1
|
Bongartz H, Mehwald N, Seiß EA, Schumertl T, Naß N, Dittrich A. Dysregulated Gab1 signalling in triple negative breast cancer. Cell Commun Signal 2024; 22:161. [PMID: 38448989 PMCID: PMC10916281 DOI: 10.1186/s12964-024-01542-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 02/24/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Breast cancer is the most common cancer in women worldwide. Triple-negative breast cancer (TNBC) is especially aggressive and associated with high metastasis. The aetiology of TNBC is heterogeneous and characterised by multiple different mutations that amongst others cause constitutive and dysregulated MAPK and PI3K signalling. Additionally, in more than 50% of TNBC patients, the epidermal growth factor receptor (EGFR) is overexpressed and constitutively active. The multi-site docking protein Grb2-associated binder 1 (Gab1) is a central signalling hub that connects MAPK and PI3K signalling. METHODS Expression and activation of members of the Gab1/PI3K/MAPK signalling network were assessed in cells from different breast cancer subtypes. Influence of short- and long-term inhibition of EGFR, MAPK and PI3K on the activation of the Gab1/PI3K/MAPK signalling network as well as on cell viability, proliferation and migration was determined. Additionally, cellular localisation of Gab1 and Gab1 variants in naive cells and cells treated with the above-mentioned inhibitors was investigated. RESULTS We show that, activation of the Gab1/PI3K/MAPK signalling network is heterogeneous between different breast cancer subtypes. Gab1 phosphorylation and plasma membrane recruitment of Gab1 are dysregulated in the EGFRhigh TNBC cell line MDA-MB-468. While the Gab1/MAPK/PI3K signalling network follows canonical Gab1 signalling in naive MDA-MB-468 cells, Gab1 signalling is changed in cells that acquired resistance towards MAPK and PI3K inhibition. In resistant cells, Gab1 is not located at the plasma membrane despite strong activation of PI3K and MAPK. Furthermore, Gab1 tyrosine phosphorylation is uncoupled from plasma membrane recruitment. CONCLUSION Our study indicates that Gab1 signalling changes fundamentally during the acquisition of resistance to pharmacological inhibitors. Given the molecular heterogeneity between breast cancer subtypes, the detailed understanding of dysregulated and aberrant signalling is an absolute necessity in order to develop personalised therapies for patients with TNBC.
Collapse
Affiliation(s)
- Hannes Bongartz
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, 39106, Germany
- Present address: Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Nora Mehwald
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, 39106, Germany
| | - Elena A Seiß
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, 39106, Germany
| | - Tim Schumertl
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, 39106, Germany
- Present address: Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, 30625, Germany
| | - Norbert Naß
- Department of Pathology, Brandenburg Medical School Theodor Fontane, University Hospital Brandenburg / Havel, Hochstraße 29, Brandenburg, 14770, Germany
| | - Anna Dittrich
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, 39106, Germany.
- Center for Dynamic Systems: Systems Engineering (CDS), Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, 39106, Germany.
- Magdeburg Center for Systems Biology (MACS), Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, 39106, Germany.
| |
Collapse
|
2
|
Powis G, Meuillet EJ, Indarte M, Booher G, Kirkpatrick L. Pleckstrin Homology [PH] domain, structure, mechanism, and contribution to human disease. Biomed Pharmacother 2023; 165:115024. [PMID: 37399719 DOI: 10.1016/j.biopha.2023.115024] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
The pleckstrin homology [PH] domain is a structural fold found in more than 250 proteins making it the 11th most common domain in the human proteome. 25% of family members have more than one PH domain and some PH domains are split by one, or several other, protein domains although still folding to give functioning PH domains. We review mechanisms of PH domain activity, the role PH domain mutation plays in human disease including cancer, hyperproliferation, neurodegeneration, inflammation, and infection, and discuss pharmacotherapeutic approaches to regulate PH domain activity for the treatment of human disease. Almost half PH domain family members bind phosphatidylinositols [PIs] that attach the host protein to cell membranes where they interact with other membrane proteins to give signaling complexes or cytoskeleton scaffold platforms. A PH domain in its native state may fold over other protein domains thereby preventing substrate access to a catalytic site or binding with other proteins. The resulting autoinhibition can be released by PI binding to the PH domain, or by protein phosphorylation thus providing fine tuning of the cellular control of PH domain protein activity. For many years the PH domain was thought to be undruggable until high-resolution structures of human PH domains allowed structure-based design of novel inhibitors that selectively bind the PH domain. Allosteric inhibitors of the Akt1 PH domain have already been tested in cancer patients and for proteus syndrome, with several other PH domain inhibitors in preclinical development for treatment of other human diseases.
Collapse
Affiliation(s)
- Garth Powis
- PHusis Therapeutics Inc., 6019 Folsom Drive, La Jolla, CA 92037, USA.
| | | | - Martin Indarte
- PHusis Therapeutics Inc., 6019 Folsom Drive, La Jolla, CA 92037, USA
| | - Garrett Booher
- PHusis Therapeutics Inc., 6019 Folsom Drive, La Jolla, CA 92037, USA
| | - Lynn Kirkpatrick
- PHusis Therapeutics Inc., 6019 Folsom Drive, La Jolla, CA 92037, USA
| |
Collapse
|
3
|
Pérez-Baena MJ, Cordero-Pérez FJ, Pérez-Losada J, Holgado-Madruga M. The Role of GAB1 in Cancer. Cancers (Basel) 2023; 15:4179. [PMID: 37627207 PMCID: PMC10453317 DOI: 10.3390/cancers15164179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
GRB2-associated binder 1 (GAB1) is the inaugural member of the GAB/DOS family of pleckstrin homology (PH) domain-containing proteins. Upon receiving various stimuli, GAB1 transitions from the cytoplasm to the membrane where it is phosphorylated by a range of kinases. This event recruits SH2 domain-containing proteins like SHP2, PI3K's p85 subunit, CRK, and others, thereby activating distinct signaling pathways, including MAPK, PI3K/AKT, and JNK. GAB1-deficient embryos succumb in utero, presenting with developmental abnormalities in the heart, placenta, liver, skin, limb, and diaphragm myocytes. Oncogenic mutations have been identified in the context of cancer. GAB1 expression levels are disrupted in various tumors, and elevated levels in patients often portend a worse prognosis in multiple cancer types. This review focuses on GAB1's influence on cellular transformation particularly in proliferation, evasion of apoptosis, metastasis, and angiogenesis-each of these processes being a cancer hallmark. GAB1 also modulates the resistance/sensitivity to antitumor therapies, making it a promising target for future anticancer strategies.
