1
|
Matsunami-Nakamura R, Tamogami J, Takeguchi M, Ishikawa J, Kikukawa T, Kamo N, Nara T. Key determinants for signaling in the sensory rhodopsin II/transducer complex are different between Halobacterium salinarum and Natronomonas pharaonis. FEBS Lett 2023; 597:2334-2344. [PMID: 37532685 DOI: 10.1002/1873-3468.14711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023]
Abstract
The cell membrane of Halobacterium salinarum contains a retinal-binding photoreceptor, sensory rhodopsin II (HsSRII), coupled with its cognate transducer (HsHtrII), allowing repellent phototaxis behavior for shorter wavelength light. Previous studies on SRII from Natronomonas pharaonis (NpSRII) pointed out the importance of the hydrogen bonding interaction between Thr204NpSRII and Tyr174NpSRII in signal transfer from SRII to HtrII. Here, we investigated the effect on phototactic function by replacing residues in HsSRII corresponding to Thr204NpSRII and Tyr174NpSRII . Whereas replacement of either residue altered the photocycle kinetics, introduction of any mutations at Ser201HsSRII and Tyr171HsSRII did not eliminate negative phototaxis function. These observations imply the possibility of the presence of an unidentified molecular mechanism for photophobic signal transduction differing from NpSRII-NpHtrII.
Collapse
Affiliation(s)
| | - Jun Tamogami
- College of Pharmaceutical Sciences, Matsuyama University, Japan
| | - Miki Takeguchi
- College of Pharmaceutical Sciences, Matsuyama University, Japan
| | - Junya Ishikawa
- College of Pharmaceutical Sciences, Matsuyama University, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Naoki Kamo
- College of Pharmaceutical Sciences, Matsuyama University, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Toshifumi Nara
- College of Pharmaceutical Sciences, Matsuyama University, Japan
| |
Collapse
|
2
|
Hadjidemetriou K, Kaur S, Cassidy CK, Zhang P. Mechanisms of E. coli chemotaxis signaling pathways visualized using cryoET and computational approaches. Biochem Soc Trans 2022; 50:1595-1605. [PMID: 36421737 PMCID: PMC9788364 DOI: 10.1042/bst20220191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022]
Abstract
Chemotaxis signaling pathways enable bacteria to sense and respond to their chemical environment and, in some species, are critical for lifestyle processes such as biofilm formation and pathogenesis. The signal transduction underlying chemotaxis behavior is mediated by large, highly ordered protein complexes known as chemosensory arrays. For nearly two decades, cryo-electron tomography (cryoET) has been used to image chemosensory arrays, providing an increasingly detailed understanding of their structure and function. In this mini-review, we provide an overview of the use of cryoET to study chemosensory arrays, including imaging strategies, key results, and outstanding questions. We further discuss the application of molecular modeling and simulation techniques to complement structure determination efforts and provide insight into signaling mechanisms. We close the review with a brief outlook, highlighting promising future directions for the field.
