1
|
Xing E, Zhang J, Wang S, Cheng X. Leveraging Sequence Purification for Accurate Prediction of Multiple Conformational States with AlphaFold2. RESEARCH SQUARE 2025:rs.3.rs-6087969. [PMID: 40092441 PMCID: PMC11908349 DOI: 10.21203/rs.3.rs-6087969/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
AlphaFold2 (AF2) has transformed protein structure prediction by harnessing co-evolutionary constraints embedded in multiple sequence alignments (MSAs). MSAs not only encode static structural information, but also hold critical details about protein dynamics, which underpin biological functions. However, these subtle coevolutionary signatures, which dictate conformational state preferences, are often obscured by noise within MSA data and thus remain challenging to decipher. Here, we introduce AF-ClaSeq, a systematic framework that isolates these co-evolutionary signals through sequence purification and iterative enrichment. By extracting sequence subsets that preferentially encode distinct structural states, AF-ClaSeq enables high-confidence predictions of alternative conformations. Our findings reveal that the successful sampling of alternative states depends not on MSA depth but on sequence purity. Intriguingly, purified sequences encoding specific structural states are distributed across phylogenetic clades and superfamilies, rather than confined to specific lineages. Expanding upon AF2's transformative capabilities, AF-ClaSeq provides a powerful approach for uncovering hidden structural plasticity, advancing allosteric protein and drug design, and facilitating dynamics-based protein function annotation.
Collapse
Affiliation(s)
- Enming Xing
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus OH, 43210, USA
| | - Junjie Zhang
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus OH, 43210, USA
| | - Shen Wang
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus OH, 43210, USA
| | - Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus OH, 43210, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Sherry D, Sayed Y. Unveiling a Hidden Pocket in HIV-1 Protease: New Insights Into Retroviral Protease Cantilever-Tip Region Characteristics. Proteins 2024; 92:1398-1412. [PMID: 39109919 DOI: 10.1002/prot.26735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 11/08/2024]
Abstract
The HIV-1 protease is critical for the process of viral maturation and as such, it is one of the most well characterized proteins in the Protein Data Bank. There is some evidence to suggest that the HIV-1 protease is capable of accommodating small molecule fragments at several locations on its surface outside of the active site. However, some pockets on the surface of proteins remain unformed in the apo structure and are termed "cryptic sites." To date, no cryptic sites have been identified in the structure of HIV-1 protease. Here, we characterize a novel cryptic cantilever pocket on the surface of the HIV-1 protease through mixed-solvent molecular dynamics simulations using several probes. Interestingly, we noted that several homologous retroviral proteases exhibit evolutionarily conserved dynamics in the cantilever region and possess a conserved pocket in the cantilever region. Immobilization of the cantilever region of the HIV-1 protease via disulfide cross-linking resulted in curling-in of the flap tips and the propensity for the protease to adopt a semi-open flap conformation. Structure-based analysis and fragment-based screening of the cryptic cantilever pocket suggested that the pocket may be capable of accommodating ligand structures. Furthermore, molecular dynamics simulations of a top scoring fragment bound to the cryptic pocket illustrated altered flap dynamics of the fragment-bound enzyme. Together, these results suggest that the mobility of the cantilever region plays a key role in the global dynamics of retroviral proteases. Therefore, the cryptic cantilever pocket of the HIV-1 protease may represent an interesting target for future in vitro studies.
Collapse
Affiliation(s)
- Dean Sherry
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Yasien Sayed
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
3
|
Dietler N, Abbara A, Choudhury S, Bitbol AF. Impact of phylogeny on the inference of functional sectors from protein sequence data. PLoS Comput Biol 2024; 20:e1012091. [PMID: 39312591 PMCID: PMC11449291 DOI: 10.1371/journal.pcbi.1012091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/03/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Statistical analysis of multiple sequence alignments of homologous proteins has revealed groups of coevolving amino acids called sectors. These groups of amino-acid sites feature collective correlations in their amino-acid usage, and they are associated to functional properties. Modeling showed that nonlinear selection on an additive functional trait of a protein is generically expected to give rise to a functional sector. These modeling results motivated a principled method, called ICOD, which is designed to identify functional sectors, as well as mutational effects, from sequence data. However, a challenge for all methods aiming to identify sectors from multiple sequence alignments is that correlations in amino-acid usage can also arise from the mere fact that homologous sequences share common ancestry, i.e. from phylogeny. Here, we generate controlled synthetic data from a minimal model comprising both phylogeny and functional sectors. We use this data to dissect the impact of phylogeny on sector identification and on mutational effect inference by different methods. We find that ICOD is most robust to phylogeny, but that conservation is also quite robust. Next, we consider natural multiple sequence alignments of protein families for which deep mutational scan experimental data is available. We show that in this natural data, conservation and ICOD best identify sites with strong functional roles, in agreement with our results on synthetic data. Importantly, these two methods have different premises, since they respectively focus on conservation and on correlations. Thus, their joint use can reveal complementary information.