Collapse
Affiliation(s)
- Manuel Jesús Pérez-Baena
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (M.J.P.-B.); (J.P.-L.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | | | - Jesús Pérez-Losada
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (M.J.P.-B.); (J.P.-L.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Marina Holgado-Madruga
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, 37007 Salamanca, Spain
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain
- Virtual Institute for Good Health and Well Being (GLADE), European Campus of City Universities (EC2U), 86073 Poitiers, France
| |
Collapse
|
4
|
Chatzigoulas A, Cournia Z. DREAMM: a web-based server for drugging protein-membrane interfaces as a novel workflow for targeted drug design. Bioinformatics 2022; 38:5449-5451. [PMID: 36355565 PMCID: PMC9750117 DOI: 10.1093/bioinformatics/btac680] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/20/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
SUMMARY The allosteric modulation of peripheral membrane proteins (PMPs) by targeting protein-membrane interactions with drug-like molecules represents a new promising therapeutic strategy for proteins currently considered undruggable. However, the accessibility of protein-membrane interfaces by small molecules has been so far unexplored, possibly due to the complexity of the interface, the limited protein-membrane structural information and the lack of computational workflows to study it. Herein, we present a pipeline for drugging protein-membrane interfaces using the DREAMM (Drugging pRotein mEmbrAne Machine learning Method) web server. DREAMM works in the back end with a fast and robust ensemble machine learning algorithm for identifying protein-membrane interfaces of PMPs. Additionally, DREAMM also identifies binding pockets in the vicinity of the predicted membrane-penetrating amino acids in protein conformational ensembles provided by the user or generated within DREAMM. AVAILABILITY AND IMPLEMENTATION DREAMM web server is accessible via https://dreamm.ni4os.eu. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Alexios Chatzigoulas
- Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece,Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens 15784, Greece
| | | |
Collapse
|
5
|
Nag JK, Malka H, Sedley S, Appasamy P, Rudina T, Levi T, Hoffman A, Gilon C, Uziely B, Bar-Shavit R. PH-Binding Motif in PAR4 Oncogene: From Molecular Mechanism to Drug Design. Mol Cancer Ther 2022; 21:1415-1429. [PMID: 36066448 DOI: 10.1158/1535-7163.mct-21-0946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/21/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
While the role of G-protein-coupled receptors (GPCR) in cancer is acknowledged, their underlying signaling pathways are understudied. Protease-activated receptors (PAR), a subgroup of GPCRs, form a family of four members (PAR1-4) centrally involved in epithelial malignancies. PAR4 emerges as a potent oncogene, capable of inducing tumor generation. Here, we demonstrate identification of a pleckstrin-homology (PH)-binding motif within PAR4, critical for colon cancer growth. In addition to PH-Akt/PKB association, other PH-containing signal proteins such as Gab1 and Sos1 also associate with PAR4. Point mutations are in the C-tail of PAR4 PH-binding domain; F347 L and D349A, but not E346A, abrogate these associations. Pc(4-4), a lead backbone cyclic peptide, was selected out of a mini-library, directed toward PAR2&4 PH-binding motifs. It effectively attenuates PAR2&4-Akt/PKB associations; PAR4 instigated Matrigel invasion and migration in vitro and tumor development in vivo. EGFR/erbB is among the most prominent cancer targets. AYPGKF peptide ligand activation of PAR4 induces EGF receptor (EGFR) Tyr-phosphorylation, effectively inhibited by Pc(4-4). The presence of PAR2 and PAR4 in biopsies of aggressive breast and colon cancer tissue specimens is demonstrated. We propose that Pc(4-4) may serve as a powerful drug not only toward PAR-expressing tumors but also for treating EGFR/erbB-expressing tumors in cases of resistance to traditional therapies. Overall, our studies are expected to allocate new targets for cancer therapy. Pc(4-4) may become a promising candidate for future therapeutic cancer treatment.
Collapse
Affiliation(s)
- Jeetendra Kumar Nag
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Hodaya Malka
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Shoshana Sedley
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Priyanga Appasamy
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Tatyana Rudina
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Tgst Levi
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Amnon Hoffman
- School of Pharmacy, Institute for Drug Research, The Hebrew University, Jerusalem, Israel
| | - Chaim Gilon
- Department of Organic Chemistry, Institute of Chemistry, The Hebrew University, Jerusalem, Israel
| | - Beatrice Uziely
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Rachel Bar-Shavit
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
6
|
Song P, Xu H, He Y, Sun J, Xu Z, Huang P, Ge M, Zhang X, Ke Y, Cheng H. GAB1 is upregulated to promote anaplastic thyroid cancer cell migration through AKT-MDR1. Biochem Biophys Res Commun 2022; 607:36-43. [PMID: 35366541 DOI: 10.1016/j.bbrc.2022.03.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/02/2022]
Abstract
Anaplastic thyroid carcinoma (ATC) represents an undifferentiated, aggressive and highly metastatic form of thyroid cancer with high mortality. GAB1, through direct interaction with the kinase PI3K and phosphatase SHP2, is tightly involved in the activation of oncogenic signals; however, the role of GAB1 in ATC remains unclear. GAB1 was significantly increased in ATC, accompanied with AKT activation. Cell proliferation, migration and invasion were impaired or enhanced by GAB1 knockdown in ATC cells or overexpression in PTC cells. Moreover, GAB1 knockdown in ATC cells inhibited and overexpression in PTC cells promoted the growth of thyroid cancer in nude mice. GAB1 mutation disrupting the interaction between GAB1 and PI3K failed to restore cell migration and invasion in GAB1-knockdown ATC cells. RNA sequencing data showed GAB1-knockdown partially reprogramed gene expression in ATC cells back to that in normal thyroid cells. MDR1 was transcriptionally regulated by GAB1, which was mediated by AKT. MDR1 was upregulated in ATC cells and MDR1 knockdown in ATC cells decreased migration and invasion. In addition, MDR1 overexpression restored cell migration and invasion and lung metastasis of GAB1-knockdown ATC cells. Collectively, GAB1 is upregulated in ATC to promote AKT activation and cellular migration and invasion through regulating MDR1 expression.
