1
|
Zhang J, Wang B, Ren H, Chen J, Li J, Sun Y, Cui Y, Wang R, Liu M, Zhang F. Evaluation of the Potential Flight Ability of the Casuarina Moth, Lymantria xylina (Lepidoptera: Erebidae). INSECTS 2024; 15:506. [PMID: 39057239 PMCID: PMC11276713 DOI: 10.3390/insects15070506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Lymantria xylina Swinhoe (Lepidoptera: Erebidae) is a potentially invasive pest, similar to Lymantria dispar asiatica Vnukovskij and Lymantria dispar japonica Motschulsky (Lepidoptera: Erebidae). To evaluate its potential for spread and flight distance related to egg deposition on vessels at ports, we employed a flight mill to assess the flight capabilities of its adults under varying conditions. Our findings revealed that females primarily flew short distances and ceased flying after 3:00 AM, whereas males covered much longer distances throughout the day. Sex, age, and flight duration significantly influenced flight ability. Females exhibited weaker flight capability than males, and their ability declined with increasing age or flight duration. Notably, 1-day-old moths displayed the strongest flight ability, with average flight distances of up to 3.975 km for females and 8.441 km for males. By the fifth day, females no longer flew, and males experienced reduced flight ability. After continuous hanging for 16 h, females lost most of their flight capacity, while males remained capable of flight even after 32 h. Additionally, female flight ability decreased significantly after mating, possibly due to factors such as egg-carrying capacity, weight, and load ratio. This study provides a foundation for assessing the risk of long-distance dispersal of L. xylina via ocean-going freighters, considering female moths' phototactic flight and oviposition.
Collapse
Affiliation(s)
- Jifeng Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.)
| | - Baode Wang
- US Department of Agriculture, Animal and Plant Health Inspection Service, Forest Pest Methods Laboratory, Riverdale, MA 02542, USA
| | - Haojie Ren
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.)
| | - Jianing Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.)
| | - Junnan Li
- Fujian Academy of Forestry Sciences, Fuzhou 350012, China
| | - Yuanyuan Sun
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.)
| | - Yonghong Cui
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.)
| | - Rong Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.)
| | - Mengxia Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.)
| | - Feiping Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.)
| |
Collapse
|
2
|
Accommodating unobservability to control flight attitude with optic flow. Nature 2022; 610:485-490. [PMID: 36261554 PMCID: PMC9581779 DOI: 10.1038/s41586-022-05182-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 08/02/2022] [Indexed: 11/08/2022]
Abstract
Attitude control is an essential flight capability. Whereas flying robots commonly rely on accelerometers1 for estimating attitude, flying insects lack an unambiguous sense of gravity2,3. Despite the established role of several sense organs in attitude stabilization3-5, the dependence of flying insects on an internal gravity direction estimate remains unclear. Here we show how attitude can be extracted from optic flow when combined with a motion model that relates attitude to acceleration direction. Although there are conditions such as hover in which the attitude is unobservable, we prove that the ensuing control system is still stable, continuously moving into and out of these conditions. Flying robot experiments confirm that accommodating unobservability in this manner leads to stable, but slightly oscillatory, attitude control. Moreover, experiments with a bio-inspired flapping-wing robot show that residual, high-frequency attitude oscillations from flapping motion improve observability. The presented approach holds a promise for robotics, with accelerometer-less autopilots paving the road for insect-scale autonomous flying robots6. Finally, it forms a hypothesis on insect attitude estimation and control, with the potential to provide further insight into known biological phenomena5,7,8 and to generate new predictions such as reduced head and body attitude variance at higher flight speeds9.
