symmetry Breaking in a Spatial Model of RNA-Like Replicators. Life (Basel) 2017; 7:life7040043. [PMID: 29099079 PMCID: PMC5745556 DOI: 10.3390/life7040043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 11/16/2022] Open
Abstract
Molecules that replicate in trans are vulnerable to evolutionary extinction because they decrease the catalysis of replication to become more available as a template for replication. This problem can be alleviated with higher-level selection that clusters molecules of the same phenotype, favouring those groups that contain more catalysis. Here, we study a simple replicator model with implicit higher-level selection through space. We ask whether the functionality of such system can be enhanced when molecules reproduce through complementary replication, representing RNA-like replicators. For high diffusion, symmetry breaking between complementary strands occurs: one strand becomes a specialised catalyst and the other a specialised template. In ensemble, such replicators can modulate their catalytic activity depending on their environment, thereby mitigating the conflict between levels of selection. In addition, these replicators are more evolvable, facilitating survival in extreme conditions (i.e., for higher diffusion rates). Our model highlights that evolution with implicit higher-level selection—i.e., as a result of local interactions and spatial patterning—is very flexible. For different diffusion rates, different solutions to the selective conflict arise. Our results support an RNA World by showing that complementary replicators may have various ways to evolve more complexity.
Collapse
Affiliation(s)
- Samuel H A von der Dunk
- Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, The Netherlands.
| | - Enrico Sandro Colizzi
- Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, The Netherlands.
| | - Paulien Hogeweg
- Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
12
|
The origin of a primordial genome through spontaneous symmetry breaking. Nat Commun 2017; 8:250. [PMID: 28811464 PMCID: PMC5557888 DOI: 10.1038/s41467-017-00243-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/13/2017] [Indexed: 11/30/2022] Open
Abstract
The heredity of a cell is provided by a small number of non-catalytic templates—the genome. How did genomes originate? Here, we demonstrate the possibility that genome-like molecules arise from symmetry breaking between complementary strands of self-replicating molecules. Our model assumes a population of protocells, each containing a population of self-replicating catalytic molecules. The protocells evolve towards maximising the catalytic activities of the molecules to increase their growth rates. Conversely, the molecules evolve towards minimising their catalytic activities to increase their intracellular relative fitness. These conflicting tendencies induce the symmetry breaking, whereby one strand of the molecules remains catalytic and increases its copy number (enzyme-like molecules), whereas the other becomes non-catalytic and decreases its copy number (genome-like molecules). This asymmetry increases the equilibrium cellular fitness by decreasing mutation pressure and increasing intracellular genetic drift. These results implicate conflicting multilevel evolution as a key cause of the origin of genetic complexity. Early molecules of life likely served both as templates and catalysts, raising the question of how functionally distinct genomes and enzymes arose. Here, the authors show that conflict between evolution at the molecular and cellular levels can drive functional differentiation of the two strands of self-replicating molecules and lead to copy number differences between the two.
Collapse
|
13
|
Vandivier LE, Anderson SJ, Foley SW, Gregory BD. The Conservation and Function of RNA Secondary Structure in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:463-88. [PMID: 26865341 PMCID: PMC5125251 DOI: 10.1146/annurev-arplant-043015-111754] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
RNA transcripts fold into secondary structures via intricate patterns of base pairing. These secondary structures impart catalytic, ligand binding, and scaffolding functions to a wide array of RNAs, forming a critical node of biological regulation. Among their many functions, RNA structural elements modulate epigenetic marks, alter mRNA stability and translation, regulate alternative splicing, transduce signals, and scaffold large macromolecular complexes. Thus, the study of RNA secondary structure is critical to understanding the function and regulation of RNA transcripts. Here, we review the origins, form, and function of RNA secondary structure, focusing on plants. We then provide an overview of methods for probing secondary structure, from physical methods such as X-ray crystallography and nuclear magnetic resonance (NMR) imaging to chemical and nuclease probing methods. Combining these latter methods with high-throughput sequencing has enabled them to scale across whole transcriptomes, yielding tremendous new insights into the form and function of RNA secondary structure.
Collapse
Affiliation(s)
- Lee E Vandivier
- Department of Biology, School of Arts and Sciences, and
- Cell and Molecular Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | | | - Shawn W Foley
- Department of Biology, School of Arts and Sciences, and
- Cell and Molecular Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | - Brian D Gregory
- Department of Biology, School of Arts and Sciences, and
- Cell and Molecular Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
14
|
Czárán T, Könnyű B, Szathmáry E. Metabolically Coupled Replicator Systems: Overview of an RNA-world model concept of prebiotic evolution on mineral surfaces. J Theor Biol 2015; 381:39-54. [PMID: 26087284 DOI: 10.1016/j.jtbi.2015.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/01/2015] [Indexed: 11/30/2022]
Abstract
Metabolically Coupled Replicator Systems (MCRS) are a family of models implementing a simple, physico-chemically and ecologically feasible scenario for the first steps of chemical evolution towards life. Evolution in an abiotically produced RNA-population sets in as soon as any one of the RNA molecules become autocatalytic by engaging in template directed self-replication from activated monomers, and starts increasing exponentially. Competition for the finite external supply of monomers ignites selection favouring RNA molecules with catalytic activity helping self-replication by any possible means. One way of providing such autocatalytic help is to become a replicase ribozyme. An additional way is through increasing monomer supply by contributing to monomer synthesis from external resources, i.e., by evolving metabolic enzyme activity. Retroevolution may build up an increasingly autotrophic, cooperating community of metabolic ribozymes running an increasingly complicated and ever more efficient metabolism. Maintaining such a cooperating community of metabolic replicators raises two serious ecological problems: one is keeping the system coexistent in spite of the different replicabilities of the cooperating replicators; the other is constraining parasitism, i.e., keeping "cheaters" in check. Surface-bound MCRS provide an automatic solution to both problems: coexistence and parasite resistance are the consequences of assuming the local nature of metabolic interactions. In this review we present an overview of results published in previous articles, showing that these effects are, indeed, robust in different MCRS implementations, by considering different environmental setups and realistic chemical details in a few different models. We argue that the MCRS model framework naturally offers a suitable starting point for the future modelling of membrane evolution and extending the theory to cover the emergence of the first protocell in a self-consistent manner. The coevolution of metabolic, genetic and membrane functions is hypothesized to follow the progressive sequestration scenario, the conceptual blueprint for the earliest steps of protocell evolution.
