1
|
Sun Y, Jin X, Meng J, Guo F, Chen T, Zhao X, Wu H, Ren D. MST2 methylation by PRMT5 inhibits Hippo signaling and promotes pancreatic cancer progression. EMBO J 2023; 42:e114558. [PMID: 37905571 PMCID: PMC10690468 DOI: 10.15252/embj.2023114558] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023] Open
Abstract
The Hippo signaling axis is a tumor suppressor pathway that is activated by various extra-pathway factors to regulate cell differentiation and organ development. Recent studies have reported that autophosphorylation of the core kinase cassette stimulates activation of the Hippo signaling cascade. Here, we demonstrate that protein arginine methyltransferase 5 (PRMT5) contributes to inactivation of the Hippo signaling pathway in pancreatic cancer. We show that the Hippo pathway initiator serine/threonine kinase 3 (STK3, also known as MST2) of Hippo signaling pathway can be symmetrically di-methylated by PRMT5 at arginine-461 (R461) and arginine-467 (R467) in its SARAH domain. Methylation suppresses MST2 autophosphorylation and kinase activity by blocking its homodimerization, thereby inactivating Hippo signaling pathway in pancreatic cancer. Moreover, we also show that the specific PRMT5 inhibitor GSK3326595 re-activates the dysregulated Hippo signaling pathway and inhibits the growth of human pancreatic cancer xenografts in immunodeficient mice, thus suggesting potential clinical application of PRMT5 inhibitors in pancreatic cancer.
Collapse
Affiliation(s)
- Yan Sun
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Sino‐German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xin Jin
- Department of Urology, The Second Xiangya HospitalCentral South UniversityChangshaChina
- Uro‐Oncology Institute of Central South UniversityChangshaChina
| | - Junpeng Meng
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Sino‐German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of General SurgeryThe Second Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Feng Guo
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Sino‐German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Taoyu Chen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Sino‐German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoyan Zhao
- Department of Hematology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Sino‐German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dianyun Ren
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Sino‐German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
2
|
Smith MJ. Defining bone fide effectors of RAS GTPases. Bioessays 2023; 45:e2300088. [PMID: 37401638 DOI: 10.1002/bies.202300088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
RAS GTPases play essential roles in normal development and are direct drivers of human cancers. Three decades of study have failed to wholly characterize pathways stimulated by activated RAS, driven by engagement with 'effector' proteins that have RAS binding domains (RBDs). Bone fide effectors must bind directly to RAS GTPases in a nucleotide-dependent manner, and this interaction must impart a clear change in effector activity. Despite this, for most proteins currently deemed effectors there is little mechanistic understanding of how binding to the GTPase alters protein function. There has also been limited effort to comprehensively resolve the specificity of effector binding to the full array of RAS superfamily GTPase proteins. This review will summarize what is known about RAS-driven activation for an array of potential effector proteins, focusing on structural and mechanistic effects and highlighting how little is still known regarding this key paradigm of cellular signal transduction.
Collapse
Affiliation(s)
- Matthew J Smith
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
3
|
Kilanowska A, Ziółkowska A. Apoptosis in Type 2 Diabetes: Can It Be Prevented? Hippo Pathway Prospects. Int J Mol Sci 2022; 23:636. [PMID: 35054822 PMCID: PMC8775644 DOI: 10.3390/ijms23020636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/20/2021] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetes mellitus is a heterogeneous disease of complex etiology and pathogenesis. Hyperglycemia leads to many serious complications, but also directly initiates the process of β cell apoptosis. A potential strategy for the preservation of pancreatic β cells in diabetes may be to inhibit the implementation of pro-apoptotic pathways or to enhance the action of pancreatic protective factors. The Hippo signaling pathway is proposed and selected as a target to manipulate the activity of its core proteins in therapy-basic research. MST1 and LATS2, as major upstream signaling kinases of the Hippo pathway, are considered as target candidates for pharmacologically induced tissue regeneration and inhibition of apoptosis. Manipulating the activity of components of the Hippo pathway offers a wide range of possibilities, and thus is a potential tool in the treatment of diabetes and the regeneration of β cells. Therefore, it is important to fully understand the processes involved in apoptosis in diabetic states and completely characterize the role of this pathway in diabetes. Therapy consisting of slowing down or stopping the mechanisms of apoptosis may be an important direction of diabetes treatment in the future.