Collapse
Affiliation(s)
| | - Satinder Kaur
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
| | - C. Keith Cassidy
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
| | - Peijun Zhang
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, U.K
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, U.K
| |
Collapse
|
3
|
Ryzhykau YL, Vlasov AV, Orekhov PS, Rulev MI, Rogachev AV, Vlasova AD, Kazantsev AS, Verteletskiy DP, Skoi VV, Brennich ME, Pernot P, Murugova TN, Gordeliy VI, Kuklin AI. Ambiguities in and completeness of SAS data analysis of membrane proteins: the case of the sensory rhodopsin II-transducer complex. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2021; 77:1386-1400. [PMID: 34726167 DOI: 10.1107/s2059798321009542] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/14/2021] [Indexed: 01/14/2023]
Abstract
Membrane proteins (MPs) play vital roles in the function of cells and are also major drug targets. Structural information on proteins is vital for understanding their mechanism of function and is critical for the development of drugs. However, obtaining high-resolution structures of membrane proteins, in particular, under native conditions is still a great challenge. In such cases, the low-resolution methods small-angle X-ray and neutron scattering (SAXS and SANS) might provide valuable structural information. However, in some cases small-angle scattering (SAS) provides ambiguous ab initio structural information if complementary measurements are not performed and/or a priori information on the protein is not taken into account. Understanding the nature of the limitations may help to overcome these problems. One of the main problems of SAS data analysis of solubilized membrane proteins is the contribution of the detergent belt surrounding the MP. Here, a comprehensive analysis of how the detergent belt contributes to the SAS data of a membrane-protein complex of sensory rhodopsin II with its cognate transducer from Natronomonas pharaonis (NpSRII-NpHtrII) was performed. The influence of the polydispersity of NpSRII-NpHtrII oligomerization is the second problem that is addressed here. It is shown that inhomogeneity in the scattering length density of the detergent belt surrounding a membrane part of the complex and oligomerization polydispersity significantly impacts on SAXS and SANS profiles, and therefore on 3D ab initio structures. It is described how both problems can be taken into account to improve the quality of SAS data treatment. Since SAS data for MPs are usually obtained from solubilized proteins, and their detergent belt and, to a certain extent, oligomerization polydispersity are sufficiently common phenomena, the approaches proposed in this work might be used in SAS studies of different MPs.
Collapse
Affiliation(s)
- Yury L Ryzhykau
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - Alexey V Vlasov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - Philipp S Orekhov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - Maksim I Rulev
- Structural Biology Group, European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Andrey V Rogachev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - Anastasia D Vlasova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - Alexander S Kazantsev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - Dmitry P Verteletskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - Vadim V Skoi
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - Martha E Brennich
- Synchrotron Crystallography Team, EMBL Grenoble Outstation, 38042 Grenoble, France
| | - Petra Pernot
- Structural Biology Group, European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Tatiana N Murugova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - Valentin I Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - Alexander I Kuklin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| |
Collapse
|
4
|
Gushchin I, Aleksenko VA, Orekhov P, Goncharov IM, Nazarenko VV, Semenov O, Remeeva A, Gordeliy V. Nitrate- and Nitrite-Sensing Histidine Kinases: Function, Structure, and Natural Diversity. Int J Mol Sci 2021; 22:5933. [PMID: 34072989 PMCID: PMC8199190 DOI: 10.3390/ijms22115933] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/18/2022] Open
Abstract
Under anaerobic conditions, bacteria may utilize nitrates and nitrites as electron acceptors. Sensitivity to nitrous compounds is achieved via several mechanisms, some of which rely on sensor histidine kinases (HKs). The best studied nitrate- and nitrite-sensing HKs (NSHKs) are NarQ and NarX from Escherichia coli. Here, we review the function of NSHKs, analyze their natural diversity, and describe the available structural information. In particular, we show that around 6000 different NSHK sequences forming several distinct clusters may now be found in genomic databases, comprising mostly the genes from Beta- and Gammaproteobacteria as well as from Bacteroidetes and Chloroflexi, including those from anaerobic ammonia oxidation (annamox) communities. We show that the architecture of NSHKs is mostly conserved, although proteins from Bacteroidetes lack the HAMP and GAF-like domains yet sometimes have PAS. We reconcile the variation of NSHK sequences with atomistic models and pinpoint the structural elements important for signal transduction from the sensor domain to the catalytic module over the transmembrane and cytoplasmic regions spanning more than 200 Å.