Collapse
Affiliation(s)
- Nicola Dietler
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Alia Abbara
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Subham Choudhury
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Anne-Florence Bitbol
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
4
|
Malik A, Jayarathna DK, Fisher M, Barbhuiya TK, Gandhi NS, Batra J. Dynamics and recognition of homeodomain containing protein-DNA complex of IRX4. Proteins 2024; 92:282-301. [PMID: 37861198 DOI: 10.1002/prot.26604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
Iroquois Homeobox 4 (IRX4) belongs to a family of homeobox TFs having roles in embryogenesis, cell specification, and organ development. Recently, large scale genome-wide association studies and epigenetic studies have highlighted the role of IRX4 and its associated variants in prostate cancer. No studies have investigated and characterized the structural aspect of the IRX4 homeodomain and its potential to bind to DNA. The current study uses sequence analysis, homology modeling, and molecular dynamics simulations to explore IRX4 homeodomain-DNA recognition mechanisms and the role of somatic mutations affecting these interactions. Using publicly available databases, gene expression of IRX4 was found in different tissues, including prostate, heart, skin, vagina, and the protein expression was found in cancer cell lines (HCT166, HEK293), B cells, ascitic fluid, and brain. Sequence conservation of the homeodomain shed light on the importance of N- and C-terminal residues involved in DNA binding. The specificity of IRX4 homodimer bound to consensus human DNA sequence was confirmed by molecular dynamics simulations, representing the role of conserved amino acids including R145, A194, N195, S190, R198, and R199 in binding to DNA. Additional N-terminal residues like T144 and G143 were also found to have specific interactions highlighting the importance of N-terminus of the homeodomain in DNA recognition. Additionally, the effects of somatic mutations, including the conserved Arginine (R145, R198, and R199) residues on DNA binding elucidated the importance of these residues in stabilizing the protein-DNA complex. Secondary structure and hydrogen bonding analysis showed the roles of specific residues (R145, T191, A194, N195, R198, and R199) in maintaining the homogeneity of the structure and its interaction with DNA. The differences in relative binding free energies of all the mutants shed light on the structural modularity of this protein and the dynamics behind protein-DNA interaction. We also have predicted that the C-terminal sequence of the IRX4 homeodomain could act as a potential cell-penetrating peptide, emphasizing the role these small peptides could play in targeting homeobox TFs.
Collapse
Affiliation(s)
- Adil Malik
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Dulari K Jayarathna
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Mark Fisher
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Tabassum Khair Barbhuiya
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Neha S Gandhi
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia
- Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Udupi, Karnataka, India
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Queensland, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Sobitan A, Gebremedhin B, Yao Q, Xie G, Gu X, Li J, Teng S. A Computational Approach: The Functional Effects of Thyroid Peroxidase Variants in Thyroid Cancer and Genetic Disorders. JCO Clin Cancer Inform 2024; 8:e2300140. [PMID: 38295322 PMCID: PMC10843385 DOI: 10.1200/cci.23.00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/16/2023] [Accepted: 10/18/2023] [Indexed: 02/02/2024] Open
Abstract
PURPOSE Thyroid peroxidase (TPO) is essential for the synthesis of thyroid hormones. However, specific mutations render TPO antigenic and prone to autoimmune attacks leading to thyroid cancer, TPO deficiency, and congenital hypothyroidism (CH). Despite technological advancement, most experimental procedures cannot quickly identify the genetic causes of CH nor detect thyroid cancer in the early stages. METHODS We performed saturated computational mutagenesis to calculate the folding energy changes (∆∆G) caused by missense mutations and analyzed the mutations involved in post-translational modifications (PTMs). RESULTS Our results showed that the functional important missense mutations occurred in the heme peroxidase domain. Through computational saturation mutagenesis, we identified the TPO mutations in G393 and G348 affecting protein stability and PTMs. Our folding energy calculations revealed that seven of nine somatic thyroid cancer mutations destabilized TPO. CONCLUSION These findings highlight the impact of these specific mutations on TPO stability, linking them to thyroid cancer and other genetic thyroid-related disorders. Our results show that computational mutagenesis of proteins provides a quick insight into rare mutations causing Mendelian disorders and cancers in humans.