Collapse
Affiliation(s)
- Agnieszka Kilanowska
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, Zyty 28, 65-001 Zielona Gora, Poland;
| | | |
Collapse
|
4
|
Regulation of MST complexes and activity via SARAH domain modifications. Biochem Soc Trans 2021; 49:675-683. [PMID: 33860801 DOI: 10.1042/bst20200559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 11/17/2022]
Abstract
Three elements of the Hippo tumor suppressor pathway - MST1/2, SAV1, and RASSF1-6 - share in common a C-terminal interaction motif termed the SARAH domain. Proteins containing this domain are capable of self-association as homodimers and also of trans-association with other SARAH domain containing proteins as well as selected additional proteins that lack this domain. Recently, the association of MST1/2 with itself or with other proteins has been shown to be regulated by phosphorylation at sites near or within the SARAH domain. In this review, we focus on recent findings regarding the regulation of such MST1/2 interactions, with an emphasis on the effects of these events on Hippo pathway activity.
Collapse
|
5
|
Duhart JC, Raftery LA. Mob Family Proteins: Regulatory Partners in Hippo and Hippo-Like Intracellular Signaling Pathways. Front Cell Dev Biol 2020; 8:161. [PMID: 32266255 DOI: 10.3389/fcell.2020.00161/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 02/28/2020] [Indexed: 05/26/2023] Open
Abstract
Studies in yeast first delineated the function of Mob proteins in kinase pathways that regulate cell division and shape; in multicellular eukaryotes Mobs regulate tissue growth and morphogenesis. In animals, Mobs are adaptors in Hippo signaling, an intracellular signal-transduction pathway that restricts growth, impacting the development and homeostasis of animal organs. Central to Hippo signaling are the Nuclear Dbf2-Related (NDR) kinases, Warts and LATS1 and LATS2, in flies and mammals, respectively. A second Hippo-like signaling pathway has been uncovered in animals, which regulates cell and tissue morphogenesis. Central to this emergent pathway are the NDR kinases, Tricornered, STK38, and STK38L. In Hippo signaling, NDR kinase activation is controlled by three activating interactions with a conserved set of proteins. This review focuses on one co-activator family, the highly conserved, non-catalytic Mps1-binder-related (Mob) proteins. In this context, Mobs are allosteric activators of NDR kinases and adaptors that contribute to assembly of multiprotein NDR kinase activation complexes. In multicellular eukaryotes, the Mob family has expanded relative to model unicellular yeasts; accumulating evidence points to Mob functional diversification. A striking example comes from the most sequence-divergent class of Mobs, which are components of the highly conserved Striatin Interacting Phosphatase and Kinase (STRIPAK) complex, that antagonizes Hippo signaling. Mobs stand out for their potential to modulate the output from Hippo and Hippo-like kinases, through their roles both in activating NDR kinases and in antagonizing upstream Hippo or Hippo-like kinase activity. These opposing Mob functions suggest that they coordinate the relative activities of the Tricornered/STK38/STK38L and Warts/LATS kinases, and thus have potential to assemble nodes for pathway signaling output. We survey the different facets of Mob-dependent regulation of Hippo and Hippo-like signaling and highlight open questions that hinge on unresolved aspects of Mob functions.
