1
|
Awad S, Valleriani A, Chiarugi D. A data-driven estimation of the ribosome drop-off rate in S. cerevisiae reveals a correlation with the genes length. NAR Genom Bioinform 2024; 6:lqae036. [PMID: 38638702 PMCID: PMC11025885 DOI: 10.1093/nargab/lqae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 03/08/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024] Open
Abstract
Ribosomes are the molecular machinery that catalyse all the fundamental steps involved in the translation of mRNAs into proteins. Given the complexity of this process, the efficiency of protein synthesis depends on a large number of factors among which ribosome drop-off (i.e. the premature detachment of the ribosome from the mRNA template) plays an important role. However, an in vitro quantification of the extent to which ribosome drop-off occurs is not trivial due to difficulties in obtaining the needed experimental evidence. In this work we focus on the study of ribosome drop-off in Saccharomyces cerevisiae by using 'Ribofilio', a novel software tool that relies on a high sensitive strategy to estimate the ribosome drop-off rate from ribosome profiling data. Our results show that ribosome drop-off events occur at a significant rate also when S. cerevisiae is cultured in standard conditions. In this context, we also identified a correlation between the ribosome drop-off rate and the genes length: the longer the gene, the lower the drop-off rate.
Collapse
Affiliation(s)
- Sherine Awad
- Genomics and Bioinformatics Core Facility, Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Angelo Valleriani
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Davide Chiarugi
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig - Germany
| |
Collapse
|
2
|
Bhatia N, Gupta AK. Totally asymmetric simple exclusion process with local resetting in a resource-constrained environment. Phys Rev E 2024; 109:024109. [PMID: 38491687 DOI: 10.1103/physreve.109.024109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/22/2024] [Indexed: 03/18/2024]
Abstract
Inspired by the process of mRNA translation, in which the stochastic degradation of mRNA-ribosome machinery is modeled by the resetting dynamics, we study an open totally asymmetric simple exclusion process with local resetting at the entry site in a resource-constrained environment. The effect of constrained resources on the stationary properties of the system has been comprehended in the form of the filling factor. The mean-field approximations are utilized to obtain stationary state features, such as density profiles and phase diagrams. The phase diagram possesses pure phases as well as coexisting phases, including a low-density-high-density phase separation, which did not manifest under periodic boundary conditions despite the system being closed there as well. The role of the resetting rate has been investigated on the stationary properties of the system, depending on how the filling factor scales with the system size. In contrast to the resetting model for infinite resources, two distinct phase transitions are observed for the smaller values of the filling factor leading to a change in the topology of the phase diagram. The impact of the resetting rate along with the finite-size effect has also been examined on the shock dynamics. All the mean-field results are found in remarkable agreement with the Monte Carlo simulations.
Collapse
Affiliation(s)
- Nikhil Bhatia
- Department of Mathematics, Indian Institute of Technology Ropar Punjab, India
| | - Arvind Kumar Gupta
- Department of Mathematics, Indian Institute of Technology Ropar Punjab, India
| |
Collapse
|
3
|
N C P, Verma AK. Asymmetric coupling induces two-directional reentrance transition in three-lane exclusion process. Phys Rev E 2023; 107:044104. [PMID: 37198843 DOI: 10.1103/physreve.107.044104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/05/2023] [Indexed: 05/19/2023]
Abstract
Inspired by vehicular traffic phenomena, we study a three-lane open totally asymmetric simple exclusion process with both-sided lane switching in the companionship of Langmuir kinetics. We calculate the phase diagrams, density profiles, and phase transitions through mean-field theory and successfully validate these findings with Monte Carlo simulation results. It has been found that both the qualitative and quantitative topology of phase diagrams crucially rely on the ratio of lane-switching rates called coupling strength. The proposed model has various unique mixed phases, including a double shock resulting in bulk-induced phase transitions. The interplay between both-sided coupling, third lane, and Langmuir kinetics produces unusual features, including a back-and-forth phase transition, also called a reentrance transition, in two directions for relatively nominal values of coupling strength. The presence of reentrance transition and peculiar phase boundaries leads to a rare type of phase division in which one phase lies entirely within another region. Moreover, we scrutinize the shock dynamics by analyzing four different types of shock and finite-size effects.
