1
|
Gao S, Liu Y, Wu B. The speed of neutral evolution on graphs. J R Soc Interface 2024; 21:20230594. [PMID: 38835245 PMCID: PMC11346635 DOI: 10.1098/rsif.2023.0594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/02/2024] [Indexed: 06/06/2024] Open
Abstract
The speed of evolution on structured populations is crucial for biological and social systems. The likelihood of invasion is key for evolutionary stability. But it makes little sense if it takes long. It is far from known what population structure slows down evolution. We investigate the absorption time of a single neutral mutant for all the 112 non-isomorphic undirected graphs of size 6. We find that about three-quarters of the graphs have an absorption time close to that of the complete graph, less than one-third are accelerators, and more than two-thirds are decelerators. Surprisingly, determining whether a graph has a long absorption time is too complicated to be captured by the joint degree distribution. Via the largest sojourn time, we find that echo-chamber-like graphs, which consist of two homogeneous graphs connected by few sparse links, are likely to slow down absorption. These results are robust for large graphs, mutation patterns as well as evolutionary processes. This work serves as a benchmark for timing evolution with complex interactions, and fosters the understanding of polarization in opinion formation.
Collapse
Affiliation(s)
- Shun Gao
- School of Sciences, Beijing University of Posts and Telecommunications, Beijing, People’s Republic of China
| | - Yuan Liu
- School of Sciences, Beijing University of Posts and Telecommunications, Beijing, People’s Republic of China
| | - Bin Wu
- School of Sciences, Beijing University of Posts and Telecommunications, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Nemati H, Kaveh K, Ejtehadi MR. Counterintuitive properties of evolutionary measures: A stochastic process study in cyclic population structures with periodic environments. J Theor Biol 2023; 564:111436. [PMID: 36828246 DOI: 10.1016/j.jtbi.2023.111436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 01/26/2023] [Accepted: 02/05/2023] [Indexed: 02/24/2023]
Abstract
Local environmental interactions are a major factor in determining the success of a new mutant in structured populations. Spatial variations in the concentration of genotype-specific resources change the fitness of competing strategies locally and thus can drastically change the outcome of evolutionary processes in unintuitive ways. The question is how such local environmental variations in network population structures change the condition for selection and fixation probability of an advantageous (or deleterious) mutant. We consider linear graph structures and focus on the case where resources have a spatial periodic pattern. This is the simplest model with two parameters, length scale and fitness scales, representing heterogeneity. We calculate fixation probability and fixation times for a constant population birth-death process as fitness heterogeneity and period vary. Fixation probability is affected by not only the level of fitness heterogeneity but also spatial scale of resources variations set by period of distribution T. We identify conditions for which a previously a deleterious mutant (in a uniform environment) becomes beneficial as fitness heterogeneity is increased. We observe cases where the fixation probability of both mutant and resident types are more than their neutral value, 1/N, simultaneously. This coincides with exponential increase in time to fixation which points to potential coexistence of resident and mutant types. Finally, we discuss the effect of the 'fitness shift' where the fitness function of two types has a phase difference. We observe significant increases (or decreases) in the fixation probability of the mutant as a result of such phase shift.
Collapse
Affiliation(s)
- Hossein Nemati
- Sharif University of Technology, Physics Department, Iran
| | - Kamran Kaveh
- University of Washington, Department of Applied Mathematics, United States of America.
| | | |
Collapse
|
3
|
Li Z, Chen X, Yang HX, Szolnoki A. Game-theoretical approach for opinion dynamics on social networks. CHAOS (WOODBURY, N.Y.) 2022; 32:073117. [PMID: 35907745 DOI: 10.1063/5.0084178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Opinion dynamics on social networks have received considerable attentions in recent years. Nevertheless, just a few works have theoretically analyzed the condition in which a certain opinion can spread in the whole structured population. In this article, we propose an evolutionary game approach for a binary opinion model to explore the conditions for an opinion's spreading. Inspired by real-life observations, we assume that an agent's choice to select an opinion is not random but is based on a score rooted from both public knowledge and the interactions with neighbors. By means of coalescing random walks, we obtain a condition in which opinion A can be favored to spread on social networks in the weak selection limit. We find that the successfully spreading condition of opinion A is closely related to the basic scores of binary opinions, the feedback scores on opinion interactions, and the structural parameters including the edge weights, the weighted degrees of vertices, and the average degree of the network. In particular, when individuals adjust their opinions based solely on the public information, the vitality of opinion A depends exclusively on the difference of basic scores of A and B. When there are no negative (positive) feedback interactions between connected individuals, we find that the success of opinion A depends on the ratio of the obtained positive (negative) feedback scores of competing opinions. To complete our study, we perform computer simulations on fully connected, small-world, and scale-free networks, respectively, which support and confirm our theoretical findings.