Collapse
Affiliation(s)
- Juan Carlos Duhart
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Laurel A Raftery
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
6
|
Duhart JC, Raftery LA. Mob Family Proteins: Regulatory Partners in Hippo and Hippo-Like Intracellular Signaling Pathways. Front Cell Dev Biol 2020; 8:161. [PMID: 32266255 PMCID: PMC7096357 DOI: 10.3389/fcell.2020.00161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 02/28/2020] [Indexed: 12/16/2022] Open
Abstract
Studies in yeast first delineated the function of Mob proteins in kinase pathways that regulate cell division and shape; in multicellular eukaryotes Mobs regulate tissue growth and morphogenesis. In animals, Mobs are adaptors in Hippo signaling, an intracellular signal-transduction pathway that restricts growth, impacting the development and homeostasis of animal organs. Central to Hippo signaling are the Nuclear Dbf2-Related (NDR) kinases, Warts and LATS1 and LATS2, in flies and mammals, respectively. A second Hippo-like signaling pathway has been uncovered in animals, which regulates cell and tissue morphogenesis. Central to this emergent pathway are the NDR kinases, Tricornered, STK38, and STK38L. In Hippo signaling, NDR kinase activation is controlled by three activating interactions with a conserved set of proteins. This review focuses on one co-activator family, the highly conserved, non-catalytic Mps1-binder-related (Mob) proteins. In this context, Mobs are allosteric activators of NDR kinases and adaptors that contribute to assembly of multiprotein NDR kinase activation complexes. In multicellular eukaryotes, the Mob family has expanded relative to model unicellular yeasts; accumulating evidence points to Mob functional diversification. A striking example comes from the most sequence-divergent class of Mobs, which are components of the highly conserved Striatin Interacting Phosphatase and Kinase (STRIPAK) complex, that antagonizes Hippo signaling. Mobs stand out for their potential to modulate the output from Hippo and Hippo-like kinases, through their roles both in activating NDR kinases and in antagonizing upstream Hippo or Hippo-like kinase activity. These opposing Mob functions suggest that they coordinate the relative activities of the Tricornered/STK38/STK38L and Warts/LATS kinases, and thus have potential to assemble nodes for pathway signaling output. We survey the different facets of Mob-dependent regulation of Hippo and Hippo-like signaling and highlight open questions that hinge on unresolved aspects of Mob functions.
Collapse
Affiliation(s)
| | - Laurel A. Raftery
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
7
|
Szimler T, Gráczer É, Györffy D, Végh B, Szilágyi A, Hajdú I, Závodszky P, Vas M. New type of interaction between the SARAH domain of the tumour suppressor RASSF1A and its mitotic kinase Aurora A. Sci Rep 2019; 9:5550. [PMID: 30944388 PMCID: PMC6447619 DOI: 10.1038/s41598-019-41972-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/08/2019] [Indexed: 12/11/2022] Open
Abstract
The tumour suppressor protein RASSF1A is phosphorylated by Aurora A kinase, thereby impairing its tumour suppressor function. Consequently, inhibiting the interaction between Aurora A and RASSF1A may be used for anti-tumour therapy. We used recombinant variants of RASSF1A to map the sites of interaction with Aurora A. The phosphorylation kinetics of three truncated RASSF1A variants has been analysed. Compared to the RASSF1A form lacking the 120 residue long N-terminal part, the Km value of the phosphorylation is increased from 10 to 45 μM upon additional deletion of the C-terminal SARAH domain. On the other hand, deletion of the flexible loop (Δ177-197) that precedes the phosphorylation site/s (T202/S203) results in a reduction of the kcat value from about 40 to 7 min-1. Direct physical interaction between the isolated SARAH domain and Aurora A was revealed by SPR. These data demonstrate that the SARAH domain of RASSF1A is involved in the binding to Aurora A kinase. Structural modelling confirms that a novel complex is feasible between the SARAH domain and the kinase domain of Aurora A. In addition, a regulatory role of the loop in the catalytic phosphorylation reaction has been demonstrated both experimentally and by structural modelling.
Collapse
Affiliation(s)
- T Szimler
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., H-1117, Budapest, Hungary
| | - É Gráczer
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., H-1117, Budapest, Hungary
| | - D Györffy
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., H-1117, Budapest, Hungary
| | - B Végh
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., H-1117, Budapest, Hungary
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117, Budapest, Hungary
| | - A Szilágyi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., H-1117, Budapest, Hungary
| | - I Hajdú
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., H-1117, Budapest, Hungary.
| | - P Závodszky
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., H-1117, Budapest, Hungary
| | - M Vas
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., H-1117, Budapest, Hungary.