Collapse
Affiliation(s)
- Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Vladimir A. Aleksenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Philipp Orekhov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ivan M. Goncharov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Vera V. Nazarenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Oleg Semenov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Valentin Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
5
|
Abstract
Two-component systems (TCS) are widespread signaling systems present in all domains of life. TCS typically consist of a signal receptor/transducer and a response regulator. The receptors (histidine kinases, chemoreceptors and photoreceptors) are often embedded in the membrane and have a similar modular structure. Chemoreceptors were shown to function in highly ordered arrays, with trimers of dimers being the smallest functional unit. However, much less is known about photoreceptors. Here, we use small-angle scattering (SAS) to show that detergent-solubilized sensory rhodopsin II in complex with its cognate transducer forms dimers at low salt concentration, which associate into trimers of dimers at higher buffer molarities. We then fit an atomistic model of the whole complex into the SAS data. The obtained results suggest that the trimer of dimers is "tripod"-shaped and that the contacts between the dimers occur only through their cytoplasmic regions, whereas the transmembrane regions remain unconnected.
Collapse
|
6
|
Gushchin I, Orekhov P, Melnikov I, Polovinkin V, Yuzhakova A, Gordeliy V. Sensor Histidine Kinase NarQ Activates via Helical Rotation, Diagonal Scissoring, and Eventually Piston-Like Shifts. Int J Mol Sci 2020; 21:E3110. [PMID: 32354084 PMCID: PMC7247690 DOI: 10.3390/ijms21093110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022] Open
Abstract
Membrane-embedded sensor histidine kinases (HKs) and chemoreceptors are used ubiquitously by bacteria and archaea to percept the environment, and are often crucial for their survival and pathogenicity. The proteins can transmit the signal from the sensor domain to the catalytic kinase domain reliably over the span of several hundreds of angstroms, and regulate the activity of the cognate response regulator proteins, with which they form two-component signaling systems (TCSs). Several mechanisms of transmembrane signal transduction in TCS receptors have been proposed, dubbed (swinging) piston, helical rotation, and diagonal scissoring. Yet, despite decades of studies, there is no consensus on whether these mechanisms are common for all TCS receptors. Here, we extend our previous work on Escherichia coli nitrate/nitrite sensor kinase NarQ. We determined a crystallographic structure of the sensor-TM-HAMP fragment of the R50S mutant, which, unexpectedly, was found in a ligand-bound-like conformation, despite an inability to bind nitrate. Subsequently, we reanalyzed the structures of the ligand-free and ligand-bound NarQ and NarX sensor domains, and conducted extensive molecular dynamics simulations of ligand-free and ligand-bound wild type and mutated NarQ. Based on the data, we show that binding of nitrate to NarQ causes, first and foremost, helical rotation and diagonal scissoring of the α-helices at the core of the sensor domain. These conformational changes are accompanied by a subtle piston-like motion, which is amplified by a switch in the secondary structure of the linker between the sensor and TM domains. We conclude that helical rotation, diagonal scissoring, and piston are simply different degrees of freedom in coiled-coil proteins and are not mutually exclusive in NarQ, and likely in other nitrate sensors and TCS proteins as well.
Collapse
Affiliation(s)
- Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Philipp Orekhov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Institute of Personalized Medicine, Sechenov University, 119146 Moscow, Russia
| | - Igor Melnikov
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Vitaly Polovinkin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
| | - Anastasia Yuzhakova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Valentin Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
7
|
Chen JL, Lin YC, Fu HY, Yang CS. The Blue-Green Sensory Rhodopsin SRM from Haloarcula marismortui Attenuates Both Phototactic Responses Mediated by Sensory Rhodopsin I and II in Halobacterium salinarum. Sci Rep 2019; 9:5672. [PMID: 30952934 PMCID: PMC6450946 DOI: 10.1038/s41598-019-42193-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/25/2019] [Indexed: 11/10/2022] Open
Abstract
Haloarchaea utilize various microbial rhodopsins to harvest light energy or to mediate phototaxis in search of optimal environmental niches. To date, only the red light-sensing sensory rhodopsin I (SRI) and the blue light-sensing sensory rhodopsin II (SRII) have been shown to mediate positive and negative phototaxis, respectively. In this work, we demonstrated that a blue-green light-sensing (504 nm) sensory rhodopsin from Haloarcula marismortui, SRM, attenuated both positive and negative phototaxis through its sensing region. The H. marismortui genome encodes three sensory rhodopsins: SRI, SRII and SRM. Using spectroscopic assays, we first demonstrated the interaction between SRM and its cognate transducer, HtrM. We then transformed an SRM-HtrM fusion protein into Halobacterium salinarum, which contains only SRI and SRII, and observed that SRM-HtrM fusion protein decreased both positive and negative phototaxis of H. salinarum. Together, our results suggested a novel phototaxis signalling system in H. marismortui comprised of three sensory rhodopsins in which the phototactic response of SRI and SRII were attenuated by SRM.