Collapse
Affiliation(s)
- Ping Song
- Department of Pathology and Pathophysiology and Department of Cardiology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hanzhi Xu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying He
- Key Laboratory for Translational Medicine, First Affiliated Hospital, Huzhou University, Huzhou, China
| | - Jiao Sun
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Zhiyong Xu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Huang
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, China; Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Minghua Ge
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, China; ENT-Head and Neck Surgery Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xue Zhang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuehai Ke
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China.
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology and Department of Cardiology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
7
|
Chatzigoulas A, Cournia Z. Predicting protein–membrane interfaces of peripheral membrane proteins using ensemble machine learning. Brief Bioinform 2022; 23:6527274. [PMID: 35152294 PMCID: PMC8921665 DOI: 10.1093/bib/bbab518] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/23/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
Abstract
Abnormal protein–membrane attachment is involved in deregulated cellular pathways and in disease. Therefore, the possibility to modulate protein–membrane interactions represents a new promising therapeutic strategy for peripheral membrane proteins that have been considered so far undruggable. A major obstacle in this drug design strategy is that the membrane-binding domains of peripheral membrane proteins are usually unknown. The development of fast and efficient algorithms predicting the protein–membrane interface would shed light into the accessibility of membrane–protein interfaces by drug-like molecules. Herein, we describe an ensemble machine learning methodology and algorithm for predicting membrane-penetrating amino acids. We utilize available experimental data from the literature for training 21 machine learning classifiers and meta-classifiers. Evaluation of the best ensemble classifier model accuracy yields a macro-averaged F1 score = 0.92 and a Matthews correlation coefficient = 0.84 for predicting correctly membrane-penetrating amino acids on unknown proteins of a validation set. The python code for predicting protein–membrane interfaces of peripheral membrane proteins is available at https://github.com/zoecournia/DREAMM.
Collapse
Affiliation(s)
- Alexios Chatzigoulas
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
- Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| |
Collapse
|
8
|
Carlin CR. Role of EGF Receptor Regulatory Networks in the Host Response to Viral Infections. Front Cell Infect Microbiol 2022; 11:820355. [PMID: 35083168 PMCID: PMC8785968 DOI: 10.3389/fcimb.2021.820355] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
In this review article, we will first provide a brief overview of EGF receptor (EGFR) structure and function, and its importance as a therapeutic target in epithelial carcinomas. We will then compare what is currently known about canonical EGFR trafficking pathways that are triggered by ligand binding, versus ligand-independent pathways activated by a variety of intrinsic and environmentally induced cellular stresses. Next, we will review the literature regarding the role of EGFR as a host factor with critical roles facilitating viral cell entry and replication. Here we will focus on pathogens exploiting virus-encoded and endogenous EGFR ligands, as well as EGFR-mediated trafficking and signaling pathways that have been co-opted by wild-type viruses and recombinant gene therapy vectors. We will also provide an overview of a recently discovered pathway regulating non-canonical EGFR trafficking and signaling that may be a common feature of viruses like human adenoviruses which signal through p38-mitogen activated protein kinase. We will conclude by discussing the emerging role of EGFR signaling in innate immunity to viral infections, and how viral evasion mechanisms are contributing to our understanding of fundamental EGFR biology.
Collapse
Affiliation(s)
- Cathleen R. Carlin
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States,Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, United States,*Correspondence: Cathleen R. Carlin,
| |
Collapse
|
9
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
10
|
FoxO1-GAB1 axis regulates homing capacity and tonic AKT activity in chronic lymphocytic leukemia. Blood 2021; 138:758-772. [PMID: 33786575 DOI: 10.1182/blood.2020008101] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 03/21/2021] [Indexed: 12/18/2022] Open
Abstract
Recirculation of chronic lymphocytic leukemia (CLL) cells between the peripheral blood and lymphoid niches plays a critical role in disease pathophysiology, and inhibiting this process is one of the major mechanisms of action for B-cell receptor (BCR) inhibitors such as ibrutinib and idelalisib. Migration is a complex process guided by chemokine receptors and integrins. However, it remains largely unknown how CLL cells integrate multiple migratory signals while balancing survival in the peripheral blood and the decision to return to immune niches. Our study provided evidence that CXCR4/CD5 intraclonal subpopulations can be used to study the regulation of migration of CLL cells. We performed RNA profiling of CXCR4dimCD5bright vs CXCR4brightCD5dim CLL cells and identified differential expression of dozens of molecules with a putative function in cell migration. GRB2-associated binding protein 1 (GAB1) positively regulated CLL cell homing capacity of CXCR4brightCD5dim cells. Gradual GAB1 accumulation in CLL cells outside immune niches was mediated by FoxO1-induced transcriptional GAB1 activation. Upregulation of GAB1 also played an important role in maintaining basal phosphatidylinositol 3-kinase (PI3K) activity and the "tonic" AKT phosphorylation required to sustain the survival of resting CLL B cells. This finding is important during ibrutinib therapy, because CLL cells induce the FoxO1-GAB1-pAKT axis, which represents an adaptation mechanism to the inability to home to immune niches. We have demonstrated that GAB1 can be targeted therapeutically by novel GAB1 inhibitors, alone or in combination with BTK inhibition. GAB1 inhibitors induce CLL cell apoptosis, impair cell migration, inhibit tonic or BCR-induced AKT phosphorylation, and block compensatory AKT activity during ibrutinib therapy.