Collapse
Affiliation(s)
- Priyanka N C
- Department of Mathematics, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu, India
| | - Atul Kumar Verma
- Department of Mathematics, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu, India
| |
Collapse
|
4
|
Jain A, Gupta AK. Modeling transport of extended interacting objects with drop-off phenomenon. PLoS One 2022; 17:e0267858. [PMID: 35499998 PMCID: PMC9060384 DOI: 10.1371/journal.pone.0267858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/17/2022] [Indexed: 11/19/2022] Open
Abstract
We study a deterministic framework for important cellular transport phenomena involving a large number of interacting molecules called the excluded flow of extended interacting objects with drop-off effect (EFEIOD). This model incorporates many realistic features of biological transport process including the length of biological "particles" and the fact that they can detach along the biological 'tracks'. The flow between the consecutive sites is unidirectional and is described by a "soft" simple exclusion principle and by repelling or attracting forces between neighboring particles. We show that the model admits a unique steady-state. Furthermore, if the parameters are periodic with common period T, then the steady-state profile converge to a unique periodic solution of period T. Simulations of the EFEIOD demonstrate several non-trivial effects of the interactions on the system steady-state profile. For example, detachment rates may help in increasing the steady-state flow by alleviating traffic jams that can exist due to several reasons like bottleneck rate or interactive forces between the particles. We also analyze the special case of our model, when there are no forces exerted by neighboring particles, and called it as the ribosome flow model of extended objects with drop-off effect (RFMEOD), and study the sensitivity of its steady-state to variations in the parameters.
Collapse
Affiliation(s)
- Aditi Jain
- Department of Mathematics, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Arvind Kumar Gupta
- Department of Mathematics, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| |
Collapse
|
5
|
Jain A, Margaliot M, Gupta AK. Large-scale mRNA translation and the intricate effects of competition for the finite pool of ribosomes. J R Soc Interface 2022; 19:20220033. [PMID: 35259953 PMCID: PMC8922411 DOI: 10.1098/rsif.2022.0033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We present a new theoretical framework for large-scale mRNA translation using a network of models called the ribosome flow model with Langmuir kinetics (RFMLK), interconnected via a pool of free ribosomes. The input to each RFMLK depends on the pool density, and it affects the initiation rate and potentially also the internal ribosome entry rates along each RFMLK. Ribosomes that detach from an RFMLK owing to termination or premature drop-off are fed back into the pool. We prove that the network always converges to a steady state, and study its sensitivity to variations in the parameters. For example, we show that if the drop-off rate at some site in some RFMLK is increased then the pool density increases and consequently the steady-state production rate in all the other RFMLKs increases. Surprisingly, we also show that modifying a parameter of a certain RFMLK can lead to arbitrary effects on the densities along the modified RFMLK, depending on the parameters in the entire network. We conclude that the competition for shared resources generates an indirect and intricate web of mutual effects between the mRNA molecules that must be accounted for in any analysis of translation.
Collapse
Affiliation(s)
- Aditi Jain
- Department of Mathematics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Michael Margaliot
- School of Electrical Engineering and the Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Arvind Kumar Gupta
- Department of Mathematics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
6
|
Comparative ribosome profiling reveals distinct translational landscapes of salt-sensitive and -tolerant rice. BMC Genomics 2021; 22:612. [PMID: 34384368 PMCID: PMC8359061 DOI: 10.1186/s12864-021-07922-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 08/03/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Soil salinization represents a serious threat to global rice production. Although significant research has been conducted to understand salt stress at the genomic, transcriptomic and proteomic levels, few studies have focused on the translatomic responses to this stress. Recent studies have suggested that transcriptional and translational responses to salt stress can often operate independently. RESULTS We sequenced RNA and ribosome-protected fragments (RPFs) from the salt-sensitive rice (O. sativa L.) cultivar 'Nipponbare' (NB) and the salt-tolerant cultivar 'Sea Rice 86' (SR86) under normal and salt stress conditions. A large discordance between salt-induced transcriptomic and translatomic alterations was found in both cultivars, with more translationally regulated genes being observed in SR86 in comparison to NB. A biased ribosome occupancy, wherein RPF depth gradually increased from the 5' ends to the 3' ends of coding regions, was revealed in NB and SR86. This pattern was strengthened by salt stress, particularly in SR86. On the contrary, the strength of ribosome stalling was accelerated in salt-stressed NB but decreased in SR86. CONCLUSIONS This study revealed that translational reprogramming represents an important layer of salt stress responses in rice, and the salt-tolerant cultivar SR86 adopts a more flexible translationally adaptive strategy to cope with salt stress compared to the salt susceptible cultivar NB. The differences in translational dynamics between NB and SR86 may derive from their differing levels of ribosome stalling under salt stress.