Collapse
Affiliation(s)
- Zhifang Li
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiaojie Chen
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Han-Xin Yang
- Department of Physics, Fuzhou University, Fuzhou 350108, China
| | - Attila Szolnoki
- Institute of Technical Physics and Materials Science, Centre for Energy Research, P.O. Box 49, H-1525 Budapest, Hungary
| |
Collapse
|
4
|
Dehghani MA, Darooneh AH, Kohandel M. The network structure affects the fixation probability when it couples to the birth-death dynamics in finite population. PLoS Comput Biol 2021; 17:e1009537. [PMID: 34705822 PMCID: PMC8575310 DOI: 10.1371/journal.pcbi.1009537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/08/2021] [Accepted: 10/06/2021] [Indexed: 11/18/2022] Open
Abstract
The study of evolutionary dynamics on graphs is an interesting topic for researchers in various fields of science and mathematics. In systems with finite population, different model dynamics are distinguished by their effects on two important quantities: fixation probability and fixation time. The isothermal theorem declares that the fixation probability is the same for a wide range of graphs and it only depends on the population size. This has also been proved for more complex graphs that are called complex networks. In this work, we propose a model that couples the population dynamics to the network structure and show that in this case, the isothermal theorem is being violated. In our model the death rate of a mutant depends on its number of neighbors, and neutral drift holds only in the average. We investigate the fixation probability behavior in terms of the complexity parameter, such as the scale-free exponent for the scale-free network and the rewiring probability for the small-world network. In this work, we examine an evolutionary model that considers the effect of competition between the mutated individuals for acquiring more resources. This competition has an effect on the death rate of mutants. The model purposes that the death rate of each mutant depends on the number of its neighbors, while the average death rate in the population is equal to one. The birth rate for all individuals is assumed to be the same and equal to one. This situation is called here the ‘neutral drift in average’. We study the dynamics of the model on complex networks to take into account the non-uniformity of the environment. The results show the fixation probability differs from the Moran model. For the construction of this model, we were biologically motivated by the avascular tumour, which consists of a population of normal and cancer cells. The cancer cells likely need more oxygen than normal cells. There is a competition between cells for consuming oxygen, and cancer cells are far more sensitive to the amount of oxygen in the environment than normal cells. This means the death rate of a cancer cell grows by increasing the number of its neighbors.
Collapse
Affiliation(s)
| | - Amir Hossein Darooneh
- Department of Physics, University of Zanjan, Zanjan, Iran
- Department of Applied Mathematics, University of Waterloo, Waterloo, Canada
- * E-mail:
| | - Mohammad Kohandel
- Department of Applied Mathematics, University of Waterloo, Waterloo, Canada
| |
Collapse
|
5
|
Maltas J, McNally DM, Wood KB. Evolution in alternating environments with tunable interlandscape correlations. Evolution 2021; 75:10-24. [PMID: 33206376 PMCID: PMC8246403 DOI: 10.1111/evo.14121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 10/15/2020] [Indexed: 11/29/2022]
Abstract
Natural populations are often exposed to temporally varying environments. Evolutionary dynamics in varying environments have been extensively studied, although understanding the effects of varying selection pressures remains challenging. Here, we investigate how cycling between a pair of statistically related fitness landscapes affects the evolved fitness of an asexually reproducing population. We construct pairs of fitness landscapes that share global fitness features but are correlated with one another in a tunable way, resulting in landscape pairs with specific correlations. We find that switching between these landscape pairs, depending on the ruggedness of the landscape and the interlandscape correlation, can either increase or decrease steady-state fitness relative to evolution in single environments. In addition, we show that switching between rugged landscapes often selects for increased fitness in both landscapes, even in situations where the landscapes themselves are anticorrelated. We demonstrate that positively correlated landscapes often possess a shared maximum in both landscapes that allows the population to step through sub-optimal local fitness maxima that often trap single landscape evolution trajectories. Finally, we demonstrate that switching between anticorrelated paired landscapes leads to ergodic-like dynamics where each genotype is populated with nonzero probability, dramatically lowering the steady-state fitness in comparison to single landscape evolution.
