1
|
Chen W, Chen B, Li X, Xu G, Yang L, Wu J, Yu H. Non-canonical amino acids uncover the significant impact of Tyr671 on Taq DNA polymerase catalytic activity. FEBS J 2024; 291:2876-2896. [PMID: 38362811 DOI: 10.1111/febs.17091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/20/2023] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
Responsible for synthesizing the complementary strand of the DNA template, DNA polymerase is a crucial enzyme in DNA replication, recombination and repair. A highly conserved tyrosine (Tyr), located at the C-terminus of the O-helix in family A DNA polymerases, plays a critical role in enzyme activity and fidelity. Here, we combined the technology of genetic code extension to incorporate non-canonical amino acids and molecular dynamics (MD) simulations to uncover the mechanisms by which Tyr671 impacts substrate binding and conformation transitions in a DNA polymerase from Thermus aquaticus. Five non-canonical amino acids, namely l-3,4-dihydroxyphenylalanine (l-DOPA), p-aminophenylalanine (pAF), p-acetylphenylalanine (pAcF), p-cyanophenylalanine (pCNF) and p-nitrophenylalanine (pNTF), were individually incorporated at position 671. Strikingly, Y671pAF and Y671DOPA were active, but with lower activity compared to Y671F and wild-type. Y671pAF showed a higher fidelity than the Y671F, despite both possessing lower fidelity than the wild-type. Metadynamics and long-timescale MD simulations were carried out to probe the role of mutations in affecting protein structure, including open conformation, open-to-closed conformation transition, closed conformation, and closed-to-open conformation transition. The MD simulations clearly revealed that the size of the 671 amino acid residue and interactions with substrate or nearby residues were critical for Tyr671 to determine enzyme activity and fidelity.
Collapse
Affiliation(s)
- Wanyi Chen
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
| | - Binbin Chen
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
| | - Xinjia Li
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
| | - Gang Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
| | - Haoran Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
| |
Collapse
|
2
|
Turvey MW, Gabriel KN, Lee W, Taulbee JJ, Kim JK, Chen S, Lau CJ, Kattan RE, Pham JT, Majumdar S, Garcia D, Weiss GA, Collins PG. Single-molecule Taq DNA polymerase dynamics. SCIENCE ADVANCES 2022; 8:eabl3522. [PMID: 35275726 PMCID: PMC8916733 DOI: 10.1126/sciadv.abl3522] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Taq DNA polymerase functions at elevated temperatures with fast conformational dynamics-regimes previously inaccessible to mechanistic, single-molecule studies. Here, single-walled carbon nanotube transistors recorded the motions of Taq molecules processing matched or mismatched template-deoxynucleotide triphosphate pairs from 22° to 85°C. By using four enzyme orientations, the whole-enzyme closures of nucleotide incorporations were distinguished from more rapid, 20-μs closures of Taq's fingers domain testing complementarity and orientation. On average, one transient closure was observed for every nucleotide binding event; even complementary substrate pairs averaged five transient closures between each catalytic incorporation at 72°C. The rate and duration of the transient closures and the catalytic events had almost no temperature dependence, leaving all of Taq's temperature sensitivity to its rate-determining open state.
Collapse
Affiliation(s)
- Mackenzie W. Turvey
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697-4575, USA
| | - Kristin N. Gabriel
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA
| | - Wonbae Lee
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697-4575, USA
| | - Jeffrey J. Taulbee
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697-4575, USA
| | - Joshua K. Kim
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA
| | - Silu Chen
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA
| | - Calvin J. Lau
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697-4575, USA
| | - Rebecca E. Kattan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA
| | - Jenifer T. Pham
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA
| | - Sudipta Majumdar
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA
| | | | - Gregory A. Weiss
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697-3958, USA
| | - Philip G. Collins
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697-4575, USA
| |
Collapse
|
3
|
Dwivedi A, Kumari A, Aarthy M, Singh SK, Ojha M, Jha S, Jha SK, Jha NS. Spectroscopic and molecular docking studies for the binding and interaction aspects of curcumin-cysteine conjugate and rosmarinic acid with human telomeric G-quadruplex DNA. Int J Biol Macromol 2021; 182:1463-1472. [PMID: 34015406 DOI: 10.1016/j.ijbiomac.2021.05.089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/24/2022]
Abstract
The binding and interaction aspects of potential anticancer ligands like: curcumin-cysteine (CC) and rosmarinic acid (RA) with human telomeric G-quadruplex DNA, a novel anticancer target, have been probed by spectroscopic and molecular docking approach. The circular dichroism study unravels the conformational switching from mixed hybrid to parallel structure for the short sequence of human telomeric G-quadruplex structure in the presence of both the ligands. Further a good correlation for binding affinity has been established from the emission and absorption binding spectrum analysis. Further our spectroscopic and molecular docking studies have suggested that the CC having better binding capability than RA to human telomeric G-quadruplex. The presence of L-cysteine moiety in CC ligand is responsible factor for its binding via both minor as well as major groove of human telomeric G-quadruplex DNA where-as RA binds only via minor groove of telomeric G-DNA.