Collapse
|
7
|
Dauloudet O, Neri I, Walter JC, Dorignac J, Geniet F, Parmeggiani A. Modelling the effect of ribosome mobility on the rate of protein synthesis. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:19. [PMID: 33686567 PMCID: PMC7940305 DOI: 10.1140/epje/s10189-021-00019-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Translation is one of the main steps in the synthesis of proteins. It consists of ribosomes that translate sequences of nucleotides encoded on mRNA into polypeptide sequences of amino acids. Ribosomes bound to mRNA move unidirectionally, while unbound ribosomes diffuse in the cytoplasm. It has been hypothesized that finite diffusion of ribosomes plays an important role in ribosome recycling and that mRNA circularization enhances the efficiency of translation, see e.g. Lodish et al. (Molecular cell biology, 8th edn, W.H. Freeman and Company, San Francisco, 2016). In order to estimate the effect of cytoplasmic diffusion on the rate of translation, we consider a totally asymmetric simple exclusion process coupled to a finite diffusive reservoir, which we call the ribosome transport model with diffusion. In this model, we derive an analytical expression for the rate of protein synthesis as a function of the diffusion constant of ribosomes, which is corroborated with results from continuous-time Monte Carlo simulations. Using a wide range of biological relevant parameters, we conclude that diffusion is not a rate limiting factor in translation initiation because diffusion is fast enough in biological cells.
Collapse
Affiliation(s)
- Olivier Dauloudet
- Laboratoire Charles Coulomb (L2C), CNRS, Montpellier University, Montpellier, France
- Laboratory of Parasite Host Interactions (LPHI), CNRS, Montpellier University, Montpellier, France
| | - Izaak Neri
- Department of Mathematics, King’s College London, Strand, London, WC2R 2LS UK
| | - Jean-Charles Walter
- Laboratoire Charles Coulomb (L2C), CNRS, Montpellier University, Montpellier, France
| | - Jérôme Dorignac
- Laboratoire Charles Coulomb (L2C), CNRS, Montpellier University, Montpellier, France
| | - Frédéric Geniet
- Laboratoire Charles Coulomb (L2C), CNRS, Montpellier University, Montpellier, France
| | - Andrea Parmeggiani
- Laboratoire Charles Coulomb (L2C), CNRS, Montpellier University, Montpellier, France
- Laboratory of Parasite Host Interactions (LPHI), CNRS, Montpellier University, Montpellier, France
| |
Collapse
|
8
|
Szavits-Nossan J, Ciandrini L. Inferring efficiency of translation initiation and elongation from ribosome profiling. Nucleic Acids Res 2020; 48:9478-9490. [PMID: 32821926 PMCID: PMC7515720 DOI: 10.1093/nar/gkaa678] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/29/2020] [Accepted: 08/15/2020] [Indexed: 01/13/2023] Open
Abstract
One of the main goals of ribosome profiling is to quantify the rate of protein synthesis at the level of translation. Here, we develop a method for inferring translation elongation kinetics from ribosome profiling data using recent advances in mathematical modelling of mRNA translation. Our method distinguishes between the elongation rate intrinsic to the ribosome’s stepping cycle and the actual elongation rate that takes into account ribosome interference. This distinction allows us to quantify the extent of ribosomal collisions along the transcript and identify individual codons where ribosomal collisions are likely. When examining ribosome profiling in yeast, we observe that translation initiation and elongation are close to their optima and traffic is minimized at the beginning of the transcript to favour ribosome recruitment. However, we find many individual sites of congestion along the mRNAs where the probability of ribosome interference can reach \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$50\%$\end{document}. Our work provides new measures of translation initiation and elongation efficiencies, emphasizing the importance of rating these two stages of translation separately.