Collapse
Affiliation(s)
| | | | - Qiaobin Yao
- Department of Biology, Howard University, Washington, DC
| | - Guiqin Xie
- Department of Oral Pathology, Howard University, Washington, DC
| | - Xinbin Gu
- Department of Oral Pathology, Howard University, Washington, DC
| | - Jiang Li
- Department of Electrical Engineering and Computer Science, Howard University, Washington, DC
| | - Shaolei Teng
- Department of Biology, Howard University, Washington, DC
| |
Collapse
|
6
|
Chikunova A, Ubbink M. The roles of highly conserved, non‐catalytic residues in class A β‐lactamases. Protein Sci 2022; 31:e4328. [PMID: 35634774 PMCID: PMC9112487 DOI: 10.1002/pro.4328] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/03/2022] [Accepted: 04/20/2022] [Indexed: 11/12/2022]
|
7
|
Saldaño T, Escobedo N, Marchetti J, Zea DJ, Mac Donagh J, Velez Rueda AJ, Gonik E, García Melani A, Novomisky Nechcoff J, Salas MN, Peters T, Demitroff N, Fernandez Alberti S, Palopoli N, Fornasari MS, Parisi G. Impact of protein conformational diversity on AlphaFold predictions. Bioinformatics 2022; 38:2742-2748. [PMID: 35561203 DOI: 10.1093/bioinformatics/btac202] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/10/2022] [Accepted: 03/31/2022] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION After the outstanding breakthrough of AlphaFold in predicting protein 3D models, new questions appeared and remain unanswered. The ensemble nature of proteins, for example, challenges the structural prediction methods because the models should represent a set of conformers instead of single structures. The evolutionary and structural features captured by effective deep learning techniques may unveil the information to generate several diverse conformations from a single sequence. Here, we address the performance of AlphaFold2 predictions obtained through ColabFold under this ensemble paradigm. RESULTS Using a curated collection of apo-holo pairs of conformers, we found that AlphaFold2 predicts the holo form of a protein in ∼70% of the cases, being unable to reproduce the observed conformational diversity with the same error for both conformers. More importantly, we found that AlphaFold2's performance worsens with the increasing conformational diversity of the studied protein. This impairment is related to the heterogeneity in the degree of conformational diversity found between different members of the homologous family of the protein under study. Finally, we found that main-chain flexibility associated with apo-holo pairs of conformers negatively correlates with the predicted local model quality score plDDT, indicating that plDDT values in a single 3D model could be used to infer local conformational changes linked to ligand binding transitions. AVAILABILITY AND IMPLEMENTATION Data and code used in this manuscript are publicly available at https://gitlab.com/sbgunq/publications/af2confdiv-oct2021. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tadeo Saldaño
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Nahuel Escobedo
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Julia Marchetti
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | - Juan Mac Donagh
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Ana Julia Velez Rueda
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Eduardo Gonik
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- INIFTA (CONICET-UNLP) - Fotoquímica y Nanomateriales para el Ambiente y la Biología (nanoFOT), La Plata, Argentina
| | | | | | - Martín N Salas
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Tomás Peters
- Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires, Argentina
| | - Nicolás Demitroff
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires, Argentina
| | - Sebastian Fernandez Alberti
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Nicolas Palopoli
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Maria Silvina Fornasari
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Gustavo Parisi
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
8
|
Barletta GP, Barletta M, Saldaño TE, Fernandez-Alberti S. Analysis of changes of cavity volumes in predefined directions of protein motions and cavity flexibility. J Comput Chem 2021; 43:391-401. [PMID: 34962296 DOI: 10.1002/jcc.26799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 11/12/2022]
Abstract
Dynamics of protein cavities associated with protein fluctuations and conformational plasticity is essential for their biological function. NMR ensembles, molecular dynamics (MD) simulations, and normal mode analysis (NMA) provide appropriate frameworks to explore functionally relevant protein dynamics and cavity changes relationships. Within this context, we have recently developed analysis of null areas (ANA), an efficient method to calculate cavity volumes. ANA is based on a combination of algorithms that guarantees its robustness against numerical differentiations. This is a unique feature with respect to other methods. Herein, we present an updated and improved version that expands it use to quantify changes in cavity features, like volume and flexibility, due to protein structural distortions performed on predefined biologically relevant directions, for example, directions of largest contribution to protein fluctuations (principal component analysis [PCA modes]) obtained by MD simulations or ensembles of NMR structures, collective NMA modes or any other direction of motion associated with specific conformational changes. A web page has been developed where its facilities are explained in detail. First, we show that ANA can be useful to explore gradual changes of cavity volume and flexibility associated with protein ligand binding. Secondly, we perform a comparison study of the extent of variability between protein backbone structural distortions, and changes in cavity volumes and flexibilities evaluated for an ensemble of NMR active and inactive conformers of the epidermal growth factor receptor structures. Finally, we compare changes in size and flexibility between sets of NMR structures for different homologous chains of dynein.