Collapse
Affiliation(s)
- Awadesh Dwivedi
- Department of Chemistry, National Institute of Technology, Patna 800005, India
| | - Arya Kumari
- Department of Chemistry, National Institute of Technology, Patna 800005, India
| | - Murali Aarthy
- Computer Aided Drug Design and Molecular Modelling Lab, Department of Bioinformatics, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modelling Lab, Department of Bioinformatics, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Monalisha Ojha
- Department of Life Science, National Institute of Technology, Rourkela 769008, India
| | - Suman Jha
- Department of Life Science, National Institute of Technology, Rourkela 769008, India
| | | | - Niki Sweta Jha
- Department of Chemistry, National Institute of Technology, Patna 800005, India.
| |
Collapse
|
4
|
Windsor PK, Plassmeyer SP, Mattock DS, Bradfield JC, Choi EY, Miller BR, Han BH. Biflavonoid-Induced Disruption of Hydrogen Bonds Leads to Amyloid-β Disaggregation. Int J Mol Sci 2021; 22:ijms22062888. [PMID: 33809196 PMCID: PMC8001082 DOI: 10.3390/ijms22062888] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/03/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Deposition of amyloid β (Aβ) fibrils in the brain is a key pathologic hallmark of Alzheimer’s disease. A class of polyphenolic biflavonoids is known to have anti-amyloidogenic effects by inhibiting aggregation of Aβ and promoting disaggregation of Aβ fibrils. In the present study, we further sought to investigate the structural basis of the Aβ disaggregating activity of biflavonoids and their interactions at the atomic level. A thioflavin T (ThT) fluorescence assay revealed that amentoflavone-type biflavonoids promote disaggregation of Aβ fibrils with varying potency due to specific structural differences. The computational analysis herein provides the first atomistic details for the mechanism of Aβ disaggregation by biflavonoids. Molecular docking analysis showed that biflavonoids preferentially bind to the aromatic-rich, partially ordered N-termini of Aβ fibril via the π–π interactions. Moreover, docking scores correlate well with the ThT EC50 values. Molecular dynamic simulations revealed that biflavonoids decrease the content of β-sheet in Aβ fibril in a structure-dependent manner. Hydrogen bond analysis further supported that the substitution of hydroxyl groups capable of hydrogen bond formation at two positions on the biflavonoid scaffold leads to significantly disaggregation of Aβ fibrils. Taken together, our data indicate that biflavonoids promote disaggregation of Aβ fibrils due to their ability to disrupt the fibril structure, suggesting biflavonoids as a lead class of compounds to develop a therapeutic agent for Alzheimer’s disease.
Collapse
Affiliation(s)
- Peter K. Windsor
- Department of Chemistry, Truman State University, Kirksville, MO 63501, USA; (P.K.W.); (S.P.P.); (D.S.M.); (J.C.B.)
| | - Stephen P. Plassmeyer
- Department of Chemistry, Truman State University, Kirksville, MO 63501, USA; (P.K.W.); (S.P.P.); (D.S.M.); (J.C.B.)
| | - Dominic S. Mattock
- Department of Chemistry, Truman State University, Kirksville, MO 63501, USA; (P.K.W.); (S.P.P.); (D.S.M.); (J.C.B.)
| | - Jonathan C. Bradfield
- Department of Chemistry, Truman State University, Kirksville, MO 63501, USA; (P.K.W.); (S.P.P.); (D.S.M.); (J.C.B.)
| | - Erika Y. Choi
- Department of Pharmacology, A.T. Still University, Kirksville, MO 63501, USA;
| | - Bill R. Miller
- Department of Chemistry, Truman State University, Kirksville, MO 63501, USA; (P.K.W.); (S.P.P.); (D.S.M.); (J.C.B.)
- Correspondence: (B.R.M.III); (B.H.H.)
| | - Byung Hee Han
- Department of Pharmacology, A.T. Still University, Kirksville, MO 63501, USA;
- Correspondence: (B.R.M.III); (B.H.H.)
