1
|
Žunić Išasegi I, Kopić J, Smilović D, Krsnik Ž, Kostović I. Transient Subplate Sublayer Forms Unique Corridor for Differential Ingrowth of Associative Pulvinar and Primary Visual Projection in the Prospective Visual Cortical Areas of the Human Fetal Occipital Lobe. Cereb Cortex 2021; 32:110-122. [PMID: 34255828 DOI: 10.1093/cercor/bhab197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 11/12/2022] Open
Abstract
Cytoarchitectonical parcellation of the visual cortex into the striate and extrastriate cortex requires complex histogenetic events within a precise spatio-temporal frame to attain the specification of areal domains and associated thalamocortical connections during the fetal brain development. We analyzed a deep subplate cellular monolayer (subplate "corridor" cells) present during a restricted period of 13-15 postconceptional weeks, showing the 3D caudo-ventro-medial position in the human fetal occipital lobe, corresponding to the segregation point of pulvinocortical and geniculocortical fibers at the prospective area 17/18 border. Immunofluorescence stainings revealed subplate "corridor" cells as the specific class of the deepest subplate neurons (NeuN+, Tbr1+, Cplx3+) expressing axon guidance molecules (Sema-3A+, EphA6+), presumably for the attraction of pulvinocortical axons and the repulsion of geniculocortical axons growing at that time (SNAP25+, Syn+, FN+). Furthermore, quantitative analysis of the subplate "corridor" region of interest, considering cell number, immunofluorescence signal intensity per cell and per region, revealed significant differences to other regions across the tangential circumference of the developing cerebral wall. Thus, our study sheds new light on the deepest subplate sublayer, strategically aligned along the growing axon systems in the prospective visual system, suggesting the establishment of the area 17/18 border by differential thalamocortical input during the fetal brain development.
Collapse
Affiliation(s)
- Iris Žunić Išasegi
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia.,Department of Psychiatry and Psychological Medicine, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Janja Kopić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Dinko Smilović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Željka Krsnik
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Wosniack ME, Kirchner JH, Chao LY, Zabouri N, Lohmann C, Gjorgjieva J. Adaptation of spontaneous activity in the developing visual cortex. eLife 2021; 10:61619. [PMID: 33722342 PMCID: PMC7963484 DOI: 10.7554/elife.61619] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Spontaneous activity drives the establishment of appropriate connectivity in different circuits during brain development. In the mouse primary visual cortex, two distinct patterns of spontaneous activity occur before vision onset: local low-synchronicity events originating in the retina and global high-synchronicity events originating in the cortex. We sought to determine the contribution of these activity patterns to jointly organize network connectivity through different activity-dependent plasticity rules. We postulated that local events shape cortical input selectivity and topography, while global events homeostatically regulate connection strength. However, to generate robust selectivity, we found that global events should adapt their amplitude to the history of preceding cortical activation. We confirmed this prediction by analyzing in vivo spontaneous cortical activity. The predicted adaptation leads to the sparsification of spontaneous activity on a slower timescale during development, demonstrating the remarkable capacity of the developing sensory cortex to acquire sensitivity to visual inputs after eye-opening.
Collapse
Affiliation(s)
- Marina E Wosniack
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt, Germany.,School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Jan H Kirchner
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt, Germany.,School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Ling-Ya Chao
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Nawal Zabouri
- Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Christian Lohmann
- Netherlands Institute for Neuroscience, Amsterdam, Netherlands.,Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, Netherlands
| | - Julijana Gjorgjieva
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt, Germany.,School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
3
|
Medori M, Spelzini G, Scicolone G. Molecular complexity of visual mapping: a challenge for regenerating therapy. Neural Regen Res 2020; 15:382-389. [PMID: 31571645 PMCID: PMC6921353 DOI: 10.4103/1673-5374.266044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Investigating the cellular and molecular mechanisms involved in the development of topographically ordered connections in the central nervous system constitutes an important issue in neurobiology because these connections are the base of the central nervous system normal function. The dominant model to study the development of topographic maps is the projection from the retinal ganglion cells to the optic tectum/colliculus. The expression pattern of Eph/ephrin system in opposing gradients both in the retina and the tectum, labels the local addresses on the target and gives specific sensitivities to growth cones according to their topographic origin in the retina. The rigid precision of normal retinotopic mapping has prompted the chemoaffinity hypothesis, positing axonal targeting to be based on fixed biochemical affinities between fibers and targets. However, several lines of evidence have shown that the mapping can adjust to experimentally modified targets with flexibility, demonstrating the robustness of the guidance process. Here we discuss the complex ways the Ephs and ephrins interact allowing to understand how the retinotectal mapping is a precise but also a flexible process.
Collapse
Affiliation(s)
- Mara Medori
- CONICET - Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN); Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Histología, Embriología y Genética, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gonzalo Spelzini
- CONICET - Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN); Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Histología, Embriología y Genética, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriel Scicolone
- CONICET - Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN); Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Histología, Embriología y Genética, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
4
|
Lu P, Gomes-Leal W, Anil S, Dobkins G, Huie JR, Ferguson AR, Graham L, Tuszynski M. Origins of Neural Progenitor Cell-Derived Axons Projecting Caudally after Spinal Cord Injury. Stem Cell Reports 2019; 13:105-114. [PMID: 31204300 PMCID: PMC6626851 DOI: 10.1016/j.stemcr.2019.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 12/30/2022] Open
Abstract
Neural progenitor cells (NPCs) transplanted into sites of spinal cord injury (SCI) extend large numbers of axons into the caudal host spinal cord. We determined the precise locations of neurons in the graft that extend axons into the caudal host spinal cord using AAV9-Cre-initiated retrograde tracing into floxed-TdTomato-expressing NPC grafts. 7,640 ± 630 grafted neurons extended axons to a single caudal host spinal cord site located 2 mm beyond the lesion, 5 weeks post injury. While caudally projecting axons arose from neurons located in all regions of the graft, the majority of caudally projecting graft neurons (53%) were located within the caudal one-third of the graft. Numerous host corticospinal axons formed monosynaptic projections onto caudally projecting graft neurons; however, we find that the majority of host axonal neuronal projections formed by neural progenitor cell interneuronal "relays" across sites of SCI are likely polysynaptic in nature.
Collapse
Affiliation(s)
- Paul Lu
- Veterans Administration-San Diego Healthcare System, San Diego, CA 92161, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093-0626, USA.
| | - Walace Gomes-Leal
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093-0626, USA; Laboratory of Experimental Neuroprotection and Neuroregeneration, Institute of Biological Sciences, Federal University of Pará Belém, Brazil
| | - Selin Anil
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093-0626, USA; Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
| | - Gabriel Dobkins
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093-0626, USA
| | - J Russell Huie
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Adam R Ferguson
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Lori Graham
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093-0626, USA
| | - Mark Tuszynski
- Veterans Administration-San Diego Healthcare System, San Diego, CA 92161, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093-0626, USA.
| |
Collapse
|
5
|
Ducuing H, Gardette T, Pignata A, Tauszig-Delamasure S, Castellani V. Commissural axon navigation in the spinal cord: A repertoire of repulsive forces is in command. Semin Cell Dev Biol 2019; 85:3-12. [DOI: 10.1016/j.semcdb.2017.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 01/31/2023]
|