1
|
Zheng K, Qian Y, Wang H, Song D, You H, Hou B, Han F, Zhu Y, Feng F, Lam SM, Shui G, Li X. Combinatorial lipidomics and proteomics underscore erythrocyte lipid membrane aberrations in the development of adverse cardio-cerebrovascular complications in maintenance hemodialysis patients. Redox Biol 2024; 78:103389. [PMID: 39486359 PMCID: PMC11563940 DOI: 10.1016/j.redox.2024.103389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024] Open
Abstract
Patients on maintenance hemodialysis exhibit a notably higher risk of cardio-cerebrovascular complications that constitute the major cause of death. Preceding studies have reported conflicting associations between traditional lipid measures and clinical outcome in dialysis patients. In this prospective longitudinal study, we utilized quantitative lipidomics to elucidate, at molecular resolution, changes in lipidome profiles of erythrocyte and plasma samples collected from maintenance hemodialysis patients followed up for 86 months (≈7 years). Primary outcome was defined as cardiovascular-related deaths or new-onset cardio-cerebrovascular events. Cox regression model uncovered plasma/erythrocyte lipids associated with incident cardio-cerebrovascular events in the erythrocyte cohort (n = 117 patients, 37 events) and plasma cohort (n = 45 patients, 11 events), respectively. Both the erythrocyte lipid panel [PA 40:5, PI 34:2, PC 42:6, AUC = 0.83] and plasma lipid panel [PC O-34:1, GM3 18:1; O2/25:0, TG 44:1(16:1_28:0), AUC = 0.94] significantly improved the prediction of cardio-cerebrovascular-related outcome compared to the base model comprising age, sex and dialysis vintage alone. Our findings underscore the pathophysiological significance of anionic phospholipid accretion in erythrocytes in the development of cardio-cerebrovascular complications in dialysis patients. In particular, distorted membrane lipid asymmetry leads to compromised membrane deformability, aberrant cell-cell interactions and altered glutathione metabolism in the erythrocytes of high-risk individuals even at relatively early stage of hemodialysis. Our findings thus underscore the importance of maintaining the RBC pool to lower the risk of cardio-cerebrovascular complications in dialysis patients.
Collapse
Affiliation(s)
- Ke Zheng
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yujun Qian
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; Department of Nephrology, Jiangsu Province Hospital/The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haiyun Wang
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Dan Song
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Hui You
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Bo Hou
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Han
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yicheng Zhu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Feng Feng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Xuemei Li
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Zhao Y, Zhu L, Shi D, Gao J, Fan M. Key Genes FECH and ALAS2 under Acute High-Altitude Exposure: A Gene Expression and Network Analysis Based on Expression Profile Data. Genes (Basel) 2024; 15:1075. [PMID: 39202434 PMCID: PMC11353374 DOI: 10.3390/genes15081075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 09/03/2024] Open
Abstract
High-altitude acclimatization refers to the physiological adjustments and adaptation processes by which the human body gradually adapts to the hypoxic conditions of high altitudes after entering such environments. This study analyzed three mRNA expression profile datasets from the GEO database, focusing on 93 healthy residents from low altitudes (≤1400 m). Peripheral blood samples were collected for analysis on the third day after these individuals rapidly ascended to higher altitudes (3000-5300 m). The analysis identified significant differential expression in 382 genes, with 361 genes upregulated and 21 downregulated. Further, gene ontology (GO) annotation analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicated that the top-ranked enriched pathways are upregulated, involving blood gas transport, erythrocyte development and differentiation, and heme biosynthetic process. Network analysis highlighted ten key genes, namely, SLC4A1, FECH, EPB42, SNCA, GATA1, KLF1, GYPB, ALAS2, DMTN, and GYPA. Analysis revealed that two of these key genes, FECH and ALAS2, play a critical role in the heme biosynthetic process, which is pivotal in the development and maturation of red blood cells. These findings provide new insights into the key gene mechanisms of high-altitude acclimatization and identify potential biomarkers and targets for personalized acclimatization strategies.