Collapse
Affiliation(s)
- German P Barletta
- Unidad de Fisicoquímica, Universidad Nacional de Quilmes/CONICET, Bernal, Argentina
| | | | - Tadeo E Saldaño
- Unidad de Fisicoquímica, Universidad Nacional de Quilmes/CONICET, Bernal, Argentina
| | | |
Collapse
|
9
|
Palopoli N, Marchetti J, Monzon AM, Zea DJ, Tosatto SCE, Fornasari MS, Parisi G. Intrinsically Disordered Protein Ensembles Shape Evolutionary Rates Revealing Conformational Patterns. J Mol Biol 2020; 433:166751. [PMID: 33310020 DOI: 10.1016/j.jmb.2020.166751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/01/2020] [Accepted: 12/05/2020] [Indexed: 10/22/2022]
Abstract
Intrinsically disordered proteins (IDPs) lack stable tertiary structure under physiological conditions. The unique composition and complex dynamical behaviour of IDPs make them a challenge for structural biology and molecular evolution studies. Using NMR ensembles, we found that IDPs evolve under a strong site-specific evolutionary rate heterogeneity, mainly originated by different constraints derived from their inter-residue contacts. Evolutionary rate profiles correlate with the experimentally observed conformational diversity of the protein, allowing the description of different conformational patterns possibly related to their structure-function relationships. The correlation between evolutionary rates and contact information improves when structural information is taken not from any individual conformer or the whole ensemble, but from combining a limited number of conformers. Our results suggest that residue contacts in disordered regions constrain evolutionary rates to conserve the dynamic behaviour of the ensemble and that evolutionary rates can be used as a proxy for the conformational diversity of IDPs.
Collapse
Affiliation(s)
- Nicolas Palopoli
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Buenos Aires, Argentina
| | - Julia Marchetti
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Buenos Aires, Argentina
| | | | - Diego J Zea
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Paris, France
| | | | - Maria S Fornasari
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Buenos Aires, Argentina
| | - Gustavo Parisi
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Tang X, Ghimire S, Liu W, Fu X, Zhang H, Zhang N, Si H. Potato E3 ubiquitin ligase PUB27 negatively regulates drought tolerance by mediating stomatal movement. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:557-563. [PMID: 32912489 DOI: 10.1016/j.plaphy.2020.07.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/01/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
The ubiquitin-proteasome system (UPS) is one of the main ways of eukaryotic protein degradation and post-translational modification. It has proven as an essential process for plants to respond to abiotic stresses. Plant U-box (PUB) protein acts as a ubiquitin ligase, which recognizes and ubiquitinates the target proteins. Many PUBs have been involved in water stress in Arabidopsis and rice, but similar comprehensive studies in potato remained limited. In this study, the overexpressed and interfered transgenic potato plants of StPUB27 were obtained and their performances were evaluated under osmotic stress. The result showed that overexpression of StPUB27 accelerated the dehydration of detached leaves companied with greater stomatal conductance, while the down-regulated StPUB27 expression by RNA interference (RNAi) showed a smaller stomatal conductance and a lower rate of water loss in detached leaves, thus showing higher tolerance to osmotic stress. In addition, no significant changes in the proline content were observed between StPUB27 overexpressed and RNAi potato plants. The result demonstrated that potato E3 ubiquitin ligase PUB27 may negatively regulate drought tolerance by mediating stomatal conductance.
Collapse
Affiliation(s)
- Xun Tang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Shantwana Ghimire
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China; College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Weigang Liu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China; College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Xue Fu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Huanhuan Zhang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Ning Zhang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Huaijun Si
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
11
|
Saldaño TE, Freixas VM, Tosatto SCE, Parisi G, Fernandez-Alberti S. Exploring Conformational Space with Thermal Fluctuations Obtained by Normal-Mode Analysis. J Chem Inf Model 2020; 60:3068-3080. [PMID: 32216314 DOI: 10.1021/acs.jcim.9b01136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Proteins in their native states can be represented as ensembles of conformers in dynamical equilibrium. Thermal fluctuations are responsible for transitions between these conformers. Normal-modes analysis (NMA) using elastic network models (ENMs) provides an efficient procedure to explore global dynamics of proteins commonly associated with conformational transitions. In the present work, we present an iterative approach to explore protein conformational spaces by introducing structural distortions according to their equilibrium dynamics at room temperature. The approach can be used either to perform unbiased explorations of conformational space or to explore guided pathways connecting two different conformations, e.g., apo and holo forms. In order to test its performance, four proteins with different magnitudes of structural distortions upon ligand binding have been tested. In all cases, the conformational selection model has been confirmed and the conformational space between apo and holo forms has been encompassed. Different strategies have been tested that impact on the efficiency either to achieve a desired conformational change or to achieve a balanced exploration of the protein conformational multiplicity.