Collapse
|
11
|
Lans I, Anoz-Carbonell E, Palacio-Rodríguez K, Aínsa JA, Medina M, Cossio P. In silico discovery and biological validation of ligands of FAD synthase, a promising new antimicrobial target. PLoS Comput Biol 2020; 16:e1007898. [PMID: 32797038 PMCID: PMC7449411 DOI: 10.1371/journal.pcbi.1007898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/26/2020] [Accepted: 07/09/2020] [Indexed: 01/06/2023] Open
Abstract
New treatments for diseases caused by antimicrobial-resistant microorganisms can be developed by identifying unexplored therapeutic targets and by designing efficient drug screening protocols. In this study, we have screened a library of compounds to find ligands for the flavin-adenine dinucleotide synthase (FADS) -a potential target for drug design against tuberculosis and pneumonia- by implementing a new and efficient virtual screening protocol. The protocol has been developed for the in silico search of ligands of unexplored therapeutic targets, for which limited information about ligands or ligand-receptor structures is available. It implements an integrative funnel-like strategy with filtering layers that increase in computational accuracy. The protocol starts with a pharmacophore-based virtual screening strategy that uses ligand-free receptor conformations from molecular dynamics (MD) simulations. Then, it performs a molecular docking stage using several docking programs and an exponential consensus ranking strategy. The last filter, samples the conformations of compounds bound to the target using MD simulations. The MD conformations are scored using several traditional scoring functions in combination with a newly-proposed score that takes into account the fluctuations of the molecule with a Morse-based potential. The protocol was optimized and validated using a compound library with known ligands of the Corynebacterium ammoniagenes FADS. Then, it was used to find new FADS ligands from a compound library of 14,000 molecules. A small set of 17 in silico filtered molecules were tested experimentally. We identified five inhibitors of the activity of the flavin adenylyl transferase module of the FADS, and some of them were able to inhibit growth of three bacterial species: C. ammoniagenes, Mycobacterium tuberculosis, and Streptococcus pneumoniae, where the last two are human pathogens. Overall, the results show that the integrative VS protocol is a cost-effective solution for the discovery of ligands of unexplored therapeutic targets.
Collapse
Affiliation(s)
- Isaias Lans
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia UdeA, Medellin, Colombia
| | - Ernesto Anoz-Carbonell
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (Unidades Asociadas BIFI-IQFR y CBsC-CSIC), Universidad de Zaragoza, Spain
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Pediatría, Radiología y Salud Pública. Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Karen Palacio-Rodríguez
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia UdeA, Medellin, Colombia
| | - José Antonio Aínsa
- Instituto de Biocomputación y Física de Sistemas Complejos (Unidades Asociadas BIFI-IQFR y CBsC-CSIC), Universidad de Zaragoza, Spain
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Pediatría, Radiología y Salud Pública. Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
- CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Spain
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (Unidades Asociadas BIFI-IQFR y CBsC-CSIC), Universidad de Zaragoza, Spain
| | - Pilar Cossio
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia UdeA, Medellin, Colombia
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt, Germany
- * E-mail:
| |
Collapse
|
12
|
Al-Husseinawi E, Bui MM, Ahmed AA. Grb2-associated binding protein-1 as a biomarker in bone and soft tissue sarcomas. Pathology 2019; 51:610-614. [DOI: 10.1016/j.pathol.2019.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/09/2019] [Accepted: 05/16/2019] [Indexed: 12/31/2022]
|
13
|
Wang X, Peng J, Yang Z, Zhou PJ, An N, Wei L, Zhu HH, Lu J, Fang YX, Gao WQ. Elevated expression of Gab1 promotes breast cancer metastasis by dissociating the PAR complex. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:27. [PMID: 30665442 PMCID: PMC6341703 DOI: 10.1186/s13046-019-1025-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/06/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Breast cancer (BCa) remains as the second leading cause of cancer-related death in women worldwide. The majority of the deaths are due to its progression to metastatic BCa. Although Grb2-associated binding protein 1 (Gab1) has been implicated in tumor proliferation and metastasis in multiple tumors including colorectal cancer, hepatocellular carcinoma and ovarian cancer, whether and how it regulates BCa metastasis are still poorly understood. METHODS Western blot assay and immunohistochemical (IHC) staining were performed to assess expression of Gab1 in primary and metastatic BCa clinical samples. Biological function assay studies in vitro and in vivo were employed to investigate the functions of Gab1 during BCa metastasis. Co-immunoprecipitation (co-IP) assessment, western blot assay and immunofluorescence (IF) staining were carried out to investigate the underlying mechanism for the function of Gab1 on BCa metastasis. RESULTS In this study, we found that expression level of Gab1 was increased significantly in BCa tissue samples compared to that in benign mammary hyperplastic tissues. Furthermore, elevated expression of Gab1 was positively associated with metastasis in HER2 and TNBC subtypes of BCa. In BCa cell line MDA-MB-231 and SK-BR3 cells, stable overexpression of Gab1 promoted, while knockdown of Gab1 inhibited cell migration in vitro and metastasis in vivo. Mechanistically, overexpression of Gab1 enhanced its interaction with Par3, a key component of the polarity-associated partitioning defective (PAR) complex, leading to a dissociation of the PAR complex. Consequently, dissociated PAR complex induced epithelial-to-mesenchymal transition (EMT) for breast tumor metastasis. By restoration assessment, we found that only re-expression of a fully functional Gab1, but not a mutant Gab1 that harbors either Par3 binding-deficiency or Par1b binding-deficiency, could reverse the repressive phenotype of cell migration in vitro and metastasis in vivo due to Gab1 knockdown. CONCLUSIONS Our findings indicate that elevated expression of Gab1 promotes BCa metastasis by dissociating the PAR complex that leads to EMT, implicating a role of Gab1 as a potential biomarker of metastatic BCa. Moreover, inhibition of Gab1 expression might be a promising therapeutic strategy for BCa metastasis.