Collapse
Affiliation(s)
- Jeff Maltas
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109
| | | | - Kevin B. Wood
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109
- Department of Physics, University of Michigan, Ann Arbor, MI 4810
| |
Collapse
|
6
|
Kaveh K, McAvoy A, Chatterjee K, Nowak MA. The Moran process on 2-chromatic graphs. PLoS Comput Biol 2020; 16:e1008402. [PMID: 33151935 PMCID: PMC7671562 DOI: 10.1371/journal.pcbi.1008402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 11/17/2020] [Accepted: 09/27/2020] [Indexed: 12/02/2022] Open
Abstract
Resources are rarely distributed uniformly within a population. Heterogeneity in the concentration of a drug, the quality of breeding sites, or wealth can all affect evolutionary dynamics. In this study, we represent a collection of properties affecting the fitness at a given location using a color. A green node is rich in resources while a red node is poorer. More colors can represent a broader spectrum of resource qualities. For a population evolving according to the birth-death Moran model, the first question we address is which structures, identified by graph connectivity and graph coloring, are evolutionarily equivalent. We prove that all properly two-colored, undirected, regular graphs are evolutionarily equivalent (where “properly colored” means that no two neighbors have the same color). We then compare the effects of background heterogeneity on properly two-colored graphs to those with alternative schemes in which the colors are permuted. Finally, we discuss dynamic coloring as a model for spatiotemporal resource fluctuations, and we illustrate that random dynamic colorings often diminish the effects of background heterogeneity relative to a proper two-coloring. Heterogeneity in environmental conditions can have profound effects on long-term evolutionary outcomes in structured populations. We consider a population evolving on a colored graph, wherein the color of a node represents the resources at that location. Using a combination of analytical and numerical methods, we quantify the effects of background heterogeneity on a population’s dynamics. In addition to considering the notion of an “optimal” coloring with respect to mutant invasion, we also study the effects of dynamic spatial redistribution of resources as the population evolves. Although the effects of static background heterogeneity can be quite striking, these effects are often attenuated by the movement (or “flow”) of the underlying resources.
Collapse
Affiliation(s)
- Kamran Kaveh
- Department of Mathematics, Dartmouth College, Hanover, New Hampshire, United States
- * E-mail: (KK); (AM)
| | - Alex McAvoy
- Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- * E-mail: (KK); (AM)
| | | | - Martin A. Nowak
- Department of Mathematics, Harvard University, Cambridge, Massachusetts, United States
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States
| |
Collapse
|
7
|
Allen B, Sample C, Jencks R, Withers J, Steinhagen P, Brizuela L, Kolodny J, Parke D, Lippner G, Dementieva YA. Transient amplifiers of selection and reducers of fixation for death-Birth updating on graphs. PLoS Comput Biol 2020; 16:e1007529. [PMID: 31951612 PMCID: PMC6968840 DOI: 10.1371/journal.pcbi.1007529] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 10/30/2019] [Indexed: 11/30/2022] Open
Abstract
The spatial structure of an evolving population affects the balance of natural selection versus genetic drift. Some structures amplify selection, increasing the role that fitness differences play in determining which mutations become fixed. Other structures suppress selection, reducing the effect of fitness differences and increasing the role of random chance. This phenomenon can be modeled by representing spatial structure as a graph, with individuals occupying vertices. Births and deaths occur stochastically, according to a specified update rule. We study death-Birth updating: An individual is chosen to die and then its neighbors compete to reproduce into the vacant spot. Previous numerical experiments suggested that amplifiers of selection for this process are either rare or nonexistent. We introduce a perturbative method for this problem for weak selection regime, meaning that mutations have small fitness effects. We show that fixation probability under weak selection can be calculated in terms of the coalescence times of random walks. This result leads naturally to a new definition of effective population size. Using this and other methods, we uncover the first known examples of transient amplifiers of selection (graphs that amplify selection for a particular range of fitness values) for the death-Birth process. We also exhibit new families of “reducers of fixation”, which decrease the fixation probability of all mutations, whether beneficial or deleterious. Natural selection is often thought of as “survival of the fittest”, but random chance plays a significant role in which mutations persist and which are eliminated. The balance of selection versus randomness is affected by spatial structure—how individuals are arranged within their habitat. Some structures amplify the effects of selection, so that only the fittest mutations are likely to persist. Others suppress the effects of selection, making the survival of genes primarily a matter of random chance. We study this question using a mathematical model called the “death-Birth process”. Previous studies have found that spatial structure rarely, if ever, amplifies selection for this process. Here we report that spatial structure can indeed amplify selection, at least for mutations with small fitness effects. We also identify structures that reduce the spread of any new mutation, whether beneficial or deleterious. Our work introduces new mathematical techniques for assessing how population structure affects natural selection.