Collapse
Affiliation(s)
- Juraj Szavits-Nossan
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Luca Ciandrini
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, Montpellier 34090, France
| |
Collapse
|
9
|
Szavits-Nossan J, Evans MR. Dynamics of ribosomes in mRNA translation under steady- and nonsteady-state conditions. Phys Rev E 2020; 101:062404. [PMID: 32688522 DOI: 10.1103/physreve.101.062404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/20/2020] [Indexed: 11/07/2022]
Abstract
Recent advances in DNA sequencing and fluorescence imaging have made it possible to monitor the dynamics of ribosomes actively engaged in messenger RNA (mRNA) translation. Here, we model these experiments within the inhomogeneous totally asymmetric simple exclusion process (TASEP) using realistic kinetic parameters. In particular, we present analytic expressions to describe the following three cases: (a) translation of a newly transcribed mRNA, (b) translation in the steady state and, specifically, the dynamics of individual (tagged) ribosomes, and (c) runoff translation after inhibition of translation initiation. In cases (b) and (c) we develop an effective medium approximation to describe many-ribosome dynamics in terms of a single tagged ribosome in an effective medium. The predictions are in good agreement with stochastic simulations.
Collapse
Affiliation(s)
- Juraj Szavits-Nossan
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Martin R Evans
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|
10
|
McFarland MR, Keller CD, Childers BM, Adeniyi SA, Corrigall H, Raguin A, Romano MC, Stansfield I. The molecular aetiology of tRNA synthetase depletion: induction of a GCN4 amino acid starvation response despite homeostatic maintenance of charged tRNA levels. Nucleic Acids Res 2020; 48:3071-3088. [PMID: 32016368 PMCID: PMC7102972 DOI: 10.1093/nar/gkaa055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 12/13/2022] Open
Abstract
During protein synthesis, charged tRNAs deliver amino acids to translating ribosomes, and are then re-charged by tRNA synthetases (aaRS). In humans, mutant aaRS cause a diversity of neurological disorders, but their molecular aetiologies are incompletely characterised. To understand system responses to aaRS depletion, the yeast glutamine aaRS gene (GLN4) was transcriptionally regulated using doxycycline by tet-off control. Depletion of Gln4p inhibited growth, and induced a GCN4 amino acid starvation response, indicative of uncharged tRNA accumulation and Gcn2 kinase activation. Using a global model of translation that included aaRS recharging, Gln4p depletion was simulated, confirming slowed translation. Modelling also revealed that Gln4p depletion causes negative feedback that matches translational demand for Gln-tRNAGln to aaRS recharging capacity. This maintains normal charged tRNAGln levels despite Gln4p depletion, confirmed experimentally using tRNA Northern blotting. Model analysis resolves the paradox that Gln4p depletion triggers a GCN4 response, despite maintenance of tRNAGln charging levels, revealing that normally, the aaRS population can sequester free, uncharged tRNAs during aminoacylation. Gln4p depletion reduces this sequestration capacity, allowing uncharged tRNAGln to interact with Gcn2 kinase. The study sheds new light on mutant aaRS disease aetiologies, and explains how aaRS sequestration of uncharged tRNAs can prevent GCN4 activation under non-starvation conditions.
Collapse
Affiliation(s)
- Matthew R McFarland
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Corina D Keller
- Institute of Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Brandon M Childers
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Stephen A Adeniyi
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Holly Corrigall
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Adélaïde Raguin
- Institute of Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - M Carmen Romano
- Institute of Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Ian Stansfield
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
11
|
Gribling-Burrer AS, Chiabudini M, Zhang Y, Qiu Z, Scazzari M, Wölfle T, Wohlwend D, Rospert S. A dual role of the ribosome-bound chaperones RAC/Ssb in maintaining the fidelity of translation termination. Nucleic Acids Res 2020; 47:7018-7034. [PMID: 31114879 PMCID: PMC6648330 DOI: 10.1093/nar/gkz334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/05/2019] [Accepted: 04/25/2019] [Indexed: 11/22/2022] Open
Abstract
The yeast ribosome-associated complex RAC and the Hsp70 homolog Ssb are anchored to the ribosome and together act as chaperones for the folding and co-translational assembly of nascent polypeptides. In addition, the RAC/Ssb system plays a crucial role in maintaining the fidelity of translation termination; however, the latter function is poorly understood. Here we show that the RAC/Ssb system promotes the fidelity of translation termination via two distinct mechanisms. First, via direct contacts with the ribosome and the nascent chain, RAC/Ssb facilitates the translation of stalling-prone poly-AAG/A sequences encoding for polylysine segments. Impairment of this function leads to enhanced ribosome stalling and to premature nascent polypeptide release at AAG/A codons. Second, RAC/Ssb is required for the assembly of fully functional ribosomes. When RAC/Ssb is absent, ribosome biogenesis is hampered such that core ribosomal particles are structurally altered at the decoding and peptidyl transferase centers. As a result, ribosomes assembled in the absence of RAC/Ssb bind to the aminoglycoside paromomycin with high affinity (KD = 76.6 nM) and display impaired discrimination between stop codons and sense codons. The combined data shed light on the multiple mechanisms by which the RAC/Ssb system promotes unimpeded biogenesis of newly synthesized polypeptides.