Collapse
Affiliation(s)
- Xiao Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Jing Peng
- Department of Breast Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Ziqiang Yang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Pei-Jie Zhou
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Na An
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Lianzi Wei
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Jinsong Lu
- Department of Breast Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Yu-Xiang Fang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China. .,School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
14
|
Rai S, Mohanty P, Bhatnagar S. Modeling, dynamics and phosphoinositide binding of the pleckstrin homology domain of two novel PLCs: η1 and η2. J Mol Graph Model 2018; 85:130-144. [PMID: 30193228 DOI: 10.1016/j.jmgm.2018.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 11/16/2022]
Abstract
PH domains mediate interactions involved in cell signaling, intracellular membrane transport regulation and cytoskeleton organization. Some PH domains bind phosphoinositides with different affinity and specificity. The two novel PLCη (1 and 2) possess an N-terminal PH domain (PHη1 and PHη2 respectively) that has been implicated in membrane association and induction of PLC activity. Understanding of the structure and dynamics is crucial for future modulation of lipid-protein interactions in PHη1, PHη2 and other PH domains. Therefore, the three-dimensional structure of PHη1 and PHη2 was modeled using ITASSER and phosphoinositides (IP3 and IP4) were docked in the inferred binding site using HADDOCK server. Molecular Dynamics simulations of unliganded and phosphoinositide bound PHη1 and PHη2 were performed using AMBER14 to study the mechanism of interaction, and conformational dynamics in response to phosphoinositide binding. The binding affinity was predicted using Kdeep server. The models of PHη1 and PHη2 had a conserved structural core consisting of seven β-strands and a C-terminal α-helix as seen in other PH domains. Sequence/structure analysis showed that phosphoinositide ligands bind PHη1 and PHη2 at the canonical binding site. Phosphoinositide binding induced movement of positively charged side chains towards the ligand, changes in the secondary structure especially at the β5-β6 loop and allosteric changes at the interface of β1-β2 and β5-β6 loops. Dynamics studies showed that the size of the binding site and differential affinity for IP3/IP4 binding is coordinated by the number, length, flexibility, secondary structure and allosteric interactions of the loops surrounding the phosphoinositide binding site.
Collapse
Affiliation(s)
- Sneha Rai
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, 110078, India
| | - Pallavi Mohanty
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, 110078, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, 110078, India.
| |
Collapse
|
15
|
Xu L, Li J, Kuang Z, Kuang Y, Wu H. Knockdown of Gab1 Inhibits Cellular Proliferation, Migration, and Invasion in Human Oral Squamous Carcinoma Cells. Oncol Res 2018; 26:617-624. [PMID: 28893350 PMCID: PMC7844679 DOI: 10.3727/096504017x15043589260618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Grb2-associated binder 1 (Gab1) is often aberrant in cancerous cells and tissues, whose alteration is responsible for aggressive phenotypes. In this study, we examined the Gab1 expression in human oral squamous cell carcinoma (OSCC) tissues and investigated the cellular and molecular effect of Gab1 on migration, invasion, and cell growth of the OSCC cell lines SCC15 and SCC25. We found that Gab1 was overexpressed in OSCC tissues and cells, which is related to the protein levels of various molecules associated with cellular proliferation, migration, and invasion. Functional assays identified that Gab1 overexpression promoted cell proliferation and invasion of OSCC cells and inhibited cell apoptosis in the SCC15 and SCC25 cell lines. On the other hand, Gab1 silencing affected the proliferation and invasion of OSCC cells and induced cell apoptosis. Western blot assay identified that Gab1 overexpression suppressed the expression of Cdc20 homolog 1 (Cdh1) and then promoted cell invasion in OSCC cells. Furthermore, Gab1-mediated Cdh1 downregulation was significantly reversed when the cells were subjected to an inhibitor of p-Akt. In conclusion, these results suggested that Gab1 induced malignant progression of OSCC cells probably via activation of the Akt/Cdh1 signaling pathway. Thus, Gab1 may be a potential therapeutic target in the treatment of OSCC patients.