Collapse
Affiliation(s)
- Benjamin Allen
- Department of Mathematics, Emmanuel College, Boston, Massachusetts, United States of America
- * E-mail:
| | - Christine Sample
- Department of Mathematics, Emmanuel College, Boston, Massachusetts, United States of America
| | - Robert Jencks
- Department of Mathematics, Emmanuel College, Boston, Massachusetts, United States of America
| | - James Withers
- Department of Mathematics, Emmanuel College, Boston, Massachusetts, United States of America
| | - Patricia Steinhagen
- Department of Mathematics, Emmanuel College, Boston, Massachusetts, United States of America
| | - Lori Brizuela
- Department of Mathematics, Emmanuel College, Boston, Massachusetts, United States of America
| | - Joshua Kolodny
- Department of Mathematics, Emmanuel College, Boston, Massachusetts, United States of America
| | - Darren Parke
- Department of Mathematics, Emmanuel College, Boston, Massachusetts, United States of America
| | - Gabor Lippner
- Department of Mathematics, Northeastern University, Boston, Massachusetts, United States of America
| | - Yulia A. Dementieva
- Department of Mathematics, Emmanuel College, Boston, Massachusetts, United States of America
| |
Collapse
|
8
|
Farhang-Sardroodi S, Darooneh AH, Kohandel M, Komarova NL. Environmental spatial and temporal variability and its role in non-favoured mutant dynamics. J R Soc Interface 2019; 16:20180781. [PMID: 31409235 DOI: 10.1098/rsif.2018.0781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Understanding how environmental variability (or randomness) affects evolution is of fundamental importance for biology. The presence of temporal or spatial variability significantly affects the competition dynamics in populations, and gives rise to some counterintuitive observations. In this paper, we consider both birth-death (BD) or death-birth (DB) Moran processes, which are set up on a circular or a complete graph. We investigate spatial and temporal variability affecting division and/or death parameters. Assuming that mutant and wild-type fitness parameters are drawn from an identical distribution, we study mutant fixation probability and timing. We demonstrate that temporal and spatial types of variability possess fundamentally different properties. Under temporal randomness, in a completely mixed system, minority mutants experience (i) higher than neutral fixation probability and a higher mean conditional fixation time, if the division rates are affected by randomness and (ii) lower fixation probability and lower mean conditional fixation time if the death rates are affected. Once spatial restrictions are imposed, however, these effects completely disappear, and mutants in a circular graph experience neutral dynamics, but only for the DB update rule in case (i) and for the BD rule in case (ii) above. In contrast to this, in the case of spatially variable environment, both for BD/DB processes, both for complete/circular graph and both for division/death rates affected, minority mutants experience a higher than neutral probability of fixation. Fixation time, however, is increased by randomness on a circle, while it decreases for complete graphs under random division rates. A basic difference between temporal and spatial kinds of variability is the types of correlations that occur in the system. Under temporal randomness, mutants are spatially correlated with each other (they simply have equal fitness values at a given moment of time; the same holds for wild-types). Under spatial randomness, there are subtler, temporal correlations among mutant and wild-type cells, which manifest themselves by cells of each type 'claiming' better spots for themselves. Applications of this theory include cancer generation and biofilm dynamics.
Collapse
Affiliation(s)
| | - Amir H Darooneh
- Department of Physics, University of Zanjan, Zanjan, Iran.,Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Mohammad Kohandel
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Natalia L Komarova
- Department of Mathematics, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
9
|
Hathcock D, Strogatz SH. Fitness dependence of the fixation-time distribution for evolutionary dynamics on graphs. Phys Rev E 2019; 100:012408. [PMID: 31499887 DOI: 10.1103/physreve.100.012408] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Indexed: 05/27/2023]
Abstract
Evolutionary graph theory models the effects of natural selection and random drift on structured populations of competing mutant and nonmutant individuals. Recent studies have found that fixation times in such systems often have right-skewed distributions. Little is known, however, about how these distributions and their skew depend on mutant fitness. Here we calculate the fitness dependence of the fixation-time distribution for the Moran Birth-death process in populations modeled by two extreme networks: the complete graph and the one-dimensional ring lattice, obtaining exact solutions in the limit of large network size. We find that with non-neutral fitness, the Moran process on the ring has normally distributed fixation times, independent of the relative fitness of mutants and nonmutants. In contrast, on the complete graph, the fixation-time distribution is a fitness-weighted convolution of two Gumbel distributions. When fitness is neutral, the fixation-time distribution jumps discontinuously and becomes highly skewed on both the complete graph and the ring. Even on these simple networks, the fixation-time distribution exhibits a rich fitness dependence, with discontinuities and regions of universality. Extensions of our results to two-fitness Moran models, times to partial fixation, and evolution on random networks are discussed.