| |
Collapse
|
8
|
Liang Z, Verkhivker GM, Hu G. Integration of network models and evolutionary analysis into high-throughput modeling of protein dynamics and allosteric regulation: theory, tools and applications. Brief Bioinform 2019; 21:815-835. [DOI: 10.1093/bib/bbz029] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/04/2019] [Accepted: 02/21/2019] [Indexed: 12/24/2022] Open
Abstract
Abstract
Proteins are dynamical entities that undergo a plethora of conformational changes, accomplishing their biological functions. Molecular dynamics simulation and normal mode analysis methods have become the gold standard for studying protein dynamics, analyzing molecular mechanism and allosteric regulation of biological systems. The enormous amount of the ensemble-based experimental and computational data on protein structure and dynamics has presented a major challenge for the high-throughput modeling of protein regulation and molecular mechanisms. In parallel, bioinformatics and systems biology approaches including genomic analysis, coevolution and network-based modeling have provided an array of powerful tools that complemented and enriched biophysical insights by enabling high-throughput analysis of biological data and dissection of global molecular signatures underlying mechanisms of protein function and interactions in the cellular environment. These developments have provided a powerful interdisciplinary framework for quantifying the relationships between protein dynamics and allosteric regulation, allowing for high-throughput modeling and engineering of molecular mechanisms. Here, we review fundamental advances in protein dynamics, network theory and coevolutionary analysis that have provided foundation for rapidly growing computational tools for modeling of allosteric regulation. We discuss recent developments in these interdisciplinary areas bridging computational biophysics and network biology, focusing on promising applications in allosteric regulations, including the investigation of allosteric communication pathways, protein–DNA/RNA interactions and disease mutations in genomic medicine. We conclude by formulating and discussing future directions and potential challenges facing quantitative computational investigations of allosteric regulatory mechanisms in protein systems.
Collapse
Affiliation(s)
- Zhongjie Liang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Gennady M Verkhivker
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA, USA
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, USA
| | - Guang Hu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
9
|
Duffy F, Maheshwari N, Buchete NV, Shields D. Computational Opportunities and Challenges in Finding Cyclic Peptide Modulators of Protein-Protein Interactions. Methods Mol Biol 2019; 2001:73-95. [PMID: 31134568 DOI: 10.1007/978-1-4939-9504-2_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Peptide cyclization can improve stability, conformational constraint, and compactness. However, apart from beta-turn structures, which are well incorporated into cyclic peptides (CPs), many primary peptide structures and functions are markedly altered by cyclization. Accordingly, to mimic linear peptide interfaces with cyclic peptides, it can be beneficial to screen combinatorial cyclic peptide libraries. Computational methods have been developed to screen CPs, but face a number of challenges. Here, we review methods to develop in silico computational libraries, and the potential for screening naturally occurring libraries of CPs. The simplest and most rapid computational pharmacophore methods that estimate peptide three-dimensional structures to be screened versus targets are relatively easy to implement, and while the constraint on structure imposed by cyclization makes them more effective than the same approaches with linear peptides, there are a large number of limiting assumptions. In contrast, full molecular dynamics simulations of cyclic peptide structures not only are costly to implement, but also require careful attention to interpretation, so that not only is the computation time rate limiting, but the interpretation time is also rate limiting due to the analysis of the typically complex underlying conformational space of CPs. A challenge for the field of computational cyclic peptide screening is to bridge this gap effectively. Natural compound libraries of short cyclic peptides, and short cyclized regions of proteins, encoded in the genomes of many organisms present a potential treasure trove of novel functionality which may be screened via combined computational and experimental screening approaches.