Collapse
Affiliation(s)
- Luyong Xu
- Department of Stomatology, Rizhao People’s Hospital, Jining Medical University, Rizhao, P.R. China
| | - Jie Li
- Department of Stomatology, Rizhao People’s Hospital, Jining Medical University, Rizhao, P.R. China
| | - Zheng Kuang
- Department of Stomatology, Rizhao People’s Hospital, Jining Medical University, Rizhao, P.R. China
| | - Yan Kuang
- Department of Stomatology, Rizhao People’s Hospital, Jining Medical University, Rizhao, P.R. China
| | - Hong Wu
- Department of Stomatology, Rizhao People’s Hospital, Jining Medical University, Rizhao, P.R. China
| |
Collapse
|
16
|
Feng J, He L, Li Y, Xiao F, Hu G. Modeling of PH Domains and Phosphoinositides Interactions and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1111:19-32. [DOI: 10.1007/5584_2018_236] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Tsao AS, Wistuba I, Xia D, Byers L, Diao L, Wang J, Papadimitrakopoulou V, Tang X, Lu W, Kadara H, Grigoryev DN, Selvan ME, Gümüş ZH, Tan Z, Zhang S, Nilsson M, Heymach JV. Germline and Somatic Smoothened Mutations in Non–Small-Cell Lung Cancer Are Potentially Responsive to Hedgehog Inhibitor Vismodegib. JCO Precis Oncol 2017; 1:1-10. [DOI: 10.1200/po.17.00149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Anne S. Tsao
- Anne S. Tsao, Ignacio Wistuba, Dianren Xia, Lauren Byers, Lixia Diao, Jing Wang, Vassiliki Papadimitrakopoulou, Ximing Tang, Wei Lu, Zhi Tan, Shuxing Zhang, Monique Nilsson, and John V. Heymach, The University of Texas MD Anderson Cancer Center, Houston, TX; Humam Kara, American University of Beirut, Beirut, Lebanon; and Dimitry N. Grigoryev, Myvizhi Esai Selvan, and Zeynep H. Gümüş, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ignacio Wistuba
- Anne S. Tsao, Ignacio Wistuba, Dianren Xia, Lauren Byers, Lixia Diao, Jing Wang, Vassiliki Papadimitrakopoulou, Ximing Tang, Wei Lu, Zhi Tan, Shuxing Zhang, Monique Nilsson, and John V. Heymach, The University of Texas MD Anderson Cancer Center, Houston, TX; Humam Kara, American University of Beirut, Beirut, Lebanon; and Dimitry N. Grigoryev, Myvizhi Esai Selvan, and Zeynep H. Gümüş, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Dianren Xia
- Anne S. Tsao, Ignacio Wistuba, Dianren Xia, Lauren Byers, Lixia Diao, Jing Wang, Vassiliki Papadimitrakopoulou, Ximing Tang, Wei Lu, Zhi Tan, Shuxing Zhang, Monique Nilsson, and John V. Heymach, The University of Texas MD Anderson Cancer Center, Houston, TX; Humam Kara, American University of Beirut, Beirut, Lebanon; and Dimitry N. Grigoryev, Myvizhi Esai Selvan, and Zeynep H. Gümüş, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Lauren Byers
- Anne S. Tsao, Ignacio Wistuba, Dianren Xia, Lauren Byers, Lixia Diao, Jing Wang, Vassiliki Papadimitrakopoulou, Ximing Tang, Wei Lu, Zhi Tan, Shuxing Zhang, Monique Nilsson, and John V. Heymach, The University of Texas MD Anderson Cancer Center, Houston, TX; Humam Kara, American University of Beirut, Beirut, Lebanon; and Dimitry N. Grigoryev, Myvizhi Esai Selvan, and Zeynep H. Gümüş, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Lixia Diao
- Anne S. Tsao, Ignacio Wistuba, Dianren Xia, Lauren Byers, Lixia Diao, Jing Wang, Vassiliki Papadimitrakopoulou, Ximing Tang, Wei Lu, Zhi Tan, Shuxing Zhang, Monique Nilsson, and John V. Heymach, The University of Texas MD Anderson Cancer Center, Houston, TX; Humam Kara, American University of Beirut, Beirut, Lebanon; and Dimitry N. Grigoryev, Myvizhi Esai Selvan, and Zeynep H. Gümüş, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jing Wang
- Anne S. Tsao, Ignacio Wistuba, Dianren Xia, Lauren Byers, Lixia Diao, Jing Wang, Vassiliki Papadimitrakopoulou, Ximing Tang, Wei Lu, Zhi Tan, Shuxing Zhang, Monique Nilsson, and John V. Heymach, The University of Texas MD Anderson Cancer Center, Houston, TX; Humam Kara, American University of Beirut, Beirut, Lebanon; and Dimitry N. Grigoryev, Myvizhi Esai Selvan, and Zeynep H. Gümüş, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Vassiliki Papadimitrakopoulou
- Anne S. Tsao, Ignacio Wistuba, Dianren Xia, Lauren Byers, Lixia Diao, Jing Wang, Vassiliki Papadimitrakopoulou, Ximing Tang, Wei Lu, Zhi Tan, Shuxing Zhang, Monique Nilsson, and John V. Heymach, The University of Texas MD Anderson Cancer Center, Houston, TX; Humam Kara, American University of Beirut, Beirut, Lebanon; and Dimitry N. Grigoryev, Myvizhi Esai Selvan, and Zeynep H. Gümüş, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ximing Tang
- Anne S. Tsao, Ignacio Wistuba, Dianren Xia, Lauren Byers, Lixia Diao, Jing Wang, Vassiliki Papadimitrakopoulou, Ximing Tang, Wei Lu, Zhi Tan, Shuxing Zhang, Monique Nilsson, and John V. Heymach, The University of Texas MD Anderson Cancer Center, Houston, TX; Humam Kara, American University of Beirut, Beirut, Lebanon; and Dimitry N. Grigoryev, Myvizhi Esai Selvan, and Zeynep H. Gümüş, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Wei Lu
- Anne S. Tsao, Ignacio Wistuba, Dianren Xia, Lauren Byers, Lixia Diao, Jing Wang, Vassiliki Papadimitrakopoulou, Ximing Tang, Wei Lu, Zhi Tan, Shuxing Zhang, Monique Nilsson, and John V. Heymach, The University of Texas MD Anderson Cancer Center, Houston, TX; Humam Kara, American University of Beirut, Beirut, Lebanon; and Dimitry N. Grigoryev, Myvizhi Esai Selvan, and Zeynep H. Gümüş, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Humam Kadara