Collapse
Affiliation(s)
- Anne-Sophie Gribling-Burrer
- Institute of Biochemistry and Molecular Biology, ZBMZ, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany
| | - Marco Chiabudini
- Institute of Biochemistry and Molecular Biology, ZBMZ, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany
| | - Ying Zhang
- Institute of Biochemistry and Molecular Biology, ZBMZ, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany
| | - Zonghao Qiu
- Institute of Biochemistry and Molecular Biology, ZBMZ, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany
| | - Mario Scazzari
- Institute of Biochemistry and Molecular Biology, ZBMZ, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany
| | - Tina Wölfle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany
| | - Daniel Wohlwend
- Institute of Biochemistry, Chemical and Pharmaceutical Faculty, University of Freiburg, D-79104 Freiburg, Germany
| | - Sabine Rospert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
12
|
Scott S, Szavits-Nossan J. Power series method for solving TASEP-based models of mRNA translation. Phys Biol 2019; 17:015004. [PMID: 31726446 DOI: 10.1088/1478-3975/ab57a0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We develop a method for solving mathematical models of messenger RNA (mRNA) translation based on the totally asymmetric simple exclusion process (TASEP). Our main goal is to demonstrate that the method is versatile and applicable to realistic models of translation. To this end we consider the TASEP with codon-dependent elongation rates, premature termination due to ribosome drop-off and translation reinitiation due to circularisation of the mRNA. We apply the method to the model organism Saccharomyces cerevisiae under physiological conditions and find an excellent agreement with the results of stochastic simulations. Our findings suggest that the common view on translation as being rate-limited by initiation is oversimplistic. Instead we find theoretical evidence for ribosome interference and also theoretical support for the ramp hypothesis which argues that codons at the beginning of genes have slower elongation rates in order to reduce ribosome density and jamming.
Collapse
Affiliation(s)
- S Scott
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | | |
Collapse
|
13
|
Aguilera LU, Raymond W, Fox ZR, May M, Djokic E, Morisaki T, Stasevich TJ, Munsky B. Computational design and interpretation of single-RNA translation experiments. PLoS Comput Biol 2019; 15:e1007425. [PMID: 31618265 PMCID: PMC6816579 DOI: 10.1371/journal.pcbi.1007425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/28/2019] [Accepted: 09/19/2019] [Indexed: 01/18/2023] Open
Abstract
Advances in fluorescence microscopy have introduced new assays to quantify live-cell translation dynamics at single-RNA resolution. We introduce a detailed, yet efficient sequence-based stochastic model that generates realistic synthetic data for several such assays, including Fluorescence Correlation Spectroscopy (FCS), ribosome Run-Off Assays (ROA) after Harringtonine application, and Fluorescence Recovery After Photobleaching (FRAP). We simulate these experiments under multiple imaging conditions and for thousands of human genes, and we evaluate through simulations which experiments are most likely to provide accurate estimates of elongation kinetics. Finding that FCS analyses are optimal for both short and long length genes, we integrate our model with experimental FCS data to capture the nascent protein statistics and temporal dynamics for three human genes: KDM5B, β-actin, and H2B. Finally, we introduce a new open-source software package, RNA Sequence to NAscent Protein Simulator (rSNAPsim), to easily simulate the single-molecule translation dynamics of any gene sequence for any of these assays and for different assumptions regarding synonymous codon usage, tRNA level modifications, or ribosome pauses. rSNAPsim is implemented in Python and is available at: https://github.com/MunskyGroup/rSNAPsim.git.