Collapse
Affiliation(s)
- Tadeo E Saldaño
- Universidad Nacional de Quilmes/CONICET, Roque Saenz Peña 352, B1876BXD Bernal, Argentina
| | - Victor M Freixas
- Universidad Nacional de Quilmes/CONICET, Roque Saenz Peña 352, B1876BXD Bernal, Argentina
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 5131 Padova, Italy
| | - Gustavo Parisi
- Universidad Nacional de Quilmes/CONICET, Roque Saenz Peña 352, B1876BXD Bernal, Argentina
| | | |
Collapse
|
12
|
Essential site scanning analysis: A new approach for detecting sites that modulate the dispersion of protein global motions. Comput Struct Biotechnol J 2020; 18:1577-1586. [PMID: 32637054 PMCID: PMC7330491 DOI: 10.1016/j.csbj.2020.06.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
Despite the wealth of methods developed for exploring the molecular basis of allostery in biomolecular systems, there is still a need for structure-based predictive tools that can efficiently detect susceptible sites for triggering allosteric responses. Toward this goal, we introduce here an elastic network model (ENM)-based method, Essential Site Scanning Analysis (ESSA). Essential sites are here defined as residues that would significantly alter the protein's global dynamics if bound to a ligand. To mimic the crowding induced upon substrate binding, the heavy atoms of each residue are incorporated as additional network nodes into the α-carbon-based ENM, and the resulting shifts in soft mode frequencies are used as a metric for evaluating the essentiality of each residue. Results on a dataset of monomeric proteins indicate the enrichment of allosteric and orthosteric binding sites, as well as global hinge regions among essential residues, highlighting the significant role of these sites in controlling the overall structural dynamics. Further integration of ESSA with information on predicted pockets and their local hydrophobicity density enables successful predictions of allosteric pockets for both ligand-bound and -unbound structures. ESSA can be efficiently applied to large multimeric systems. Three case studies, namely (i) G-protein binding to a GPCR, (ii) heterotrimeric assembly of the Ser/Thr protein phosphatase PP2A, and (iii) allo-targeting of AMPA receptor, demonstrate the utility of ESSA for identifying essential sites and narrowing down target allosteric sites identified by druggability simulations.
Collapse
|
13
|
Vetrivel I, de Brevern AG, Cadet F, Srinivasan N, Offmann B. Structural variations within proteins can be as large as variations observed across their homologues. Biochimie 2019; 167:162-170. [PMID: 31560932 DOI: 10.1016/j.biochi.2019.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 09/18/2019] [Indexed: 10/26/2022]
Abstract
Understanding the structural plasticity of proteins is key to understanding the intricacies of their functions and mechanistic basis. In the current study, we analyzed the available multiple crystal structures of the same protein for the structural differences. For this purpose we used an abstraction of protein structures referred as Protein Blocks (PBs) that was previously established. We also characterized the nature of the structural variations for a few proteins using molecular dynamics simulations. In both the cases, the structural variations were summarized in the form of substitution matrices of PBs. We show that certain conformational states are preferably replaced by other specific conformational states. Interestingly, these structural variations are highly similar to those previously observed across structures of homologous proteins (r2 = 0.923) or across the ensemble of conformations from NMR data (r2 = 0.919). Thus our study quantitatively shows that overall trends of structural changes in a given protein are nearly identical to the trends of structural differences that occur in the topologically equivalent positions in homologous proteins. Specific case studies are used to illustrate the nature of these structural variations.
Collapse
Affiliation(s)
- Iyanar Vetrivel
- Université de Nantes, UFIP UMR 6286 CNRS, UFR Sciences et Techniques, 2 Chemin de La Houssinière, Nantes, France
| | - Alexandre G de Brevern
- INSERM UMR_S 1134, DSIMB Team, Laboratory of Excellence, GR-Ex, Univ Paris Diderot, Univ Sorbonne Paris Cité, INTS, 6 Rue Alexandre Cabanel, Paris, France
| | - Frédéric Cadet
- University of Paris, UMR_S1134, BIGR, Inserm, F-75015, Paris, France; DSIMB, UMR_S1134, BIGR, Inserm, Laboratory of Excellence GR-Ex, Faculty of Sciences and Technology, University of La Reunion, F-97715, Saint-Denis, France; PEACCEL, Protein Engineering Accelerator, 6 Square Albin Cachot, Box 42, 75013, Paris, France
| | | | - Bernard Offmann
- Université de Nantes, UFIP UMR 6286 CNRS, UFR Sciences et Techniques, 2 Chemin de La Houssinière, Nantes, France.