Collapse
Affiliation(s)
- Tamás Czárán
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, H-1117 Pázmány Péter sétány 1/c, Budapest, Hungary.
| | - Balázs Könnyű
- Eötvös Lorand University, Department of Plant Systematics, Ecology and Theoretical Biology, H-1117 Pázmány Péter sétány 1/c, Budapest, Hungary.
| | - Eörs Szathmáry
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, H-1117 Pázmány Péter sétány 1/c, Budapest, Hungary; Eötvös Lorand University, Department of Plant Systematics, Ecology and Theoretical Biology, H-1117 Pázmány Péter sétány 1/c, Budapest, Hungary; Center for the Conceptual Foundations of Science, Parmenides Foundation, Kirchplatz 1,1, D-82049, Munich, Germany.
| |
Collapse
|
15
|
Vásárhelyi Z, Meszéna G, Scheuring I. Evolution of heritable behavioural differences in a model of social division of labour. PeerJ 2015; 3:e977. [PMID: 26038732 PMCID: PMC4451027 DOI: 10.7717/peerj.977] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/06/2015] [Indexed: 12/03/2022] Open
Abstract
The spectacular diversity of personality and behaviour of animals and humans has evoked many hypotheses intended to explain its developmental and evolutionary background. Although the list of the possible contributing mechanisms seems long, we propose that an underemphasised explanation is the division of labour creating negative frequency dependent selection. We use analytical and numerical models of social division of labour to show how selection can create consistent and heritable behavioural differences in a population, where randomly sampled individuals solve a collective task together. We assume that the collective task needs collaboration of individuals performing one of the two possible subtasks. The total benefit of the group is highest when the ratio of different subtasks is closest to 1. The probability of choosing one of the two costly subtasks and the costs assigned to them are under selection. By using adaptive dynamics we show that if a trade-off between the costs of the subtasks is strong enough, then evolution leads to coexistence of specialized individuals performing one of the subtasks with high probability and low cost. Our analytical results were verified and extended by numerical simulations.
Collapse
Affiliation(s)
- Zsóka Vásárhelyi
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University , Budapest , Hungary
| | - Géza Meszéna
- Department of Biological Physics, Eötvös Loránd University , Budapest , Hungary
| | - István Scheuring
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Eötvös Loránd University and the Hungarian Academy of Sciences , Budapest , Hungary
| |
Collapse
|
16
|
Könnyű B, Czárán T. Phenotype/genotype sequence complementarity and prebiotic replicator coexistence in the metabolically coupled replicator system. BMC Evol Biol 2014; 14:234. [PMID: 25421353 PMCID: PMC4256930 DOI: 10.1186/s12862-014-0234-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/06/2014] [Indexed: 12/11/2022] Open
Abstract
Background RNA or RNA-like polymers are the most likely candidates for having played the lead roles on the stage of the origin of life. RNA is known to feature two of the three essential functions of living entities (metabolism, heredity and membrane): it is capable of unlimited heredity and it has a proven capacity for catalysing very different chemical reactions which may form simple metabolic networks. The Metabolically Coupled Replicator System is a class of simulation models built on these two functions to show that an RNA World scenario for the origin of life is ecologically feasible, provided that it is played on mineral surfaces. The fact that RNA templates and their copies are of complementary base sequences has an obvious dynamical relevance: complementary strains may have very different structures and, consequently, functions – one may specialize for increasing enzymatic activity while the other takes the role of the gene of the enzyme. Results Incorporating the functional divergence of template and copy into the Metabolically Coupled Replicator System model framework we show that sequence complementarity 1) does not ruin the coexistence of a set of metabolically cooperating replicators; 2) the replicator system remains resistant to, but also tolerant with its parasites; 3) opens the way to the evolutionary differentiation of phenotype and genotype through a primitive version of phenotype amplification. Conclusions The functional asymmetry of complementary RNA strains results in a shift of phenotype/genotype (enzyme/gene) proportions in MCRS, favouring a slight genotype dominance. This asymmetry is expected to reverse due to the evolved trade-off of high “gene” replicability and high catalytic activity of the corresponding “enzyme” in expense of its replicability. This trade-off is the first evolutionary step towards the “division of labour” among enzymes and genes, which has concluded in the extreme form of phenotype amplification characteristic of our recent DNA-RNA-protein World. Electronic supplementary material The online version of this article (doi:10.1186/s12862-014-0234-8) contains supplementary material, which is available to authorized users.
Collapse
|