Collapse
Affiliation(s)
- Luis U. Aguilera
- Department of Chemical and Biological Engineering, Colorado State University Fort Collins, Colorado, United States of America
| | - William Raymond
- Department of Chemical and Biological Engineering, Colorado State University Fort Collins, Colorado, United States of America
- School of Biomedical Engineering, Colorado State University Fort Collins, Colorado, United States of America
| | - Zachary R. Fox
- School of Biomedical Engineering, Colorado State University Fort Collins, Colorado, United States of America
| | - Michael May
- School of Biomedical Engineering, Colorado State University Fort Collins, Colorado, United States of America
| | - Elliot Djokic
- School of Biomedical Engineering, Colorado State University Fort Collins, Colorado, United States of America
| | - Tatsuya Morisaki
- Department of Biochemistry and Molecular Biology and Institute for Genome Architecture and Function, Colorado State University, Fort Collins, Colorado, United States of America
| | - Timothy J. Stasevich
- Department of Biochemistry and Molecular Biology and Institute for Genome Architecture and Function, Colorado State University, Fort Collins, Colorado, United States of America
- Cell Biology Unit, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Kanagawa, Japan
| | - Brian Munsky
- Department of Chemical and Biological Engineering, Colorado State University Fort Collins, Colorado, United States of America
- School of Biomedical Engineering, Colorado State University Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
14
|
Park H, Subramaniam AR. Inverted translational control of eukaryotic gene expression by ribosome collisions. PLoS Biol 2019; 17:e3000396. [PMID: 31532761 PMCID: PMC6750593 DOI: 10.1371/journal.pbio.3000396] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/05/2019] [Indexed: 11/19/2022] Open
Abstract
The canonical model of eukaryotic translation posits that efficient translation initiation increases protein expression and mRNA stability. Contrary to this model, we find that increasing initiation rate can decrease both protein expression and stability of certain mRNAs in the budding yeast Saccharomyces cerevisiae. These mRNAs encode a stretch of polybasic residues that cause ribosome stalling. Our computational modeling predicts that the observed decrease in gene expression at high initiation rates occurs when ribosome collisions at stalls stimulate abortive termination of the leading ribosome or cause endonucleolytic mRNA cleavage. Consistent with this prediction, the collision-associated quality-control factors Asc1 and Hel2 (orthologs of human RACK1 and ZNF598, respectively) decrease gene expression from stall-containing mRNAs only at high initiation rates. Remarkably, hundreds of S. cerevisiae mRNAs that contain ribosome stall sequences also exhibit lower translation efficiency. We propose that inefficient translation initiation allows these stall-containing endogenous mRNAs to escape collision-stimulated reduction in gene expression. Higher rates of translation counterintuitively lead to lower protein levels from eukaryotic mRNAs that encode ribosome stalls; modelling suggests that this occurs when ribosome collisions at stalls trigger abortive termination of the leading ribosome or cause endonucleolytic mRNA cleavage.
Collapse
Affiliation(s)
- Heungwon Park
- Basic Sciences Division and Computational Biology Section of Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Arvind R. Subramaniam
- Basic Sciences Division and Computational Biology Section of Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
15
|
Santos M, Fidalgo A, Varanda AS, Oliveira C, Santos MAS. tRNA Deregulation and Its Consequences in Cancer. Trends Mol Med 2019; 25:853-865. [PMID: 31248782 DOI: 10.1016/j.molmed.2019.05.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023]
Abstract
The expression of transfer RNAs (tRNAs) is deregulated in cancer cells but the mechanisms and functional meaning of such deregulation are poorly understood. The proteome of cancer cells is not fully encoded by their transcriptome, however, the contribution of mRNA translation to such diversity remains to be elucidated. We review data supporting the hypothesis that tRNA expression deregulation and translational error rate is an important contributor to proteome diversity and cell population heterogeneity, genome instability, and drug resistance in tumors. This hypothesis is aligned with recent data in various model organisms, showing unanticipated adaptive roles of translational errors (adaptive mistranslation), expression control of specific gene subsets by tRNAs, and proteome diversification by elevation of translational error rates in tumors.
Collapse
Affiliation(s)
- Mafalda Santos
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal; Institute of Molecular Pathology and Immunology University of Porto (IPATIMUP), Porto, Portugal; Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Ana Fidalgo
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - A Sofia Varanda
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal; Institute of Molecular Pathology and Immunology University of Porto (IPATIMUP), Porto, Portugal; Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Carla Oliveira
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal; Institute of Molecular Pathology and Immunology University of Porto (IPATIMUP), Porto, Portugal; Department of Pathology, Medical Faculty of Porto, Porto, Portugal.