| |
Collapse
|
14
|
Saldaño TE, Tosatto SCE, Parisi G, Fernandez-Alberti S. Network analysis of dynamically important residues in protein structures mediating ligand-binding conformational changes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 48:559-568. [PMID: 31273390 DOI: 10.1007/s00249-019-01384-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/31/2019] [Accepted: 07/01/2019] [Indexed: 11/26/2022]
Abstract
According to the generalized conformational selection model, ligand binding involves the co-existence of at least two conformers with different ligand-affinities in a dynamical equilibrium. Conformational transitions between them should be guaranteed by intramolecular vibrational dynamics associated to each conformation. These motions are, therefore, related to the biological function of a protein. Positions whose mutations are found to alter these vibrations the most can be defined as key positions, that is, dynamically important residues that mediate the ligand-binding conformational change. In a previous study, we have shown that these positions are evolutionarily conserved. They correspond to buried aliphatic residues mostly localized in regular structured regions of the protein like β-sheets and α-helices. In the present paper, we perform a network analysis of these key positions for a large dataset of paired protein structures in the ligand-free and ligand-bound form. We observe that networks of interactions between these key positions present larger and more integrated networks with faster transmission of the information. Besides, networks of residues result that are robust to conformational changes. Our results reveal that the conformational diversity of proteins seems to be guaranteed by a network of strongly interconnected key positions rather than individual residues.
Collapse
Affiliation(s)
- Tadeo E Saldaño
- Universidad Nacional de Quilmes/CONICET, Roque Saenz Peña 352, B1876BXD, Bernal, Argentina
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 5131, Padua, Italy
| | - Gustavo Parisi
- Universidad Nacional de Quilmes/CONICET, Roque Saenz Peña 352, B1876BXD, Bernal, Argentina
| | | |
Collapse
|
15
|
Abstract
Classically, phenotype is what is observed, and genotype is the genetic makeup. Statistical studies aim to project phenotypic likelihoods of genotypic patterns. The traditional genotype-to-phenotype theory embraces the view that the encoded protein shape together with gene expression level largely determines the resulting phenotypic trait. Here, we point out that the molecular biology revolution at the turn of the century explained that the gene encodes not one but ensembles of conformations, which in turn spell all possible gene-associated phenotypes. The significance of a dynamic ensemble view is in understanding the linkage between genetic change and the gained observable physical or biochemical characteristics. Thus, despite the transformative shift in our understanding of the basis of protein structure and function, the literature still commonly relates to the classical genotype-phenotype paradigm. This is important because an ensemble view clarifies how even seemingly small genetic alterations can lead to pleiotropic traits in adaptive evolution and in disease, why cellular pathways can be modified in monogenic and polygenic traits, and how the environment may tweak protein function.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| |
Collapse
|
16
|
Wang SW, Bitbol AF, Wingreen NS. Revealing evolutionary constraints on proteins through sequence analysis. PLoS Comput Biol 2019; 15:e1007010. [PMID: 31017888 PMCID: PMC6502352 DOI: 10.1371/journal.pcbi.1007010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 05/06/2019] [Accepted: 04/06/2019] [Indexed: 02/03/2023] Open
Abstract
Statistical analysis of alignments of large numbers of protein sequences has revealed "sectors" of collectively coevolving amino acids in several protein families. Here, we show that selection acting on any functional property of a protein, represented by an additive trait, can give rise to such a sector. As an illustration of a selected trait, we consider the elastic energy of an important conformational change within an elastic network model, and we show that selection acting on this energy leads to correlations among residues. For this concrete example and more generally, we demonstrate that the main signature of functional sectors lies in the small-eigenvalue modes of the covariance matrix of the selected sequences. However, secondary signatures of these functional sectors also exist in the extensively-studied large-eigenvalue modes. Our simple, general model leads us to propose a principled method to identify functional sectors, along with the magnitudes of mutational effects, from sequence data. We further demonstrate the robustness of these functional sectors to various forms of selection, and the robustness of our approach to the identification of multiple selected traits.
Collapse
Affiliation(s)
- Shou-Wen Wang
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Beijing Computational Science Research Center, Beijing, China
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Anne-Florence Bitbol
- Sorbonne Université, CNRS, Laboratoire Jean Perrin (UMR 8237), F-75005 Paris, France
| | - Ned S. Wingreen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
17
|
da Silva Neto AM, Silva SR, Vendruscolo M, Camilloni C, Montalvão RW. A superposition free method for protein conformational ensemble analyses and local clustering based on a differential geometry representation of backbone. Proteins 2019; 87:302-312. [PMID: 30582223 DOI: 10.1002/prot.25652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/30/2018] [Accepted: 12/19/2018] [Indexed: 01/11/2023]
Abstract
Here a differential geometry (DG) representation of protein backbone is explored on the analyses of protein conformational ensembles. The protein backbone is described by curvature, κ, and torsion, τ, values per residue and we propose 1) a new dissimilarity and protein flexibility measurement and 2) a local conformational clustering method. The methods were applied to Ubiquitin and c-Myb-KIX protein conformational ensembles and results show that κ\τ metric space allows to properly judge protein flexibility by avoiding the superposition problem. The dmax measurement presents equally good or superior results when compared to RMSF, especially for the intrinsically unstructured protein. The clustering method is unique as it relates protein global to local dynamics by providing a global clustering solutions per residue. The methods proposed can be especially useful to the analyses of highly flexible proteins. The software written for the analyses presented here is available at https://github.com/AMarinhoSN/FleXgeo for academic usage only.