Collapse
Affiliation(s)
- Jheng-Liang Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10616, Taiwan
| | - Yu-Cheng Lin
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10616, Taiwan
| | - Hsu-Yuan Fu
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10616, Taiwan
| | - Chii-Shen Yang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10616, Taiwan.
| |
Collapse
|
8
|
Mosslehy W, Voskoboynikova N, Colbasevici A, Ricke A, Klose D, Klare JP, Mulkidjanian AY, Steinhoff HJ. Conformational Dynamics of Sensory Rhodopsin II in Nanolipoprotein and Styrene-Maleic Acid Lipid Particles. Photochem Photobiol 2019; 95:1195-1204. [PMID: 30849183 DOI: 10.1111/php.13096] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/03/2019] [Indexed: 02/01/2023]
Abstract
Styrene-maleic acid lipid particles (SMALPs) provide stable water-soluble nanocontainers for lipid-encased membrane proteins. Possible effects of the SMA-stabilized lipid environment on the interaction dynamics between functionally coupled membrane proteins remain to be elucidated. The photoreceptor sensory rhodopsin II, NpSRII and its cognate transducer, NpHtrII, of Natronomonas pharaonis form a transmembrane complex, NpSRII2 /NpHtrII2 that plays a key role in negative phototaxis and provides a unique model system to study the light-induced transfer of a conformational signal between two integral membrane proteins. Photon absorption induces transient structural changes in NpSRII comprising an outward movement of helix F that cause further conformational alterations in NpHtrII. We applied site-directed spin labeling and time-resolved optical and EPR spectroscopy to compare the conformational dynamics of NpSRII2 /NpHtrII2 reconstituted in SMALPs with that of nanolipoprotein particle and liposome preparations. NpSRII and NpSRII2 /NpHtrII2 show similar photocycles in liposomes and nanolipoprotein particles. An accelerated decay of the M photointermediate found for SMALPs can be explained by a high local proton concentration provided by the carboxylic groups of the SMA polymer. Light-induced large-scale conformational changes of NpSRII2 /NpHtrII2 observed in liposomes and nanolipoprotein particles are affected in SMALPs, indicating restrictions of the protein's conformational freedom.
Collapse
Affiliation(s)
- Wageiha Mosslehy
- Department of Physics, University of Osnabrück, Osnabrück, Germany
| | | | | | - Adrian Ricke
- Department of Physics, University of Osnabrück, Osnabrück, Germany
| | - Daniel Klose
- Department of Physics, University of Osnabrück, Osnabrück, Germany.,Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Johann P Klare
- Department of Physics, University of Osnabrück, Osnabrück, Germany
| | - Armen Y Mulkidjanian
- Department of Physics, University of Osnabrück, Osnabrück, Germany.,School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | | |
Collapse
|
9
|
Orekhov P, Bothe A, Steinhoff HJ, Shaitan KV, Raunser S, Fotiadis D, Schlesinger R, Klare JP, Engelhard M. Sensory Rhodopsin I and Sensory Rhodopsin II Form Trimers of Dimers in Complex with their Cognate Transducers. Photochem Photobiol 2018; 93:796-804. [PMID: 28500714 DOI: 10.1111/php.12763] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/02/2017] [Indexed: 12/28/2022]
Abstract
Archaeal photoreceptors consist of sensory rhodopsins in complex with their cognate transducers. After light excitation, a two-component signaling chain is activated, which is homologous to the chemotactic signaling cascades in enterobacteria. The latter system has been studied in detail. From structural and functional studies, a picture emerges which includes stable signaling complexes, which assemble to receptor arrays displaying hexagonal structural elements. At this higher order structural level, signal amplification and sensory adaptation occur. Here, we describe electron microscopy data, which show that also the archaeal phototaxis receptors sensory rhodopsin I and II in complex with their cognate transducers can form hexagonal lattices even in the presence of a detergent. This result could be confirmed by molecular dynamics calculations, which revealed similar structural elements. Calculations of the global modes of motion displayed one mode, which resembles the "U"-"V" transition of the NpSRII:NpHtrII complex, which was previously argued to represent a functionally relevant global conformational change accompanying the activation process [Ishchenko et al. (2013) J. Photochem. Photobiol. B 123, 55-58]. A model of cooperativity at the transmembrane level is discussed.