| |
Collapse
|
5
|
Chaudhary A, Singh V, Varadwaj PK, Mani A. Screening natural inhibitors against upregulated G-protein coupled receptors as potential therapeutics of Alzheimer's disease. J Biomol Struct Dyn 2020; 40:673-684. [PMID: 32900274 DOI: 10.1080/07391102.2020.1817784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Computational approaches have been helpful in high throughput screening of drug libraries and designing ligands against receptors. Alzheimer's disease is a complex neurological disorder, which causes dementia. In this disease neurons are damaged due to formation of Amyloid-beta plaques and neurofibrillary tangles, which along with some other factors contributes to disease development and progression. The objective of this study was to predict tertiary structures of five G-protein coulped neurotransmitter receptors; CHRM5, CYSLTR2, DRD5, GALR1 and HTR2C, that are upregulated in Alzheimer's disease, and to screen potential inhibitors for against these receptors. In this study, Comparative modelling, molecular docking, MMGBSA analysis, ADMET screening and molecular dynamics simulation were performed. Tertiary structures of the five GPCRs were predicted and further subjected to molecular docking against natural compounds. Pharmacokinetic studies of natural compounds were also conducted for assessing drug-likeness properties. Molecular dynamics simulations were performed to investigate the structural stability and binding affinities of each complex. Finally, the results suggested that ZINC04098704, ZINC31170017, ZINC05998597, ZINC67911229, and ZINC67910690 had better binding affinity with CHRM5, CYSLTR2, DRD5, GALR1, and HTR2C (5-HT2C) proteins, respectively.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amit Chaudhary
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad Prayagraj (Allahabad), Uttar Pradesh, India
| | - Vishal Singh
- Department of Applied Sciences, Indian Institute of Information Technology, Devghat, Jhalwa Allahabad, Uttar Pradesh, India
| | - Pritish Kumar Varadwaj
- Department of Applied Sciences, Indian Institute of Information Technology, Devghat, Jhalwa Allahabad, Uttar Pradesh, India
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad Prayagraj (Allahabad), Uttar Pradesh, India
| |
Collapse
|
6
|
Vanmeert M, Razzokov J, Mirza MU, Weeks SD, Schepers G, Bogaerts A, Rozenski J, Froeyen M, Herdewijn P, Pinheiro VB, Lescrinier E. Rational design of an XNA ligase through docking of unbound nucleic acids to toroidal proteins. Nucleic Acids Res 2019; 47:7130-7142. [PMID: 31334814 PMCID: PMC6649754 DOI: 10.1093/nar/gkz551] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/24/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023] Open
Abstract
Xenobiotic nucleic acids (XNA) are nucleic acid analogues not present in nature that can be used for the storage of genetic information. In vivo XNA applications could be developed into novel biocontainment strategies, but are currently limited by the challenge of developing XNA processing enzymes such as polymerases, ligases and nucleases. Here, we present a structure-guided modelling-based strategy for the rational design of those enzymes essential for the development of XNA molecular biology. Docking of protein domains to unbound double-stranded nucleic acids is used to generate a first approximation of the extensive interaction of nucleic acid processing enzymes with their substrate. Molecular dynamics is used to optimise that prediction allowing, for the first time, the accurate prediction of how proteins that form toroidal complexes with nucleic acids interact with their substrate. Using the Chlorella virus DNA ligase as a proof of principle, we recapitulate the ligase's substrate specificity and successfully predict how to convert it into an XNA-templated XNA ligase.
Collapse
Affiliation(s)
- Michiel Vanmeert
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, box 1041, 3000 Leuven, Belgium
| | - Jamoliddin Razzokov
- Research group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Muhammad Usman Mirza
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, box 1041, 3000 Leuven, Belgium
- Centre for Research in Molecular Medicine (CRiMM), University of Lahore, Pakistan
| | - Stephen D Weeks
- Biocrystallography, KU Leuven, Herestraat 49, box 822, 3000 Leuven, Belgium
| | - Guy Schepers
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, box 1041, 3000 Leuven, Belgium
| | - Annemie Bogaerts
- Research group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Jef Rozenski
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, box 1041, 3000 Leuven, Belgium
| | - Mathy Froeyen
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, box 1041, 3000 Leuven, Belgium
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, box 1041, 3000 Leuven, Belgium
| | - Vitor B Pinheiro
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, box 1041, 3000 Leuven, Belgium
- University College London, Department of Structural and Molecular Biology, Gower Street, London, WC1E 6BT, UK
| | - Eveline Lescrinier
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, box 1041, 3000 Leuven, Belgium
| |
Collapse
|
7
|
Long C, E C, Da LT, Yu J. Determining selection free energetics from nucleotide pre-insertion to insertion in viral T7 RNA polymerase transcription fidelity control. Nucleic Acids Res 2019; 47:4721-4735. [PMID: 30916310 PMCID: PMC6511863 DOI: 10.1093/nar/gkz213] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/10/2019] [Accepted: 03/18/2019] [Indexed: 01/01/2023] Open
Abstract
An elongation cycle of a transcribing RNA polymerase (RNAP) usually consists of multiple kinetics steps, so there exist multiple kinetic checkpoints where non-cognate nucleotides can be selected against. We conducted comprehensive free energy calculations on various nucleotide insertions for viral T7 RNAP employing all-atom molecular dynamics simulations. By comparing insertion free energy profiles between the non-cognate nucleotide species (rGTP and dATP) and a cognate one (rATP), we obtained selection free energetics from the nucleotide pre-insertion to the insertion checkpoints, and further inferred the selection energetics down to the catalytic stage. We find that the insertion of base mismatch rGTP proceeds mainly through an off-path along which both pre-insertion screening and insertion inhibition play significant roles. In comparison, the selection against dATP is found to go through an off-path pre-insertion screening along with an on-path insertion inhibition. Interestingly, we notice that two magnesium ions switch roles of leave and stay during the dATP on-path insertion. Finally, we infer that substantial selection energetic is still required to catalytically inhibit the mismatched rGTP to achieve an elongation error rate ∼10-4 or lower; while no catalytic selection seems to be further needed against dATP to obtain an error rate ∼10-2.