| | - Manuel A S Santos
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
16
|
Abstract
Heterologously expressed genes require adaptation to the host organism to ensure adequate levels of protein synthesis, which is typically approached by replacing codons by the target organism’s preferred codons. In view of frequently encountered suboptimal outcomes we introduce the codon-specific elongation model (COSEM) as an alternative concept. COSEM simulates ribosome dynamics during mRNA translation and informs about protein synthesis rates per mRNA in an organism- and context-dependent way. Protein synthesis rates from COSEM are integrated with further relevant covariates such as translation accuracy into a protein expression score that we use for codon optimization. The scoring algorithm further enables fine-tuning of protein expression including deoptimization and is implemented in the software OCTOPOS. The protein expression score produces competitive predictions on proteomic data from prokaryotic, eukaryotic, and human expression systems. In addition, we optimized and tested heterologous expression of manA and ova genes in Salmonella enterica serovar Typhimurium. Superiority over standard methodology was demonstrated by a threefold increase in protein yield compared to wildtype and commercially optimized sequences.
Collapse
|
17
|
Sharma AK, Sormanni P, Ahmed N, Ciryam P, Friedrich UA, Kramer G, O’Brien EP. A chemical kinetic basis for measuring translation initiation and elongation rates from ribosome profiling data. PLoS Comput Biol 2019; 15:e1007070. [PMID: 31120880 PMCID: PMC6559674 DOI: 10.1371/journal.pcbi.1007070] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 06/11/2019] [Accepted: 05/06/2019] [Indexed: 01/23/2023] Open
Abstract
Analysis methods based on simulations and optimization have been previously developed to estimate relative translation rates from next-generation sequencing data. Translation involves molecules and chemical reactions, hence bioinformatics methods consistent with the laws of chemistry and physics are more likely to produce accurate results. Here, we derive simple equations based on chemical kinetic principles to measure the translation-initiation rate, transcriptome-wide elongation rate, and individual codon translation rates from ribosome profiling experiments. Our methods reproduce the known rates from ribosome profiles generated from detailed simulations of translation. By applying our methods to data from S. cerevisiae and mouse embryonic stem cells, we find that the extracted rates reproduce expected correlations with various molecular properties, and we also find that mouse embryonic stem cells have a global translation speed of 5.2 AA/s, in agreement with previous reports that used other approaches. Our analysis further reveals that a codon can exhibit up to 26-fold variability in its translation rate depending upon its context within a transcript. This broad distribution means that the average translation rate of a codon is not representative of the rate at which most instances of that codon are translated, and it suggests that translational regulation might be used by cells to a greater degree than previously thought.
Collapse
Affiliation(s)
- Ajeet K. Sharma
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Pietro Sormanni
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Nabeel Ahmed
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Prajwal Ciryam
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Ulrike A. Friedrich
- Center for Molecular Biology of the Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Günter Kramer
- Center for Molecular Biology of the Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Edward P. O’Brien
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Institute for CyberScience, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
18
|
Fernandes LD, Moura APSD, Ciandrini L. Gene length as a regulator for ribosome recruitment and protein synthesis: theoretical insights. Sci Rep 2017; 7:17409. [PMID: 29234048 PMCID: PMC5727216 DOI: 10.1038/s41598-017-17618-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/28/2017] [Indexed: 01/14/2023] Open
Abstract
Protein synthesis rates are determined, at the translational level, by properties of the transcript’s sequence. The efficiency of an mRNA can be tuned by varying the ribosome binding sites controlling the recruitment of the ribosomes, or the codon usage establishing the speed of protein elongation. In this work we propose transcript length as a further key determinant of translation efficiency. Based on a physical model that considers the kinetics of ribosomes advancing on the mRNA and diffusing in its surrounding, as well as mRNA circularisation and ribosome drop-off, we explain how the transcript length may play a central role in establishing ribosome recruitment and the overall translation rate of an mRNA. According to our results, the proximity of the 3′ end to the ribosomal recruitment site of the mRNA could induce a feedback in the translation process that would favour the recycling of ribosomes. We also demonstrate how this process may be involved in shaping the experimental ribosome density-gene length dependence. Finally, we argue that cells could exploit this mechanism to adjust and balance the usage of its ribosomal resources.
Collapse
Affiliation(s)
- Lucas D Fernandes
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz - Universidade de São Paulo (USP), 13418-900, Piracicaba/SP, Brazil.,Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Alessandro P S de Moura
- Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Luca Ciandrini
- DIMNP UMR 5235, Université de Montpellier and CNRS, F-34095, Montpellier, France. .,Laboratoire Charles Coulomb UMR5221, Université de Montpellier and CNRS, F-34095, Montpellier, France.
| |
Collapse
|