Collapse
Affiliation(s)
| | - Samuel Reghim Silva
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | | | - Carlo Camilloni
- Department of Biosciences, University of Milano, Milano, Italy
| | | |
Collapse
|
18
|
Abstract
The native state of proteins is composed of conformers in dynamical equilibrium. In this chapter, different issues related to conformational diversity are explored using a curated and experimentally based database called CoDNaS (Conformational Diversity in the Native State). This database is a collection of redundant structures for the same sequence. CoDNaS estimates the degree of conformational diversity using different global and local structural similarity measures. It allows the user to explore how structural differences among conformers change as a function of several structural features providing further biological information. This chapter explores the measurement of conformational diversity and its relationship with sequence divergence. Also, it discusses how proteins with high conformational diversity could affect homology modeling techniques.
Collapse
Affiliation(s)
- Alexander Miguel Monzon
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Argentina
| | - Maria Silvina Fornasari
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Argentina
| | - Diego Javier Zea
- Structural Bioinformatics Unit, Fundación Instituto Leloir, CONICET, Buenos Aires, Argentina
| | - Gustavo Parisi
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Argentina.
| |
Collapse
|
19
|
Barletta GP, Hasenahuer MA, Fornasari MS, Parisi G, Fernandez-Alberti S. Dynamics fingerprints of active conformers of epidermal growth factor receptor kinase. J Comput Chem 2018; 39:2472-2480. [PMID: 30298935 DOI: 10.1002/jcc.25590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/06/2018] [Accepted: 08/19/2018] [Indexed: 12/29/2022]
Abstract
Epidermal growth factor receptor (EGFR) is a prototypical cell-surface receptor that plays a key role in the regulation of cellular signaling, proliferation and differentiation. Mutations of its kinase domain have been associated with the development of a variety of cancers and, therefore, it has been the target of drug design. Single amino acid substitutions (SASs) in this domain have been proven to alter the equilibrium of pre-existing conformer populations. Despite the advances in structural descriptions of its so-called active and inactive conformations, the associated dynamics aspects that characterize them have not been thoroughly studied yet. As the dynamic behaviors and molecular motions of proteins are important for a complete understanding of their structure-function relationships we present a novel procedure, using (or based on) normal mode analysis, to identify the collective dynamics shared among different conformers in EGFR kinase. The method allows the comparison of patterns of low-frequency vibrational modes defining representative directions of motions. Our procedure is able to emphasize the main similarities and differences between the collective dynamics of different conformers. In the case of EGFR kinase, two representative directions of motions have been found as dynamics fingerprints of the active conformers. Protein motion along both directions reveals to have a significant impact on the cavity volume of the main pocket of the active site. Otherwise, the inactive conformers exhibit a more heterogeneous distribution of collective motions. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- German P Barletta
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, Roque Saenz Peña 352, B1876BXD, Bernal, Argentina
| | - Marcia Anahi Hasenahuer
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, Roque Saenz Peña 352, B1876BXD, Bernal, Argentina
| | - Maria Silvina Fornasari
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, Roque Saenz Peña 352, B1876BXD, Bernal, Argentina
| | - Gustavo Parisi
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, Roque Saenz Peña 352, B1876BXD, Bernal, Argentina
| | - Sebastian Fernandez-Alberti
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, Roque Saenz Peña 352, B1876BXD, Bernal, Argentina
| |
Collapse
|
20
|
Daraiseh SI, Kassardjian A, Alexander KE, Rizkallah R, Hurt MM. c-Abl phosphorylation of Yin Yang 1's conserved tyrosine 254 in the spacer region modulates its transcriptional activity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1173-1186. [PMID: 29807053 DOI: 10.1016/j.bbamcr.2018.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/02/2018] [Accepted: 05/24/2018] [Indexed: 12/31/2022]
Abstract
Yin Yang 1 (YY1) is a multifunctional transcription factor that can activate or repress transcription depending on the promotor and/or the co-factors recruited. YY1 is phosphorylated in various signaling pathways and is critical for different biological functions including embryogenesis, apoptosis, proliferation, cell-cycle regulation and tumorigenesis. Here we report that YY1 is a substrate for c-Abl kinase phosphorylation at conserved residue Y254 in the spacer region. Pharmacological inhibition of c-Abl kinase by imatinib, nilotinib and GZD824, knock-down of c-Abl using siRNA, and the use of c-Abl kinase-dead drastically reduces tyrosine phosphorylation of YY1. Both radioactive and non-radioactive in vitro kinase assays, as well as co-immunoprecipitation in different cell lines, show that the target of c-Abl phosphorylation is tyrosine residue 254. c-Abl phosphorylation has little effect on YY1 DNA binding ability or cellular localization in asynchronous cells. However, functional studies reveal that c-Abl mediated phosphorylation of YY1 regulates YY1's transcriptional ability in vivo. In conclusion, we demonstrate the novel role of c-Abl kinase in regulation of YY1's transcriptional activity, linking YY1 regulation with c-Abl tyrosine kinase signaling pathways.