Collapse
Affiliation(s)
- Chunhong Long
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Chao E
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Lin-Tai Da
- Shanghai Center for Systems Biomedicine, Shanghai JiaoTong University, Shanghai 200240, China
| | - Jin Yu
- Beijing Computational Science Research Center, Beijing 100193, China
| |
Collapse
|
8
|
Modeste E, Mawby L, Miller B, Wu E, Parish CA. A Molecular Dynamics Investigation of the Thermostability of Cold-Sensitive I707L KlenTaq1 DNA Polymerase and Its Wild-Type Counterpart. J Chem Inf Model 2019; 59:2423-2431. [PMID: 30897332 DOI: 10.1021/acs.jcim.9b00022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA polymerase I from Thermus aquaticus ( Taq DNA polymerase) is useful for polymerase chain reactions because of its exceptional thermostability; however, its activity at low temperatures can cause amplification of unintended products. Mutation of isoleucine 707 to leucine (I707L) slows Taq DNA polymerase at low temperatures, which decreases unwanted amplification due to mispriming. In this work, unrestrained molecular dynamics (MD) simulations were performed on I707L and wild-type (WT) Taq DNA polymerase at 341 and 298 K to determine how the mutation affects the dynamic nature of the protein. The results suggest that I707L Taq DNA polymerase remains relatively immobile at room temperature and becomes more flexible at the higher temperature, while the WT Taq DNA polymerase demonstrates less substantial differences in dynamics at high and low temperatures. These results are in agreement with previous experimental results on the I707L mutant Taq DNA polymerase that show dynamic differences at high and low temperatures. The decreased mobility of the mutant at low temperature suggests that the mutant remains longer in the blocked conformation, and this may lead to reduced activity relative to the WT at 298 K. Principal component analysis revealed that the mutation results in decoupled movements of the Q helix and fingers domain. This decoupled nature of the mutant gives way to an increasingly flexible N-terminal end of the Q helix at 341 K, a characteristic not seen for WT Taq DNA polymerase.
Collapse
Affiliation(s)
- Erica Modeste
- Department of Chemistry, Gottwald Center for the Sciences , University of Richmond , Richmond , Virginia 23713 , United States
| | - Lily Mawby
- Department of Chemistry, Gottwald Center for the Sciences , University of Richmond , Richmond , Virginia 23713 , United States
| | - Bill Miller
- Department of Chemistry , Truman State University , Kirksville , Missouri 63501 , United States
| | - Eugene Wu
- Department of Biology, Gottwald Center for the Sciences , University of Richmond , Richmond , Virginia 23713 , United States
| | - Carol A Parish
- Department of Chemistry, Gottwald Center for the Sciences , University of Richmond , Richmond , Virginia 23713 , United States
| |
Collapse
|
9
|
Foley MC, Couto L, Rauf S, Boyke A. Insights into DNA polymerase δ’s mechanism for accurate DNA replication. J Mol Model 2019; 25:80. [DOI: 10.1007/s00894-019-3957-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/05/2019] [Indexed: 11/28/2022]
|
10
|
Pusuluk O, Farrow T, Deliduman C, Burnett K, Vedral V. Proton tunnelling in hydrogen bonds and its implications in an induced-fit model of enzyme catalysis. Proc Math Phys Eng Sci 2018; 474:20180037. [PMCID: PMC6237491 DOI: 10.1098/rspa.2018.0037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/07/2018] [Indexed: 11/23/2024] Open
Abstract
The role of proton tunnelling in biological catalysis is investigated here within the frameworks of quantum information theory and thermodynamics. We consider the quantum correlations generated through two hydrogen bonds between a substrate and a prototypical enzyme that first catalyses the tautomerization of the substrate to move on to a subsequent catalysis, and discuss how the enzyme can derive its catalytic potency from these correlations. In particular, we show that classical changes induced in the binding site of the enzyme spreads the quantum correlations among all of the four hydrogen-bonded atoms thanks to the directionality of hydrogen bonds. If the enzyme rapidly returns to its initial state after the binding stage, the substrate ends in a new transition state corresponding to a quantum superposition. Open quantum system dynamics can then naturally drive the reaction in the forward direction from the major tautomeric form to the minor tautomeric form without needing any additional catalytic activity. We find that in this scenario the enzyme lowers the activation energy so much that there is no energy barrier left in the tautomerization, even if the quantum correlations quickly decay.