Collapse
Affiliation(s)
- Philipp Orekhov
- Department of Physics, University of Osnabrück, Osnabrück, Germany.,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Arne Bothe
- Department Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | | | | | - Stefan Raunser
- Department Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Ramona Schlesinger
- Department of Physics, Institute of Experimental Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Johann P Klare
- Department of Physics, University of Osnabrück, Osnabrück, Germany
| | - Martin Engelhard
- Department Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| |
Collapse
|
10
|
Bi S, Jin F, Sourjik V. Inverted signaling by bacterial chemotaxis receptors. Nat Commun 2018; 9:2927. [PMID: 30050034 PMCID: PMC6062612 DOI: 10.1038/s41467-018-05335-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/02/2018] [Indexed: 11/09/2022] Open
Abstract
Microorganisms use transmembrane sensory receptors to perceive a wide range of environmental factors. It is unclear how rapidly the sensory properties of these receptors can be modified when microorganisms adapt to novel environments. Here, we demonstrate experimentally that the response of an Escherichia coli chemotaxis receptor to its chemical ligands can be easily inverted by mutations at several sites along receptor sequence. We also perform molecular dynamics simulations to shed light on the mechanism of the transmembrane signaling by E. coli chemoreceptors. Finally, we use receptors with inverted signaling to map determinants that enable the same receptor to sense multiple environmental factors, including metal ions, aromatic compounds, osmotic pressure, and salt ions. Our findings demonstrate high plasticity of signaling and provide further insights into the mechanisms of stimulus sensing and processing by bacterial chemoreceptors. Bacteria use chemotaxis receptors to perceive environmental factors. Here, the authors show that mutations in a chemotaxis receptor can invert the sensory response, e.g. from attractant to repellent, and use these mutants to map regions that enable the receptor to sense multiple environmental factors.
Collapse
Affiliation(s)
- Shuangyu Bi
- Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, 35043, Germany
| | - Fan Jin
- Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, 35043, Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, 35043, Germany.
| |
Collapse
|
11
|
Abstract
Microbial rhodopsins (MRs) are a large family of photoactive membrane proteins, found in microorganisms belonging to all kingdoms of life, with new members being constantly discovered. Among the MRs are light-driven proton, cation and anion pumps, light-gated cation and anion channels, and various photoreceptors. Due to their abundance and amenability to studies, MRs served as model systems for a great variety of biophysical techniques, and recently found a great application as optogenetic tools. While the basic aspects of microbial rhodopsins functioning have been known for some time, there is still a plenty of unanswered questions. This chapter presents and summarizes the available knowledge, focusing on the functional and structural studies.
Collapse
Affiliation(s)
- Ivan Gushchin
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia.
| | - Valentin Gordeliy
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia.
- University of Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France.