- Anne S. Tsao, Ignacio Wistuba, Dianren Xia, Lauren Byers, Lixia Diao, Jing Wang, Vassiliki Papadimitrakopoulou, Ximing Tang, Wei Lu, Zhi Tan, Shuxing Zhang, Monique Nilsson, and John V. Heymach, The University of Texas MD Anderson Cancer Center, Houston, TX; Humam Kara, American University of Beirut, Beirut, Lebanon; and Dimitry N. Grigoryev, Myvizhi Esai Selvan, and Zeynep H. Gümüş, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Dimitry N. Grigoryev
- Anne S. Tsao, Ignacio Wistuba, Dianren Xia, Lauren Byers, Lixia Diao, Jing Wang, Vassiliki Papadimitrakopoulou, Ximing Tang, Wei Lu, Zhi Tan, Shuxing Zhang, Monique Nilsson, and John V. Heymach, The University of Texas MD Anderson Cancer Center, Houston, TX; Humam Kara, American University of Beirut, Beirut, Lebanon; and Dimitry N. Grigoryev, Myvizhi Esai Selvan, and Zeynep H. Gümüş, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Myvizhi Esai Selvan
- Anne S. Tsao, Ignacio Wistuba, Dianren Xia, Lauren Byers, Lixia Diao, Jing Wang, Vassiliki Papadimitrakopoulou, Ximing Tang, Wei Lu, Zhi Tan, Shuxing Zhang, Monique Nilsson, and John V. Heymach, The University of Texas MD Anderson Cancer Center, Houston, TX; Humam Kara, American University of Beirut, Beirut, Lebanon; and Dimitry N. Grigoryev, Myvizhi Esai Selvan, and Zeynep H. Gümüş, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Zeynep H. Gümüş
- Anne S. Tsao, Ignacio Wistuba, Dianren Xia, Lauren Byers, Lixia Diao, Jing Wang, Vassiliki Papadimitrakopoulou, Ximing Tang, Wei Lu, Zhi Tan, Shuxing Zhang, Monique Nilsson, and John V. Heymach, The University of Texas MD Anderson Cancer Center, Houston, TX; Humam Kara, American University of Beirut, Beirut, Lebanon; and Dimitry N. Grigoryev, Myvizhi Esai Selvan, and Zeynep H. Gümüş, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Zhi Tan
- Anne S. Tsao, Ignacio Wistuba, Dianren Xia, Lauren Byers, Lixia Diao, Jing Wang, Vassiliki Papadimitrakopoulou, Ximing Tang, Wei Lu, Zhi Tan, Shuxing Zhang, Monique Nilsson, and John V. Heymach, The University of Texas MD Anderson Cancer Center, Houston, TX; Humam Kara, American University of Beirut, Beirut, Lebanon; and Dimitry N. Grigoryev, Myvizhi Esai Selvan, and Zeynep H. Gümüş, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Shuxing Zhang
- Anne S. Tsao, Ignacio Wistuba, Dianren Xia, Lauren Byers, Lixia Diao, Jing Wang, Vassiliki Papadimitrakopoulou, Ximing Tang, Wei Lu, Zhi Tan, Shuxing Zhang, Monique Nilsson, and John V. Heymach, The University of Texas MD Anderson Cancer Center, Houston, TX; Humam Kara, American University of Beirut, Beirut, Lebanon; and Dimitry N. Grigoryev, Myvizhi Esai Selvan, and Zeynep H. Gümüş, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Monique Nilsson
- Anne S. Tsao, Ignacio Wistuba, Dianren Xia, Lauren Byers, Lixia Diao, Jing Wang, Vassiliki Papadimitrakopoulou, Ximing Tang, Wei Lu, Zhi Tan, Shuxing Zhang, Monique Nilsson, and John V. Heymach, The University of Texas MD Anderson Cancer Center, Houston, TX; Humam Kara, American University of Beirut, Beirut, Lebanon; and Dimitry N. Grigoryev, Myvizhi Esai Selvan, and Zeynep H. Gümüş, Icahn School of Medicine at Mount Sinai, New York, NY
| | - John V. Heymach
- Anne S. Tsao, Ignacio Wistuba, Dianren Xia, Lauren Byers, Lixia Diao, Jing Wang, Vassiliki Papadimitrakopoulou, Ximing Tang, Wei Lu, Zhi Tan, Shuxing Zhang, Monique Nilsson, and John V. Heymach, The University of Texas MD Anderson Cancer Center, Houston, TX; Humam Kara, American University of Beirut, Beirut, Lebanon; and Dimitry N. Grigoryev, Myvizhi Esai Selvan, and Zeynep H. Gümüş, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
18
|
Wu Y, Gaskins J, Kong M, Datta S. Profiling the effects of short time-course cold ischemia on tumor protein phosphorylation using a Bayesian approach. Biometrics 2017; 74:331-341. [PMID: 28742267 DOI: 10.1111/biom.12742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 05/01/2017] [Accepted: 06/01/2017] [Indexed: 12/20/2022]
Abstract
Phosphorylated proteins provide insight into tumor etiology and are used as diagnostic, prognostic, and therapeutic markers of complex diseases. However, pre-analytic variations, such as freezing delay after biopsy acquisition, often occur in real hospital settings and potentially lead to inaccurate results. The objective of this work is to develop statistical methodology to assess the stability of phosphorylated proteins under short-time cold ischemia. We consider a hierarchical model to determine if phosphorylation abundance of a protein at a particular phosphorylation site remains constant or not during cold ischemia. When phosphorylation levels vary across time, we estimate the direction of the changes in each protein based on the maximum overall posterior probability and on the pairwise posterior probabilities, respectively. We analyze a dataset of ovarian tumor tissues that suffered cold-ischemia shock before the proteomic profiling. Gajadhar et al. (2015) applied independent clusterings for each patient because of the high heterogeneity across patients, while our proposed model shares information allowing conclusions for the entire sample population. Using the proposed model, 15 out of 32 proteins show significant changes during 1-hour cold ischemia. Through simulation studies, we conclude that our proposed methodology has a higher accuracy for detecting changes compared to an order restricted inference method. Our approach provides inference on the stability of these phosphorylated proteins, which is valuable when using these proteins as biomarkers for a disease.