Collapse
Affiliation(s)
- Onur Pusuluk
- Department of Physics, İstanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Tristan Farrow
- Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
| | - Cemsinan Deliduman
- Department of Physics, Mimar Sinan Fine Arts University, Bomonti, Istanbul 34380, Turkey
| | - Keith Burnett
- University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Vlatko Vedral
- Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
| |
Collapse
|
11
|
McKeague M, Otto C, Räz MH, Angelov T, Sturla SJ. The Base Pairing Partner Modulates Alkylguanine Alkyltransferase. ACS Chem Biol 2018; 13:2534-2541. [PMID: 30040894 DOI: 10.1021/acschembio.8b00446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
O6-Alkylguanine DNA adducts are repaired by the suicide enzyme alkylguanine alkyltransferase (AGT). AGT facilitates repair by binding DNA in the minor groove, flipping out the damaged base, and transferring the O6-alkyl group to a cysteine residue in the enzyme's active site. Despite there being significant knowledge concerning the mechanism of AGT repair, there is limited insight regarding how altered interactions of the adduct with its complementary base in the DNA duplex influence its recognition and repair. In this study, the relationship of base pairing interactions and repair by human AGT (hAGT) was tested in the frequently mutated codon 12 of the KRAS gene with complementary sequences containing each canonical DNA base. The rate of O6-MeG repair decreased 2-fold when O6-MeG was paired with G, whereas all other canonical bases had no impact on the repair rate. We used a combination of biochemical studies, molecular modeling, and artificial nucleobases to elucidate the mechanism accounting for the 2-fold decrease. Our results suggest that the reduced rate of repair is due to O6-MeG adopting a syn conformation about the glycosidic bond precluding the formation of a repair-active complex. These data provide a novel chemical basis for how direct reversion repair may be impeded through modification of the base pair partner and support the use of artificial nucleobases as tools to probe the biochemistry of damage repair processes.
Collapse
Affiliation(s)
- Maureen McKeague
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Claudia Otto
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Michael H. Räz
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Todor Angelov
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Shana J. Sturla
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| |
Collapse
|
12
|
Yeager A, Humphries K, Farmer E, Cline G, Miller BR. Investigation of Nascent Base Pair and Polymerase Behavior in the Presence of Mismatches in DNA Polymerase I Using Molecular Dynamics. J Chem Inf Model 2018; 58:338-349. [PMID: 29280634 DOI: 10.1021/acs.jcim.7b00516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Optimizing DNA polymerases for a broad range of tasks requires an understanding of the factors influencing polymerase fidelity, but many details of polymerase behavior remain unknown, especially in the presence of mismatched nascent base pairs. Using molecular dynamics, the large fragment of Bacillus stearothermophilus DNA polymerase I is simulated in the presence of all 16 possible standard nucleoside triphosphate-template (dNTP-dN) pairs, including four Watson-Crick pairs and 12 mismatches. The precatalytic steps of nucleotide addition from nucleotide insertion to immediately preceding catalysis are explored using three starting structures representing different stages of nucleotide addition. From these simulations, interactions between dNTPs and the DNA-protein complex formed by the polymerase are elucidated. Patterns of large-scale conformational shifts, classification of nucleotide pairs based on composition, and investigation of the roles of residues interacting with dNTPs are completed on 50+ μs of simulation. The role of molecular dynamics in studies of polymerase behavior is discussed.
Collapse
Affiliation(s)
- Andrew Yeager
- Department of Chemistry, Truman State University , 100 E. Normal Ave, Kirksville, Missouri 63501, United States
| | - Kathryn Humphries
- Department of Chemistry, Truman State University , 100 E. Normal Ave, Kirksville, Missouri 63501, United States
| | - Ellen Farmer
- Department of Chemistry, Truman State University , 100 E. Normal Ave, Kirksville, Missouri 63501, United States
| | - Gene Cline
- Department of Chemistry, Truman State University , 100 E. Normal Ave, Kirksville, Missouri 63501, United States
| | - Bill R Miller
- Department of Chemistry, Truman State University , 100 E. Normal Ave, Kirksville, Missouri 63501, United States
| |
Collapse
|
13
|
Recent progress in dissecting molecular recognition by DNA polymerases with non-native substrates. Curr Opin Chem Biol 2017; 41:43-49. [PMID: 29096323 DOI: 10.1016/j.cbpa.2017.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/05/2017] [Indexed: 11/22/2022]
Abstract
DNA polymerases must discriminate the correct Watson-Crick base pair-forming deoxynucleoside triphosphate (dNTP) substrate from three other dNTPs and additional triphosphates found in the cell. The rarity of misincorporations in vivo, then, belies the high tolerance for dNTP analogs observed in vitro. Advances over the last 10 years in single-molecule fluorescence and electronic detection of dNTP analog incorporation enable exploration of the mechanism and limits to base discrimination by DNA polymerases. Such studies reveal transient motions of DNA polymerase during substrate recognition and mutagenesis in the context of erroneous dNTP incorporation that can lead to evolution and genetic disease. Further improvements in time resolution and noise reduction of single-molecule studies will uncover deeper mechanistic understanding of this critical, first step in evolution.
Collapse
|
14
|
Walker AR, Cisneros GA. Computational Simulations of DNA Polymerases: Detailed Insights on Structure/Function/Mechanism from Native Proteins to Cancer Variants. Chem Res Toxicol 2017; 30:1922-1935. [PMID: 28877429 PMCID: PMC5696005 DOI: 10.1021/acs.chemrestox.7b00161] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Genetic information is vital in the
cell cycle of DNA-based organisms.