Collapse
Affiliation(s)
- David Hathcock
- Department of Physics, Cornell University, Ithaca, New York 14853, USA
| | - Steven H Strogatz
- Department of Mathematics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
10
|
Sinclair P, Carballo-Pacheco M, Allen RJ. Growth-dependent drug susceptibility can prevent or enhance spatial expansion of a bacterial population. Phys Biol 2019; 16:046001. [PMID: 30909169 DOI: 10.1088/1478-3975/ab131e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
As a population wave expands, organisms at the tip typically experience plentiful nutrients while those behind the front become nutrient-depleted. If the environment also contains a gradient of some inhibitor (e.g. a toxic drug), a tradeoff exists: the nutrient-rich tip is more exposed to the inhibitor, while the nutrient-starved region behind the front is less exposed. Here we show that this can lead to complex dynamics when the organism's response to the inhibitory substance is coupled to nutrient availability. We model a bacterial population which expands in a spatial gradient of antibiotic, under conditions where either fast-growing bacteria at the wave's tip, or slow-growing, resource-limited bacteria behind the front are more susceptible to the antibiotic. We find that growth-rate dependent susceptibility can have strong effects on the dynamics of the expanding population. If slow-growing bacteria are more susceptible, the population wave advances far into the inhibitory zone, leaving a trail of dead bacteria in its wake. In contrast, if fast-growing bacteria are more susceptible, the wave is blocked at a much lower concentration of antibiotic, but a large population of live bacteria remains behind the front. Our results may contribute to understanding the efficacy of different antimicrobials for spatially structured microbial populations such as biofilms, as well as the dynamics of ecological population expansions more generally.
Collapse
Affiliation(s)
- Patrick Sinclair
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
| | | | | |
Collapse
|
11
|
Kaveh K, McAvoy A, Nowak MA. Environmental fitness heterogeneity in the Moran process. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181661. [PMID: 30800394 PMCID: PMC6366185 DOI: 10.1098/rsos.181661] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
Many mathematical models of evolution assume that all individuals experience the same environment. Here, we study the Moran process in heterogeneous environments. The population is of finite size with two competing types, which are exposed to a fixed number of environmental conditions. Reproductive rate is determined by both the type and the environment. We first calculate the condition for selection to favour the mutant relative to the resident wild-type. In large populations, the mutant is favoured if and only if the mutant's spatial average reproductive rate exceeds that of the resident. But environmental heterogeneity elucidates an interesting asymmetry between the mutant and the resident. Specifically, mutant heterogeneity suppresses its fixation probability; if this heterogeneity is strong enough, it can even completely offset the effects of selection (including in large populations). By contrast, resident heterogeneity has no effect on a mutant's fixation probability in large populations and can amplify it in small populations.
Collapse
|
12
|
De Jong MG, Wood KB. Tuning Spatial Profiles of Selection Pressure to Modulate the Evolution of Drug Resistance. PHYSICAL REVIEW LETTERS 2018; 120:238102. [PMID: 29932692 PMCID: PMC6029889 DOI: 10.1103/physrevlett.120.238102] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Indexed: 06/08/2023]
Abstract
Spatial heterogeneity plays an important role in the evolution of drug resistance. While recent studies have indicated that spatial gradients of selection pressure can accelerate resistance evolution, much less is known about evolution in more complex spatial profiles. Here we use a stochastic toy model of drug resistance to investigate how different spatial profiles of selection pressure impact the time to fixation of a resistant allele. Using mean first passage time calculations, we show that spatial heterogeneity accelerates resistance evolution when the rate of spatial migration is sufficiently large relative to mutation but slows fixation for small migration rates. Interestingly, there exists an intermediate regime-characterized by comparable rates of migration and mutation-in which the rate of fixation can be either accelerated or decelerated depending on the spatial profile, even when spatially averaged selection pressure remains constant. Finally, we demonstrate that optimal tuning of the spatial profile can dramatically slow the spread and fixation of resistant subpopulations, even in the absence of a fitness cost for resistance. Our results may lay the groundwork for optimized, spatially resolved drug dosing strategies for mitigating the effects of drug resistance.
Collapse
Affiliation(s)
- Maxwell G. De Jong
- Department of Physics, University of Michigan, Ann Arbor, Michigan
48109, USA
| | - Kevin B. Wood
- Department of Physics, University of Michigan, Ann Arbor, Michigan
48109, USA
- Department of Biophysics, University of Michigan, Ann Arbor,
Michigan 48109, USA
| |
Collapse
|
13
|
Darooneh AH. Doing Research under Extreme Conditions. Comput Sci Eng 2018. [DOI: 10.1109/mcse.2018.03202632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|