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany.
| |
Collapse
|
12
|
Gushchin I, Melnikov I, Polovinkin V, Ishchenko A, Yuzhakova A, Buslaev P, Bourenkov G, Grudinin S, Round E, Balandin T, Borshchevskiy V, Willbold D, Leonard G, Büldt G, Popov A, Gordeliy V. Mechanism of transmembrane signaling by sensor histidine kinases. Science 2017; 356:science.aah6345. [PMID: 28522691 DOI: 10.1126/science.aah6345] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 05/08/2017] [Indexed: 11/02/2022]
Abstract
One of the major and essential classes of transmembrane (TM) receptors, present in all domains of life, is sensor histidine kinases, parts of two-component signaling systems (TCSs). The structural mechanisms of TM signaling by these sensors are poorly understood. We present crystal structures of the periplasmic sensor domain, the TM domain, and the cytoplasmic HAMP domain of the Escherichia coli nitrate/nitrite sensor histidine kinase NarQ in the ligand-bound and mutated ligand-free states. The structures reveal that the ligand binding induces rearrangements and pistonlike shifts of TM helices. The HAMP domain protomers undergo leverlike motions and convert these pistonlike motions into helical rotations. Our findings provide the structural framework for complete understanding of TM TCS signaling and for development of antimicrobial treatments targeting TCSs.
Collapse
Affiliation(s)
- Ivan Gushchin
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany. .,Moscow Institute of Physics and Technology, 141700 Dolgoprudniy, Russia
| | - Igor Melnikov
- European Synchrotron Radiation Facility, F-38043 Grenoble, France
| | - Vitaly Polovinkin
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany.,Moscow Institute of Physics and Technology, 141700 Dolgoprudniy, Russia.,Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Andrii Ishchenko
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany.,Institute of Crystallography, University of Aachen (RWTH), 52056 Aachen, Germany
| | - Anastasia Yuzhakova
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany.,Moscow Institute of Physics and Technology, 141700 Dolgoprudniy, Russia
| | - Pavel Buslaev
- Moscow Institute of Physics and Technology, 141700 Dolgoprudniy, Russia
| | - Gleb Bourenkov
- European Molecular Biology Laboratory, Hamburg Outstation, 22607 Hamburg, Germany
| | - Sergei Grudinin
- Université Grenoble Alpes, LJK, F-38000 Grenoble, France.,CNRS, LJK, F-38000 Grenoble, France.,Inria, F-38000 Grenoble, France
| | - Ekaterina Round
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany.,Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Taras Balandin
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany
| | - Valentin Borshchevskiy
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany.,Moscow Institute of Physics and Technology, 141700 Dolgoprudniy, Russia
| | - Dieter Willbold
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany.,Institute of Physical Biology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Gordon Leonard
- European Synchrotron Radiation Facility, F-38043 Grenoble, France
| | - Georg Büldt
- Moscow Institute of Physics and Technology, 141700 Dolgoprudniy, Russia
| | - Alexander Popov
- European Synchrotron Radiation Facility, F-38043 Grenoble, France
| | - Valentin Gordeliy
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany. .,Moscow Institute of Physics and Technology, 141700 Dolgoprudniy, Russia.,Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| |
Collapse
|
13
|
Moldogazieva NT, Shaitan KV, Antonov MY, Mokhosoev IM, Levtsova OV, Terentiev AA. Human EGF-derived direct and reverse short linear motifs: conformational dynamics insight into the receptor-binding residues. J Biomol Struct Dyn 2017; 36:1286-1305. [PMID: 28447543 DOI: 10.1080/07391102.2017.1321502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Short linear motifs (SLiMs) have been recognized to perform diverse functions in a variety of regulatory proteins through the involvement in protein-protein interactions, signal transduction, cell cycle regulation, protein secretion, etc. However, detailed molecular mechanisms underlying their functions including roles of definite amino acid residues remain obscure. In our previous studies, we demonstrated that conformational dynamics of amino acid residues in oligopeptides derived from regulatory proteins such as alpha-fetoprotein (AFP), carcino-embryonic antigen (CEA), and pregnancy specific β1-glycoproteins (PSGs) contributes greatly to their biological activities. In the present work, we revealed the 22-member linear modules composed of direct and reverse AFP14-20-like heptapeptide motifs linked by CxxGY/FxGx consensus motif within epidermal growth factor (EGF), growth factors of EGF family and numerous regulatory proteins containing EGF-like modules. We showed, first, the existence of similarity in amino acid signatures of both direct and reverse motifs in terms of their physicochemical properties. Second, molecular dynamics (MD) simulation study demonstrated that key receptor-binding residues in human EGF in the aligned positions of the direct and reverse motifs may have similar distribution of conformational probability densities and dynamic behavior despite their distinct physicochemical properties. Third, we found that the length of a polypeptide chain (from 7 to 53 residues) has no effect, while disulfide bridging and backbone direction significantly influence the conformational distribution and dynamics of the residues. Our data may contribute to the atomic level structure-function analysis and protein structure decoding; additionally, they may provide a basis for novel protein/peptide engineering and peptide-mimetic drug design.