DNA polymerases (DNA Pols) are crucial players in transactions dealing
with these processes. Therefore, the detailed understanding of the
structure, function, and mechanism of these proteins has been the
focus of significant effort. Computational simulations have been applied
to investigate various facets of DNA polymerase structure and function.
These simulations have provided significant insights over the years.
This perspective presents the results of various computational studies
that have been employed to research different aspects of DNA polymerases
including detailed reaction mechanism investigation, mutagenicity
of different metal cations, possible factors for fidelity synthesis,
and discovery/functional characterization of cancer-related mutations
on DNA polymerases.
Collapse
Affiliation(s)
- Alice R Walker
- Department of Chemistry, University of North Texas , 1155 Union Circle, Denton, Texas 76203, United States
| | - G Andrés Cisneros
- Department of Chemistry, University of North Texas , 1155 Union Circle, Denton, Texas 76203, United States
| |
Collapse
|
15
|
Yoon H, Warshel A. Simulating the fidelity and the three Mg mechanism of pol η and clarifying the validity of transition state theory in enzyme catalysis. Proteins 2017; 85:1446-1453. [PMID: 28383109 DOI: 10.1002/prot.25305] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 11/06/2022]
Abstract
Pol η belongs to the important Y family of DNA polymerases that can catalyze translesion synthesis across sites of damaged DNA. This activity involves the reduced fidelity of Pol η for 8-oxo-7,8-dhyedro-2'-deoxoguanosin(8-oxoG). The fundamental interest in Pol η has grown recently with the demonstration of the importance of a 3rd Mg2+ ion. The current work explores both the fidelity of Pol η and the role of the 3rd metal ion, by using empirical valence bond (EVB) simulations. The simulations reproduce the observed trend in fidelity and shed a new light on the role of the 3rd metal ion. It is found that this ion does not lead to a major catalytic effect, but most probably plays an important role in reducing the product release barrier. Furthermore, it is concluded, in contrast to some implications, that the effect of this metal does not violate transition state theory, and the evaluation of the catalytic effect must conserve the molecular composition upon moving from the reactant to the transition state. Proteins 2017; 85:1446-1453. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hanwool Yoon
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Ave, Los Angeles, California, 90089-1062
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Ave, Los Angeles, California, 90089-1062
| |
Collapse
|
16
|
Euro L, Haapanen O, Róg T, Vattulainen I, Suomalainen A, Sharma V. Atomistic Molecular Dynamics Simulations of Mitochondrial DNA Polymerase γ: Novel Mechanisms of Function and Pathogenesis. Biochemistry 2017; 56:1227-1238. [PMID: 28206745 DOI: 10.1021/acs.biochem.6b00934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA polymerase γ (Pol γ) is a key component of the mitochondrial DNA replisome and an important cause of neurological diseases. Despite the availability of its crystal structures, the molecular mechanism of DNA replication, the switch between polymerase and exonuclease activities, the site of replisomal interactions, and functional effects of patient mutations that do not affect direct catalysis have remained elusive. Here we report the first atomistic classical molecular dynamics simulations of the human Pol γ replicative complex. Our simulation data show that DNA binding triggers remarkable changes in the enzyme structure, including (1) completion of the DNA-binding channel via a dynamic subdomain, which in the apo form blocks the catalytic site, (2) stabilization of the structure through the distal accessory β-subunit, and (3) formation of a putative transient replisome-binding platform in the "intrinsic processivity" subdomain of the enzyme. Our data indicate that noncatalytic mutations may disrupt replisomal interactions, thereby causing Pol γ-associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Liliya Euro
- Research Programs Unit, Molecular Neurology, University of Helsinki , 00290 Helsinki, Finland
| | - Outi Haapanen
- Department of Physics, Tampere University of Technology , Tampere, Finland
| | - Tomasz Róg
- Department of Physics, Tampere University of Technology , Tampere, Finland.,Department of Physics, University of Helsinki , Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology , Tampere, Finland.,Department of Physics, University of Helsinki , Helsinki, Finland.,MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark , Odense, Denmark
| | - Anu Suomalainen
- Research Programs Unit, Molecular Neurology, University of Helsinki , 00290 Helsinki, Finland.,Department of Neurology, Helsinki University Hospital , Helsinki, Finland.,Neuroscience Center, University of Helsinki , 00790 Helsinki, Finland
| | - Vivek Sharma
- Department of Physics, Tampere University of Technology , Tampere, Finland.,Department of Physics, University of Helsinki , Helsinki, Finland.,Institute of Biotechnology, University of Helsinki , Helsinki, Finland
| |
Collapse
|
17
|
Design and anti-HIV activity of arylsulphonamides as non-nucleoside reverse transcriptase inhibitors. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1707-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
18
|
Fu YB, Wang ZF, Wang PY, Xie P. Optimal numbers of residues in linkers of DNA polymerase I, T7 primase and DNA polymerase IV. Sci Rep 2016; 6:29125. [PMID: 27364863 PMCID: PMC4929570 DOI: 10.1038/srep29125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/15/2016] [Indexed: 11/17/2022] Open
Abstract
DNA polymerase I (PolI), T7 primase and DNA polymerase IV (Dpo4) have a common feature in their structures that the two main domains are connected by an unstructured polypeptide linker. To perform their specific enzymatic activities, the enzymes are required to rearrange the position and orientation of one domain relative to the other into an active mode. Here, we show that the three enzymes share the same mechanism of the transition from the inert to active modes and use the minimum numbers of residues in their linkers to achieve the most efficient transitions. The transition time to the finally active mode is sensitively dependent on the stretched length of the linker in the finally active mode while is insensitive to the position and orientation in the initially inert state. Moreover, we find that for any enzyme whose two domains are connected by an unstructured flexible linker, the stretched length (L) of the linker in the finally active mode and the optimal number (Nopt) of the residues in the linker satisfy relation L ≈ αNopt, with α = 0.24-0.27 nm being a constant insensitive to the system.