Collapse
|
3
|
Leibbrandt R, Nicholas S, Nordström K. The impulse response of optic flow-sensitive descending neurons to roll m-sequences. J Exp Biol 2021; 224:273641. [PMID: 34870706 PMCID: PMC8714074 DOI: 10.1242/jeb.242833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/05/2021] [Indexed: 11/23/2022]
Abstract
When animals move through the world, their own movements generate widefield optic flow across their eyes. In insects, such widefield motion is encoded by optic lobe neurons. These lobula plate tangential cells (LPTCs) synapse with optic flow-sensitive descending neurons, which in turn project to areas that control neck, wing and leg movements. As the descending neurons play a role in sensorimotor transformation, it is important to understand their spatio-temporal response properties. Recent work shows that a relatively fast and efficient way to quantify such response properties is to use m-sequences or other white noise techniques. Therefore, here we used m-sequences to quantify the impulse responses of optic flow-sensitive descending neurons in male Eristalis tenax hoverflies. We focused on roll impulse responses as hoverflies perform exquisite head roll stabilizing reflexes, and the descending neurons respond particularly well to roll. We found that the roll impulse responses were fast, peaking after 16.5–18.0 ms. This is similar to the impulse response time to peak (18.3 ms) to widefield horizontal motion recorded in hoverfly LPTCs. We found that the roll impulse response amplitude scaled with the size of the stimulus impulse, and that its shape could be affected by the addition of constant velocity roll or lift. For example, the roll impulse response became faster and stronger with the addition of excitatory stimuli, and vice versa. We also found that the roll impulse response had a long return to baseline, which was significantly and substantially reduced by the addition of either roll or lift. Summary: The impulse response of hoverfly optic flow-sensitive descending neurons to roll m-sequences reaches its time to peak within 20 ms and slowly returns to baseline over the next 100 ms.
Collapse
Affiliation(s)
- Richard Leibbrandt
- Neuroscience, Flinders Health and Medical Research Institute, Flinders University, GPO Box 2100, 5001 Adelaide, SA, Australia
| | - Sarah Nicholas
- Neuroscience, Flinders Health and Medical Research Institute, Flinders University, GPO Box 2100, 5001 Adelaide, SA, Australia
| | - Karin Nordström
- Neuroscience, Flinders Health and Medical Research Institute, Flinders University, GPO Box 2100, 5001 Adelaide, SA, Australia.,Department of Neuroscience, Uppsala University, Box 593, 751 24 Uppsala, Sweden
| |
Collapse
|
4
|
Verbe A, Varennes LP, Vercher JL, Viollet S. How do hoverflies use their righting reflex? J Exp Biol 2020; 223:jeb215327. [PMID: 32527962 DOI: 10.1242/jeb.215327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 05/28/2020] [Indexed: 11/20/2022]
Abstract
When taking off from a sloping surface, flies have to reorient themselves dorsoventrally and stabilize their body by actively controlling their flapping wings. We have observed that righting is achieved solely by performing a rolling manoeuvre. How flies manage to do this has not yet been elucidated. It was observed here for the first time that hoverfly reorientation is entirely achieved within 6 wingbeats (48.8 ms) at angular roll velocities of up to 10×103 deg s-1 and that the onset of their head rotation consistently follows that of their body rotation after a time lag of 16 ms. The insects' body roll was found to be triggered by the asymmetric wing stroke amplitude, as expected. The righting process starts immediately with the first wingbeat and seems unlikely to depend on visual feedback. A dynamic model for the fly's righting reflex is presented, which accounts for the head/body movements and the time lag recorded in these experiments. This model consists of a closed-loop control of the body roll, combined with a feedforward control of the head/body angle. During the righting manoeuvre, a strong coupling seems to exist between the activation of the halteres (which measure the body's angular speed) and the gaze stabilization reflex. These findings again confirm the fundamental role played by the halteres in both body and head stabilization processes.