Collapse
Affiliation(s)
- Nurbubu T Moldogazieva
- a Department of Biochemistry and Molecular Biology , N.I. Pirogov Russian National Research Medical University , 1 Ostrovityanov str., Moscow 117997 , Russian Federation
| | - Konstantin V Shaitan
- b Faculty of Biology, Department of Bioengineering , M.V. Lomonosov Moscow State University , 1 Vorobyevy Gory, Moscow 119991 , Russian Federation
| | - Mikhail Yu Antonov
- c M.K. Ammosov North-Eastern Federal University , 58 Belinskiy str., Yakutsk 677980 , Republic of Sakha (Yakutia) , Russian Federation
| | - Innokenty M Mokhosoev
- a Department of Biochemistry and Molecular Biology , N.I. Pirogov Russian National Research Medical University , 1 Ostrovityanov str., Moscow 117997 , Russian Federation
| | - Olga V Levtsova
- b Faculty of Biology, Department of Bioengineering , M.V. Lomonosov Moscow State University , 1 Vorobyevy Gory, Moscow 119991 , Russian Federation
| | - Alexander A Terentiev
- a Department of Biochemistry and Molecular Biology , N.I. Pirogov Russian National Research Medical University , 1 Ostrovityanov str., Moscow 117997 , Russian Federation
| |
Collapse
|
14
|
Ishchenko A, Round E, Borshchevskiy V, Grudinin S, Gushchin I, Klare JP, Remeeva A, Polovinkin V, Utrobin P, Balandin T, Engelhard M, Büldt G, Gordeliy V. New Insights on Signal Propagation by Sensory Rhodopsin II/Transducer Complex. Sci Rep 2017; 7:41811. [PMID: 28165484 PMCID: PMC5292967 DOI: 10.1038/srep41811] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/01/2016] [Indexed: 01/29/2023] Open
Abstract
The complex of two membrane proteins, sensory rhodopsin II (NpSRII) with its cognate transducer (NpHtrII), mediates negative phototaxis in halobacteria N. pharaonis. Upon light activation NpSRII triggers a signal transduction chain homologous to the two-component system in eubacterial chemotaxis. Here we report on crystal structures of the ground and active M-state of the complex in the space group I212121. We demonstrate that the relative orientation of symmetrical parts of the dimer is parallel (“U”-shaped) contrary to the gusset-like (“V”-shaped) form of the previously reported structures of the NpSRII/NpHtrII complex in the space group P21212, although the structures of the monomers taken individually are nearly the same. Computer modeling of the HAMP domain in the obtained “V”- and “U”-shaped structures revealed that only the “U”-shaped conformation allows for tight interactions of the receptor with the HAMP domain. This is in line with existing data and supports biological relevance of the “U” shape in the ground state. We suggest that the “V”-shaped structure may correspond to the active state of the complex and transition from the “U” to the “V”-shape of the receptor-transducer complex can be involved in signal transduction from the receptor to the signaling domain of NpHtrII.