Collapse
Affiliation(s)
- Yi-Ben Fu
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhan-Feng Wang
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Peng-Ye Wang
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ping Xie
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
19
|
Meli M, Sustarsic M, Craggs TD, Kapanidis AN, Colombo G. DNA Polymerase Conformational Dynamics and the Role of Fidelity-Conferring Residues: Insights from Computational Simulations. Front Mol Biosci 2016; 3:20. [PMID: 27303671 PMCID: PMC4882331 DOI: 10.3389/fmolb.2016.00020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/10/2016] [Indexed: 12/11/2022] Open
Abstract
Herein we investigate the molecular bases of DNA polymerase I conformational dynamics that underlie the replication fidelity of the enzyme. Such fidelity is determined by conformational changes that promote the rejection of incorrect nucleotides before the chemical ligation step. We report a comprehensive atomic resolution study of wild type and mutant enzymes in different bound states and starting from different crystal structures, using extensive molecular dynamics (MD) simulations that cover a total timespan of ~5 ms. The resulting trajectories are examined via a combination of novel methods of internal dynamics and energetics analysis, aimed to reveal the principal molecular determinants for the (de)stabilization of a certain conformational state. Our results show that the presence of fidelity-decreasing mutations or the binding of incorrect nucleotides in ternary complexes tend to favor transitions from closed toward open structures, passing through an ensemble of semi-closed intermediates. The latter ensemble includes the experimentally observed ajar conformation which, consistent with previous experimental observations, emerges as a molecular checkpoint for the selection of the correct nucleotide to incorporate. We discuss the implications of our results for the understanding of the relationships between the structure, dynamics, and function of DNA polymerase I at the atomistic level.
Collapse
Affiliation(s)
- Massimiliano Meli
- Computational Biochemistry Group, Istituto di Chimica del Riconoscimento Molecolare, National Research Council of Italy Milano, Italy
| | - Marko Sustarsic
- Clarendon Laboratory, Department of Physics, Biological Physics Research Group, University of Oxford Oxford, UK
| | - Timothy D Craggs
- Clarendon Laboratory, Department of Physics, Biological Physics Research Group, University of Oxford Oxford, UK
| | - Achillefs N Kapanidis
- Clarendon Laboratory, Department of Physics, Biological Physics Research Group, University of Oxford Oxford, UK
| | - Giorgio Colombo
- Computational Biochemistry Group, Istituto di Chimica del Riconoscimento Molecolare, National Research Council of Italy Milano, Italy
| |
Collapse
|
20
|
Da LT, E C, Duan B, Zhang C, Zhou X, Yu J. A Jump-from-Cavity Pyrophosphate Ion Release Assisted by a Key Lysine Residue in T7 RNA Polymerase Transcription Elongation. PLoS Comput Biol 2015; 11:e1004624. [PMID: 26599007 PMCID: PMC4658072 DOI: 10.1371/journal.pcbi.1004624] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/26/2015] [Indexed: 11/18/2022] Open
Abstract
Pyrophosphate ion (PPi) release during transcription elongation is a signature step in each nucleotide addition cycle. The kinetics and energetics of the process as well as how it proceeds with substantial conformational changes of the polymerase complex determine the mechano-chemical coupling mechanism of the transcription elongation. Here we investigated detailed dynamics of the PPi release process in a single-subunit RNA polymerase (RNAP) from bacteriophage T7, implementing all-atom molecular dynamics (MD) simulations. We obtained a jump-from-cavity kinetic model of the PPi release utilizing extensive nanosecond MD simulations. We found that the PPi release in T7 RNAP is initiated by the PPi dissociation from two catalytic aspartic acids, followed by a comparatively slow jump-from-cavity activation process. Combining with a number of microsecond long MD simulations, we also found that the activation process is hindered by charged residue associations as well as by local steric and hydrogen bond interactions. On the other hand, the activation is greatly assisted by a highly flexible lysine residue Lys472 that swings its side chain to pull PPi out. The mechanism can apply in general to single subunit RNA and DNA polymerases with similar molecular structures and conserved key residues. Remarkably, the flexible lysine or arginine residue appears to be a universal module that assists the PPi release even in multi-subunit RNAPs with charge facilitated hopping mechanisms. We also noticed that the PPi release is not tightly coupled to opening motions of an O-helix on the fingers domain of T7 RNAP according to the microsecond MD simulations. Our study thus supports the Brownian ratchet scenario of the mechano-chemical coupling in the transcription elongation of the single-subunit polymerase.