Collapse
Affiliation(s)
- Anna Verbe
- Institute of Movement Sciences Biorobotics Department, Aix-Marseille Université, CNRS, ISM, Marseille cedex 09, France
| | - Léandre P Varennes
- Institute of Movement Sciences Biorobotics Department, Aix-Marseille Université, CNRS, ISM, Marseille cedex 09, France
| | - Jean-Louis Vercher
- Institute of Movement Sciences Biorobotics Department, Aix-Marseille Université, CNRS, ISM, Marseille cedex 09, France
| | - Stéphane Viollet
- Institute of Movement Sciences Biorobotics Department, Aix-Marseille Université, CNRS, ISM, Marseille cedex 09, France
| |
Collapse
|
5
|
Goulard R, Verbe A, Vercher JL, Viollet S. Role of the light source position in freely falling hoverflies' stabilization performances. Biol Lett 2019; 14:rsbl.2018.0051. [PMID: 29794004 DOI: 10.1098/rsbl.2018.0051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/30/2018] [Indexed: 11/12/2022] Open
Abstract
The stabilization of plummeting hoverflies was filmed and analysed in terms of their wingbeat initiation times as well as the crash and stabilization rates. The flies experienced near-weightlessness for a period of time that depended on their ability to counteract the free fall by triggering their wingbeats. In this paradigm, hoverflies' flight stabilization strategies were investigated here for the first time under two different positions of the light source (overhead and bottom lighting). The crash rates were higher in bottom lighting conditions than with top lighting. In addition, adding a texture to the walls reduced the crash rates only in the overhead lighting condition. The position of the lighting also significantly affected both the stabilization rates and the time taken by the flies to stabilize, which decreased and increased under bottom lighting conditions, respectively, whereas textured walls increased the stabilization rates under both lighting conditions. These results support the idea that flies may mainly base their flight control strategy on visual cues and particularly that the light distribution in the visual field may provide reliable, efficient cues for estimating their orientation with respect to an allocentric reference frame. In addition, the finding that the hoverflies' optic flow-based motion detection ability is affected by the position of the light source in their visual field suggests the occurrence of interactions between movement perception and this visual vertical perception process.
Collapse
Affiliation(s)
- Roman Goulard
- Aix-Marseille Université, CNRS, ISM UMR 7287, Marseille 13009, France
| | - Anna Verbe
- Aix-Marseille Université, CNRS, ISM UMR 7287, Marseille 13009, France
| | | | - Stéphane Viollet
- Aix-Marseille Université, CNRS, ISM UMR 7287, Marseille 13009, France
| |
Collapse
|
6
|
Bomphrey RJ, Godoy-Diana R. Insect and insect-inspired aerodynamics: unsteadiness, structural mechanics and flight control. CURRENT OPINION IN INSECT SCIENCE 2018; 30:26-32. [PMID: 30410869 PMCID: PMC6218012 DOI: 10.1016/j.cois.2018.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Flying insects impress by their versatility and have been a recurrent source of inspiration for engineering devices. A large body of literature has focused on various aspects of insect flight, with an essential part dedicated to the dynamics of flapping wings and their intrinsically unsteady aerodynamic mechanisms. Insect wings flex during flight and a better understanding of structural mechanics and aeroelasticity is emerging. Most recently, insights from solid and fluid mechanics have been integrated with physiological measurements from visual and mechanosensors in the context of flight control in steady airs and through turbulent conditions. We review the key recent advances concerning flight in unsteady environments and how the multi-body mechanics of the insect structure-wings and body-are at the core of the flight control question. The issues herein should be considered when applying bio-informed design principles to robotic flapping wings.
Collapse
Affiliation(s)
- Richard J Bomphrey
- Structure and Motion Laboratory, Royal Veterinary College, London, United Kingdom
| | - Ramiro Godoy-Diana
- Physique et Mécanique des Milieux Hétérogènes laboratory (PMMH), CNRS, ESPCI Paris – PSL Research University, Sorbonne Université, Université Paris Diderot, Paris, France
| |
Collapse
|
7
|
Daltorio KA, Fox JL. Haltere removal alters responses to gravity in standing flies. ACTA ACUST UNITED AC 2018; 221:jeb.181719. [PMID: 29853546 DOI: 10.1242/jeb.181719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/28/2018] [Indexed: 01/28/2023]
Abstract
Animals detect the force of gravity with multiple sensory organs, from subcutaneous receptors at body joints to specialized sensors like the vertebrate inner ear. The halteres of flies, specialized mechanoreceptive organs derived from hindwings, are known to detect body rotations during flight, and some groups of flies also oscillate their halteres while walking. The dynamics of halteres are such that they could act as gravity detectors for flies standing on substrates, but their utility during non-flight behaviors is not known. We observed the behaviors of intact and haltere-ablated flies during walking and during perturbations in which the acceleration due to gravity suddenly changed. We found that intact halteres are necessary for flies to maintain normal walking speeds on vertical surfaces and to respond to sudden changes in gravity. Our results suggest that halteres can serve multiple sensory purposes during different behaviors, expanding their role beyond their canonical use in flight.
Collapse
Affiliation(s)
- Kathryn A Daltorio
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jessica L Fox
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|