Collapse
Affiliation(s)
- A Ishchenko
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany.,Institute of Crystallography, University of Aachen (RWTH), Jägerstraße 17-19, 52056 Aachen, Germany
| | - E Round
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany.,Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, F-38000 Grenoble, France
| | - V Borshchevskiy
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany.,Moscow Institute of Physics and Technology, 141700 Dolgoprudniy, Russia
| | - S Grudinin
- CNRS, Laboratoire Jean Kuntzmann, BP 53, Grenoble Cedex 9, France.,NANO-D, INRIA Grenoble-Rhone-Alpes Research Center, 38334 Saint Ismier Cedex, Montbonnot, France
| | - I Gushchin
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany.,Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, F-38000 Grenoble, France.,Moscow Institute of Physics and Technology, 141700 Dolgoprudniy, Russia
| | - J P Klare
- Max-Planck Institute of Molecular Physiology, 44227 Dortmund, Germany.,Department of Physics, University of Osnabrück, Barbarastrasse 7, D-49069 Osnabrück, Germany
| | - A Remeeva
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany
| | - V Polovinkin
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany.,Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, F-38000 Grenoble, France
| | - P Utrobin
- Moscow Institute of Physics and Technology, 141700 Dolgoprudniy, Russia
| | - T Balandin
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany
| | - M Engelhard
- Max-Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - G Büldt
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany.,Moscow Institute of Physics and Technology, 141700 Dolgoprudniy, Russia
| | - V Gordeliy
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany.,Institute of Crystallography, University of Aachen (RWTH), Jägerstraße 17-19, 52056 Aachen, Germany.,Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, F-38000 Grenoble, France.,Moscow Institute of Physics and Technology, 141700 Dolgoprudniy, Russia
| |
Collapse
|
15
|
Voskoboynikova N, Mosslehy W, Colbasevici A, Ismagulova TT, Bagrov DV, Akovantseva AA, Timashev PS, Mulkidjanian AY, Bagratashvili VN, Shaitan KV, Kirpichnikov MP, Steinhoff HJ. Characterization of an archaeal photoreceptor/transducer complex from Natronomonas pharaonis assembled within styrene–maleic acid lipid particles. RSC Adv 2017. [DOI: 10.1039/c7ra10756k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The archaeal receptor/transducer complex NpSRII/NpHtrII retains its integrity upon reconstitution in styrene–maleic acid lipid particles.
Collapse
Affiliation(s)
| | - W. Mosslehy
- Department of Physics
- University of Osnabrück
- Osnabrück
- Germany
| | - A. Colbasevici
- Department of Physics
- University of Osnabrück
- Osnabrück
- Germany
| | - T. T. Ismagulova
- Department of Bioengineering
- Faculty of Biology
- Lomonosov Moscow State University
- Moscow
- Russia
| | - D. V. Bagrov
- Department of Bioengineering
- Faculty of Biology
- Lomonosov Moscow State University
- Moscow
- Russia
| | - A. A. Akovantseva
- Institute of Photonic Technologies of Research Center “Crystallography and Photonics” of RAS
- Moscow
- Russia
| | - P. S. Timashev
- Institute for Regenerative Medicine of I. M. Sechenov First Moscow State Medical University
- Moscow
- Russia
- Institute of Photonic Technologies of Research Center “Crystallography and Photonics” of RAS
- Moscow
| | | | - V. N. Bagratashvili
- Institute of Photonic Technologies of Research Center “Crystallography and Photonics” of RAS
- Moscow
- Russia
| | - K. V. Shaitan
- Department of Bioengineering
- Faculty of Biology
- Lomonosov Moscow State University
- Moscow
- Russia
| | - M. P. Kirpichnikov
- Department of Bioengineering
- Faculty of Biology
- Lomonosov Moscow State University
- Moscow
- Russia
| | - H.-J. Steinhoff
- Department of Physics
- University of Osnabrück
- Osnabrück
- Germany
| |
Collapse
|