Collapse
Affiliation(s)
- Lin-Tai Da
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Chao E
- Beijing Computational Science Research Center, Beijing, China
| | - Baogen Duan
- Beijing Computational Science Research Center, Beijing, China
| | - Chuanbiao Zhang
- School of Physics, University of the Chinese Academy of Sciences, Beijing, China
| | - Xin Zhou
- School of Physics, University of the Chinese Academy of Sciences, Beijing, China
| | - Jin Yu
- Beijing Computational Science Research Center, Beijing, China
- * E-mail:
| |
Collapse
|
21
|
Rydzewski J, Jakubowski R, Nowak W. Communication: Entropic measure to prevent energy over-minimization in molecular dynamics simulations. J Chem Phys 2015; 143:171103. [PMID: 26547151 DOI: 10.1063/1.4935370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This work examines the impact of energy over-minimization on an ensemble of biological molecules subjected to the potential energy minimization procedure in vacuum. In the studied structures, long potential energy minimization stage leads to an increase of the main- and side-chain entropies in proteins. We show that such over-minimization may diverge the protein structures from the near-native attraction basin which possesses a minimum of free energy. We propose a measure based on the Pareto front of total entropy for quality assessment of minimized protein conformation. This measure may help in selection of adequate number of energy minimization steps in protein modelling and, thus, in preservation of the near-native protein conformation.
Collapse
Affiliation(s)
- J Rydzewski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - R Jakubowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - W Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| |
Collapse
|
22
|
Chen L, Zheng QC, Zhang HX. Insights into the effects of mutations on Cren7-DNA binding using molecular dynamics simulations and free energy calculations. Phys Chem Chem Phys 2015; 17:5704-11. [PMID: 25622968 DOI: 10.1039/c4cp05413j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A novel, highly conserved chromatin protein, Cren7 is involved in regulating essential cellular processes such as transcription, replication and repair. Although mutations in the DNA-binding loop of Cren7 destabilize the structure and reduce DNA-binding activity, the details are not very clear. Focusing on the specific Cren7-dsDNA complex (PDB code ), we applied molecular dynamics (MD) simulations and the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) free energy calculations to explore the structural and dynamic effects of W26A, L28A, and K53A mutations in comparison to the wild-type protein. The energetic analysis indicated that the intermolecular van der Waals interaction and nonpolar solvation energy play an important role in the binding process of Cren7 and dsDNA. Compared with the wild type Cren7, all the studied mutants W26A, L28A, and K53A have obviously reduced binding free energies with dsDNA in the reduction of the polar and/or nonpolar interactions. These results further elucidated the previous experiments to understand the Cren7-DNA interaction comprehensively. Our work also would provide support for an understanding of the interactions of proteins with nucleic acids.
Collapse
Affiliation(s)
- Lin Chen
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China.
| | | | | |
Collapse
|
23
|
Miller BR, Beese LS, Parish CA, Wu EY. The Closing Mechanism of DNA Polymerase I at Atomic Resolution. Structure 2015. [PMID: 26211612 DOI: 10.1016/j.str.2015.06.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA polymerases must quickly and accurately distinguish between similar nucleic acids to form Watson-Crick base pairs and avoid DNA replication errors. Deoxynucleoside triphosphate (dNTP) binding to the DNA polymerase active site induces a large conformational change that is difficult to characterize experimentally on an atomic level. Here, we report an X-ray crystal structure of DNA polymerase I bound to DNA in the open conformation with a dNTP present in the active site. We use this structure to computationally simulate the open to closed transition of DNA polymerase in the presence of a Watson-Crick base pair. Our microsecond simulations allowed us to characterize the key steps involved in active site assembly, and propose the sequence of events involved in the prechemistry steps of DNA polymerase catalysis. They also reveal new features of the polymerase mechanism, such as a conserved histidine as a potential proton acceptor from the primer 3'-hydroxyl.
Collapse
Affiliation(s)
- Bill R Miller
- Department of Biology, University of Richmond, 28 Westhampton Way, Richmond, VA 23173, USA; Department of Chemistry, University of Richmond, 28 Westhampton Way, Richmond, VA 23173, USA
| | - Lorena S Beese
- Department of Biochemistry, Duke University Medical Center, 255 Nanaline H. Duke Building, Durham, NC 27710, USA
| | - Carol A Parish
- Department of Chemistry, University of Richmond, 28 Westhampton Way, Richmond, VA 23173, USA.
| | - Eugene Y Wu
- Department of Biology, University of Richmond, 28 Westhampton Way, Richmond, VA 23173, USA; Department of Biochemistry, Duke University Medical Center, 255 Nanaline H. Duke Building, Durham, NC 27710, USA.
| |
Collapse
|