Collapse
Affiliation(s)
- You Wu
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, Kentucky, U.S.A
| | - Jeremy Gaskins
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, Kentucky, U.S.A
| | - Maiying Kong
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, Kentucky, U.S.A
| | - Susmita Datta
- Department of Biostatistics, University of Florida, Gainesville, Florida, U.S.A
| |
Collapse
|
19
|
Bekers EM, Groenen PJTA, Verdijk MAJ, Raaijmakers-van Geloof WL, Roepman P, Vink R, Gilhuijs NDB, van Gorp JM, Bovée JVMG, Creytens DH, Flanagan AM, Suurmeijer AJH, Mentzel T, Arbajian E, Flucke U. Soft tissue angiofibroma: Clinicopathologic, immunohistochemical and molecular analysis of 14 cases. Genes Chromosomes Cancer 2017. [DOI: 10.1002/gcc.22478] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Elise M Bekers
- Department of Pathology; Radboud University Medical Center; Nijmegen The Netherlands
| | - Patricia JTA Groenen
- Department of Pathology; Radboud University Medical Center; Nijmegen The Netherlands
| | - Marian AJ Verdijk
- Department of Pathology; Radboud University Medical Center; Nijmegen The Netherlands
| | | | - Paul Roepman
- Laboratory of Pathology; St. Antonius Hospital; Nieuwegein The Netherlands
| | - Robert Vink
- Laboratory of Pathology Oost Nederland; Hengelo The Netherlands
| | | | - Joost M van Gorp
- Department of Pathology; Diakonessenhuis Utrecht; The Netherlands
| | - Judith VMG Bovée
- Department of Pathology; Leiden University Medical Center; Leiden The Netherlands
| | - David H Creytens
- Department of Pathology; Ghent University and Ghent University Hospital; Ghent Belgium
| | | | - Albert JH Suurmeijer
- Department of Pathology; University Medical Center Groningen, University of Groningen; Groningen The Netherlands
| | | | - Elsa Arbajian
- Department of Clinical Genetics; University and Regional Laboratories, Skåne University Hospital, Lund University; Lund Sweden
| | - Uta Flucke
- Department of Pathology; Radboud University Medical Center; Nijmegen The Netherlands
| |
Collapse
|
20
|
Zhang Y, Xu Y, Liu S, Guo X, Cen D, Xu J, Li H, Li K, Zeng C, Lu L, Zhou Y, Shen H, Cheng H, Zhang X, Ke Y. Scaffolding protein Gab1 regulates myeloid dendritic cell migration in allergic asthma. Cell Res 2016; 26:1226-1241. [PMID: 27811945 DOI: 10.1038/cr.2016.124] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 08/13/2016] [Accepted: 08/18/2016] [Indexed: 12/14/2022] Open
Abstract
Asthma is a common allergic disorder involving a complex interplay among multiple genetic and environmental factors. Recent studies identified genetic variants of human GAB1 as a novel asthma susceptibility factor. However, the functions of Gab1 in lung remain largely unexplored. In this study, we first observed an elevation of Gab1 level in peripheral blood mononuclear cells from asthmatic patients during acute exacerbation compared with convalescence. Mice with a selectively disrupted Gab1 in myeloid dendritic cells (mDCs) considerably attenuated allergic inflammation in experimental models of asthma. Further investigations revealed a prominent reduction in CCL19-mediated migration of Gab1-deficient mDCs to draining lymph nodes and subsequent impairment of Th2-driven adaptive activation. Mechanistically, Gab1 is an essential component of the CCL19/CCR7 chemokine axis that regulates mDC migration during asthmatic responses. Together, these findings provide the first evidence for the roles of Gab1 in lung, giving us deeper understanding of asthmatic pathogenesis.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yun Xu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Shuwan Liu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Xiaohong Guo
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Dong Cen
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jiaqi Xu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Heyuan Li
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Kaijun Li
- Lishui Central Hospital, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, China
| | - Chunlai Zeng
- Lishui Central Hospital, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, China
| | - Linrong Lu
- The Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yiting Zhou
- Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Huahao Shen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Xue Zhang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Yuehai Ke
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
21
|
Ha JR, Siegel PM, Ursini-Siegel J. The Tyrosine Kinome Dictates Breast Cancer Heterogeneity and Therapeutic Responsiveness. J Cell Biochem 2016; 117:1971-90. [PMID: 27392311 DOI: 10.1002/jcb.25561] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/24/2016] [Indexed: 12/13/2022]
Abstract
Phospho-tyrosine signaling networks control numerous biological processes including cellular differentiation, cell growth and survival, motility, and invasion. Aberrant regulation of the tyrosine kinome is a hallmark of malignancy and influences all stages of breast cancer progression, from initiation to the development of metastatic disease. The success of specific tyrosine kinase inhibitors strongly validates the clinical relevance of tyrosine phosphorylation networks in breast cancer pathology. However, a significant degree of redundancy exists within the tyrosine kinome. Numerous receptor and cytoplasmic tyrosine kinases converge on a core set of signaling regulators, including adaptor proteins and tyrosine phosphatases, to amplify pro-tumorigenic signal transduction pathways. Mutational activation, amplification, or overexpression of one or more components of the tyrosine kinome represents key contributing events responsible for the tumor heterogeneity that is observed in breast cancers. It is this molecular heterogeneity that has become the most significant barrier to durable clinical responses due to the development of therapeutic resistance. This review focuses on recent literature that supports a prominent role for specific components of the tyrosine kinome in the emergence of unique breast cancer subtypes and in shaping breast cancer plasticity, sensitivity to targeted therapies, and the eventual emergence of acquired resistance. J. Cell. Biochem. 117: 1971-1990, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jacqueline R Ha
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Peter M Siegel
- Department of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Josie Ursini-Siegel
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|