Collapse
Affiliation(s)
- Fergal Duffy
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Nikunj Maheshwari
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | | | - Denis Shields
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland. .,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| |
Collapse
|
10
|
Tywoniuk B, Yuan Y, McCartan S, Szydłowska BM, Tofoleanu F, Brooks BR, Buchete NV. Amyloid Fibril Design: Limiting Structural Polymorphism in Alzheimer's Aβ Protofilaments. J Phys Chem B 2018; 122:11535-11545. [PMID: 30335383 DOI: 10.1021/acs.jpcb.8b07423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanoscale fibrils formed by amyloid peptides have a polymorphic character, adopting several types of molecular structures in similar growth conditions. As shown by experimental (e.g., solid-state NMR) and computational studies, amyloid fibril polymorphism hinders both the structural characterization of Alzheimer's Aβ amyloid protofilaments and fibrils at a molecular level, as well as the possible applications (e.g., development of drugs or biomarkers) that rely on similar, controlled molecular arrangements of the Aβ peptides in amyloid fibril structures. We have explored the use of several contact potentials for the efficient identification of minimal sequence mutations that could enhance the stability of specific fibril structures while simultaneously destabilizing competing topologies, controlling thus the amount of structural polymorphism in a rational way. We found that different types of contact potentials, while having only partial accuracy on their own, lead to similar results regarding ranking the compatibility of wild-type (WT) and mutated amyloid sequences with different fibril morphologies. This approach allows exhaustive screening and assessment of possible mutations and the identification of minimal consensus mutations that could stabilize fibrils with the desired topology at the expense of other topology types, a prediction that is further validated using atomistic molecular dynamics with explicit water molecules. We apply this two-step multiscale (i.e., residue and atomistic-level) approach to predict and validate mutations that could bias either parallel or antiparallel packing in the core Alzheimer's Aβ9-40 amyloid fibril models based on solid-state NMR experiments. Besides shedding new light on the molecular origins of structural polymorphism in WT Aβ fibrils, our study could also lead to efficient tools for assisting future experimental approaches for amyloid fibril determination, and for the development of biomarkers or drugs aimed at interfering with the stability of amyloid fibrils, as well as for the future design of amyloid fibrils with a controlled (e.g., reduced) level of structural polymorphism.
Collapse
Affiliation(s)
- Bartłomiej Tywoniuk
- School of Physics , University College Dublin , Dublin D04 V1W8 , Ireland.,Institute for Discovery , University College Dublin , Dublin D04 V1W8 , Ireland
| | - Ye Yuan
- School of Physics , University College Dublin , Dublin D04 V1W8 , Ireland.,Institute for Discovery , University College Dublin , Dublin D04 V1W8 , Ireland
| | - Sarah McCartan
- School of Physics , University College Dublin , Dublin D04 V1W8 , Ireland.,Institute for Discovery , University College Dublin , Dublin D04 V1W8 , Ireland
| | - Beata Maria Szydłowska
- Applied Physical Chemistry , Ruprecht-Karls University Heidelberg , Heidelberg 69120 , Germany.,Institute of Physics, EIT 2 , Universität der Bundeswehr München , Werner-Heisenberg-Weg 39 , 85577 Neubiberg , Germany
| | - Florentina Tofoleanu
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States.,Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States
| | - Bernard R Brooks
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Nicolae-Viorel Buchete
- School of Physics , University College Dublin , Dublin D04 V1W8 , Ireland.,Institute for Discovery , University College Dublin , Dublin D04 V1W8 , Ireland
| |
Collapse
|
11
|
Autoinhibition in Ras effectors Raf, PI3Kα, and RASSF5: a comprehensive review underscoring the challenges in pharmacological intervention. Biophys Rev 2018; 10:1263-1282. [PMID: 30269291 PMCID: PMC6233353 DOI: 10.1007/s12551-018-0461-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023] Open
Abstract
Autoinhibition is an effective mechanism that guards proteins against spurious activation. Despite its ubiquity, the distinct organizations of the autoinhibited states and their release mechanisms differ. Signaling is most responsive to the cell environment only if a small shift in the equilibrium is required to switch the system from an inactive (occluded) to an active (exposed) state. Ras signaling follows this paradigm. This underscores the challenge in pharmacological intervention to exploit and enhance autoinhibited states. Here, we review autoinhibition and release mechanisms at the membrane focusing on three representative Ras effectors, Raf protein kinase, PI3Kα lipid kinase, and NORE1A (RASSF5) tumor suppressor, and point to the ramifications to drug discovery. We further touch on Ras upstream and downstream signaling, Ras activation, and the Ras superfamily in this light, altogether providing a broad outlook of the principles and complexities of autoinhibition.