Collapse
Affiliation(s)
- Susan I Daraiseh
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Ari Kassardjian
- David Geffen School of Medicine, Department of Pathology and Laboratory Medicine at UCLA, Los Angeles, CA, USA
| | - Karen E Alexander
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Raed Rizkallah
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Myra M Hurt
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
21
|
Zanotti G, Vallese F, Ferrari A, Menozzi I, Saldaño TE, Berto P, Fernandez-Alberti S, Berni R. Structural and dynamics evidence for scaffold asymmetric flexibility of the human transthyretin tetramer. PLoS One 2017; 12:e0187716. [PMID: 29240759 PMCID: PMC5730205 DOI: 10.1371/journal.pone.0187716] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/24/2017] [Indexed: 12/23/2022] Open
Abstract
The molecular symmetry of multimeric proteins is generally determined by using X-ray diffraction techniques, so that the basic question as to whether this symmetry is perfectly preserved for the same protein in solution remains open. In this work, human transthyretin (TTR), a homotetrameric plasma transport protein with two binding sites for the thyroid hormone thyroxine (T4), is considered as a case study. Based on the crystal structure of the TTR tetramer, a hypothetical D2 symmetry is inferred for the protein in solution, whose functional behavior reveals the presence of two markedly different Kd values for the two T4 binding sites. The latter property has been ascribed to an as yet uncharacterized negative binding cooperativity. A triple mutant form of human TTR (F87M/L110M/S117E TTR), which is monomeric in solution, crystallizes as a tetrameric protein and its structure has been determined. The exam of this and several other crystal forms of human TTR suggests that the TTR scaffold possesses a significant structural flexibility. In addition, TTR tetramer dynamics simulated using normal modes analysis exposes asymmetric vibrational patterns on both dimers and thermal fluctuations reveal small differences in size and flexibility for ligand cavities at each dimer-dimer interface. Such small structural differences between monomers can lead to significant functional differences on the TTR tetramer dynamics, a feature that may explain the functional heterogeneity of the T4 binding sites, which is partially overshadowed by the crystal state.
Collapse
Affiliation(s)
- Giuseppe Zanotti
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- * E-mail:
| | - Francesca Vallese
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Alberto Ferrari
- Department of Chemical Sciences, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Ilaria Menozzi
- Department of Chemical Sciences, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | | | - Paola Berto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | - Rodolfo Berni
- Department of Chemical Sciences, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
22
|
Saldaño TE, Zanotti G, Parisi G, Fernandez-Alberti S. Evaluating the effect of mutations and ligand binding on transthyretin homotetramer dynamics. PLoS One 2017; 12:e0181019. [PMID: 28704493 PMCID: PMC5509292 DOI: 10.1371/journal.pone.0181019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/23/2017] [Indexed: 01/08/2023] Open
Abstract
Native transthyretin (TTR) homotetramer dissociation is the first step of the fibrils formation process in amyloid disease. A large number of specific point mutations that destabilize TTR quaternary structure have shown pro-amyloidogenic effects. Besides, several compounds have been proposed as drugs in the therapy of TTR amyloidosis due to their TTR tetramer binding affinities, and therefore, contribution to its integrity. In the present paper we have explored key positions sustaining TTR tetramer dynamical stability. We have identified positions whose mutations alter the most the TTR tetramer equilibrium dynamics based on normal mode analysis and their response to local perturbations. We have found that these positions are mostly localized at β-strands E and F and EF-loop. The monomer-monomer interface is pointed out as one of the most vulnerable regions to mutations that lead to significant changes in the TTR-tetramer equilibrium dynamics and, therefore, induces TTR amyloidosis. Besides, we have found that mutations on residues localized at the dimer-dimer interface and/or at the T4 hormone binding site destabilize the tetramer more than the average. Finally, we were able to compare several compounds according to their effect on vibrations associated to the ligand binding. Our ligand comparison is discussed and analyzed in terms of parameters and measurements associated to TTR-ligand binding affinities and the stabilization of its native state.
Collapse
Affiliation(s)
| | - Giuseppe Zanotti
- Department of Biomedical Science, University of Padua, Padova, Italy
| | - Gustavo Parisi
- Universidad Nacional de Quilmes/CONICET, Bernal, Argentina
| | | |
Collapse
|