Collapse
|
12
|
Möller D, Gellert M, Langel W, Lillig CH. Molecular dynamics simulations and in vitro analysis of the CRMP2 thiol switch. MOLECULAR BIOSYSTEMS 2018; 13:1744-1753. [PMID: 28726921 DOI: 10.1039/c7mb00160f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The collapsin response mediator protein CRMP2 (gene: DPYSL2) is crucial for neuronal development. The homotetrameric CRMP2 complex is regulated via two mechanisms: first by phosphorylation and second by the reduction and oxidation of the Cys504 residues of two adjacent subunits. Here, we have analysed the effects of this redox switch on the protein in vitro combined with force field molecular dynamics (MD). Earlier X-ray data reveal the structure of the rigid body of the molecule but lack the flexible C-terminus with the important sites for phosphorylation and redox regulation. An in silico model for this part was established by replica exchange simulations and homology modelling, which is consistent with the CD spectroscopy results of the recombinant protein. Thermofluor data indicated that the protein aggregates at bivalent ion concentrations below 200 mM. In simulations the protein surface was covered under these conditions by a large number of ions, which most likely prevent aggregation. A tryptophan residue (Trp295) in close proximity to the forming disulphide allowed the measurement of the structural relaxation of the rigid body upon reduction by fluorescence quenching. We were also able to determine the second-order rate constant of CRMP2 oxidation by H2O2. The simulated solvent accessible surface of the hydroxyl group of Ser518 significantly increased upon reduction of the disulphide bond. Our results give the first detailed insight into the profound structural changes of the tetrameric CRMP2 due to oxidation and indicate a tightly connected regulation by phosphorylation and redox modification.
Collapse
Affiliation(s)
- Daniel Möller
- Biophysical Chemistry, Institute of Biochemistry, University Greifswald, 17489 Greifswald, Germany
| | | | | | | |
Collapse
|
13
|
Nguyen TH, Kugler JM. Ubiquitin-Dependent Regulation of the Mammalian Hippo Pathway: Therapeutic Implications for Cancer. Cancers (Basel) 2018; 10:cancers10040121. [PMID: 29673168 PMCID: PMC5923376 DOI: 10.3390/cancers10040121] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/08/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022] Open
Abstract
The Hippo pathway serves as a key barrier for oncogenic transformation. It acts by limiting the activity of the proto-oncogenes YAP and TAZ. Reduced Hippo signaling and elevated YAP/TAZ activities are frequently observed in various types of tumors. Emerging evidence suggests that the ubiquitin system plays an important role in regulating Hippo pathway activity. Deregulation of ubiquitin ligases and of deubiquitinating enzymes has been implicated in increased YAP/TAZ activity in cancer. In this article, we review recent insights into the ubiquitin-mediated regulation of the mammalian Hippo pathway, its deregulation in cancer, and possibilities for targeting the Hippo pathway through the ubiquitin system.
Collapse
Affiliation(s)
- Thanh Hung Nguyen
- Institute of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| | - Jan-Michael Kugler
- Institute of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| |
Collapse
|
14
|
Abstract
How do Ras isoforms attain oncogenic specificity at the membrane? Oncogenic KRas, HRas, and NRas (K-Ras, H-Ras, and N-Ras) differentially populate distinct cancers. How they selectively activate effectors and why is KRas4B the most prevalent are highly significant questions. Here, we consider determinants that may bias isoform-specific effector activation and signaling at the membrane. We merge functional data with a conformational view to provide mechanistic insight. Cell-specific expression levels, pathway cross-talk, and distinct interactions are the key, but conformational trends can modulate selectivity. There are two major pathways in oncogenic Ras-driven proliferation: MAPK (Raf/MEK/ERK) and PI3Kα/Akt/mTOR. All membrane-anchored, proximally located, oncogenic Ras isoforms can promote Raf dimerization and fully activate MAPK signaling. So why the differential statistics of oncogenic isoforms in distinct cancers and what makes KRas so highly oncogenic? Many cell-specific factors may be at play, including higher KRAS mRNA levels. As a key factor, we suggest that because only KRas4B binds calmodulin, only KRas can fully activate PI3Kα/Akt signaling. We propose that full activation of both MAPK and PI3Kα/Akt proliferative pathways by oncogenic KRas4B-but not by HRas or NRas-may help explain why the KRas4B isoform is especially highly populated in certain cancers. We further discuss pharmacologic implications. Cancer Res; 78(3); 593-602. ©2017 AACR.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland. .,Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland
| |
Collapse
|
15
|
Nussinov R, Tsai CJ, Jang H. Oncogenic Ras Isoforms Signaling Specificity at the Membrane. Cancer Res 2018; 78:593-602. [PMID: 29273632 PMCID: PMC5811325 DOI: 10.1158/0008-5472.can-17-2727] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/13/2017] [Accepted: 11/10/2017] [Indexed: 01/21/2023]
Abstract
How do Ras isoforms attain oncogenic specificity at the membrane? Oncogenic KRas, HRas, and NRas (K-Ras, H-Ras, and N-Ras) differentially populate distinct cancers. How they selectively activate effectors and why is KRas4B the most prevalent are highly significant questions. Here, we consider determinants that may bias isoform-specific effector activation and signaling at the membrane. We merge functional data with a conformational view to provide mechanistic insight. Cell-specific expression levels, pathway cross-talk, and distinct interactions are the key, but conformational trends can modulate selectivity. There are two major pathways in oncogenic Ras-driven proliferation: MAPK (Raf/MEK/ERK) and PI3Kα/Akt/mTOR. All membrane-anchored, proximally located, oncogenic Ras isoforms can promote Raf dimerization and fully activate MAPK signaling. So why the differential statistics of oncogenic isoforms in distinct cancers and what makes KRas so highly oncogenic? Many cell-specific factors may be at play, including higher KRAS mRNA levels. As a key factor, we suggest that because only KRas4B binds calmodulin, only KRas can fully activate PI3Kα/Akt signaling. We propose that full activation of both MAPK and PI3Kα/Akt proliferative pathways by oncogenic KRas4B-but not by HRas or NRas-may help explain why the KRas4B isoform is especially highly populated in certain cancers. We further discuss pharmacologic implications. Cancer Res; 78(3); 593-602. ©2017 AACR.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland.
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland
| |
Collapse
|
16
|
Liao TJ, Jang H, Tsai CJ, Fushman D, Nussinov R. The dynamic mechanism of RASSF5 and MST kinase activation by Ras. Phys Chem Chem Phys 2017; 19:6470-6480. [PMID: 28197608 PMCID: PMC5381522 DOI: 10.1039/c6cp08596b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
As a tumor suppressor, RASSF5 (NORE1A) activates MST1/2 thereby modulating the Hippo pathway. Structurally, activation involves RASSF5 and MST1/2 swapping their SARAH domains to form a SARAH heterodimer. This exposes the MST1/2 kinase domain which homodimerizes, leading to trans-autophosphorylation. The SARAH-SARAH interaction shifts RASSF5 away from its autoinhibited state and relieves MST1/2 autoinhibition. Separate crystal structures are available for the RA (Ras association) domain and SARAH dimer, where SARAH is a long straight α-helix. Using all-atom molecular dynamics simulations, we modeled the RASSF5 RA with a covalently connected SARAH to elucidate the dynamic mechanism of how SARAH mediates between autoinhibition and Ras triggered-activation. Our results show that in inactive RASSF5 the RA domain retains SARAH, yielding a self-associated conformation in which SARAH is in a kinked α-helical motif that increases the binding interface. When RASSF5 binds K-Ras4B-GTP, the equilibrium shifts toward SARAH's interacting with MST. Since the RA/SARAH affinity is relatively low, whereas that of the SARAH heterodimer is in the nM range, we suggest that RASSF5 exerts its tumor suppressor action through competition with other Ras effectors for Ras effector binding site, as well as coincidentally its recruitment to the membrane to help MST activation. Thus, SARAH plays a key role in RASSF5's tumor suppression action by linking the two major pathways in tumor cell proliferation: Ras and the MAPK (tumor cell proliferation-promoting) pathway, and the Hippo (tumor cell proliferation-suppressing) pathway.
Collapse
Affiliation(s)
- Tsung-Jen Liao
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA. and Biophysics Program, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | - David Fushman
- Biophysics Program, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA and Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA. and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|