Collapse
Affiliation(s)
- Yifan Zhao
- School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China;
| | - Lingling Zhu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China;
| | - Dawei Shi
- School of Automation, Beijing Institute of Technology, Beijing 100850, China;
| | - Jiayue Gao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China;
| | - Ming Fan
- School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China;
| |
Collapse
|
3
|
Zhekova HR, Ramirez Echemendía DP, Sejdiu BI, Pushkin A, Tieleman DP, Kurtz I. Molecular dynamics simulations of lipid-protein interactions in SLC4 proteins. Biophys J 2024; 123:1705-1721. [PMID: 38760929 PMCID: PMC11214021 DOI: 10.1016/j.bpj.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/09/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024] Open
Abstract
The SLC4 family of secondary bicarbonate transporters is responsible for the transport of HCO3-, CO32-, Cl-, Na+, K+, NH3, and H+, which are necessary for regulation of pH and ion homeostasis. They are widely expressed in numerous tissues throughout the body and function in different cell types with different membrane properties. Potential lipid roles in SLC4 function have been reported in experimental studies, focusing mostly on two members of the family: AE1 (Cl-/HCO3- exchanger) and NBCe1 (Na+-CO32-cotransporter). Previous computational studies of the outward-facing state of AE1 with model lipid membranes revealed enhanced protein-lipid interactions between cholesterol (CHOL) and phosphatidylinositol bisphosphate (PIP2). However, the protein-lipid interactions in other members of the family and other conformation states are still poorly understood and this precludes the detailed studies of a potential regulatory role for lipids in the SLC4 family. In this work, we performed coarse-grained and atomistic molecular dynamics simulations on three members of the SLC4 family with different transport modes: AE1, NBCe1, and NDCBE (an Na+-CO32-/Cl- exchanger), in model HEK293 membranes consisting of CHOL, PIP2, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and sphingomyelin. The recently resolved inward-facing state of AE1 was also included in the simulations. Lipid-protein contact analysis of the simulated trajectories was performed with the ProLint server, which provides a multitude of visualization tools for illustration of areas of enhanced lipid-protein contact and identification of putative lipid binding sites within the protein matrix. We observed enrichment of CHOL and PIP2 around all proteins with subtle differences in their distribution depending on the protein type and conformation state. Putative binding sites were identified for CHOL, PIP2, phosphatidylcholine, and sphingomyelin in the three studied proteins, and their potential roles in the SLC4 transport function, conformational transition, and protein dimerization are discussed.
Collapse
Affiliation(s)
- Hristina R Zhekova
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Daniel P Ramirez Echemendía
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Besian I Sejdiu
- Department of Structural Biology and Center of Excellence for Data Driven Discovery, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Alexander Pushkin
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - D Peter Tieleman
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
| | - Ira Kurtz
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Brain Research Institute, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
4
|
Lv H, Cao Y, Zhu J, Liang Q. Molecular Insights into the Effect of Cholesterol on the Binding of Bicarbonate Ions in Band 3 Protein. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10908-10915. [PMID: 38739034 DOI: 10.1021/acs.langmuir.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Band 3, or anion exchanger 1 (AE1), is one of the indispensable transmembrane proteins involved in the effective respiratory process of the human body and is primarily responsible for the exchange of bicarbonate and chloride anions across the plasma membrane of erythrocyte. However, the molecular mechanism of ion transport of Band 3 is not completely understood, yet. In this work, we systematically investigate the key binding sites of bicarbonate ions in Band 3 and the impact of cholesterol (CHOL) in lipid bilayers on bicarbonate ion binding using all-atom molecular dynamics (MD) simulations. We examine the dynamics of interactions of bicarbonate ions with Band 3 in the microsecond time scale and calculate the binding free energy of the anion in Band 3. The results indicate that the residue R730 of Band 3 is the most probable binding site for bicarbonate ions. CHOL enhances the bicarbonate ion binding by influencing the conformational stability of Band 3 and compressing the volume of the Band 3 cavity. These findings provide some insights into the bicarbonate ion binding in Band 3 and are helpful for understanding the anion exchange of Band 3.
Collapse
Affiliation(s)
- Haiying Lv
- Center for Statistical and Theoretical Condensed Matter Physics & Department of Physics, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
| | - Yu Cao
- Center for Statistical and Theoretical Condensed Matter Physics & Department of Physics, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
| | - Jin Zhu
- Center for Statistical and Theoretical Condensed Matter Physics & Department of Physics, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
| | - Qing Liang
- Center for Statistical and Theoretical Condensed Matter Physics & Department of Physics, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
5
|
Zhang W, Ding D, Lu Y, Chen H, Jiang P, Zuo P, Wang G, Luo J, Yin Y, Luo J, Yin Y. Structural and functional insights into the lipid regulation of human anion exchanger 2. Nat Commun 2024; 15:759. [PMID: 38272905 PMCID: PMC10810954 DOI: 10.1038/s41467-024-44966-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
Anion exchanger 2 (AE2) is an electroneutral Na+-independent Cl-/HCO3- exchanger belongs to the SLC4 transporter family. The widely expressed AE2 participates in a variety of physiological processes, including transepithelial acid-base secretion and osteoclastogenesis. Both the transmembrane domains (TMDs) and the N-terminal cytoplasmic domain (NTD) are involved in regulation of AE2 activity. However, the regulatory mechanism remains unclear. Here, we report a 3.2 Å cryo-EM structure of the AE2 TMDs in complex with PIP2 and a 3.3 Å full-length mutant AE2 structure in the resting state without PIP2. We demonstrate that PIP2 at the TMD dimer interface is involved in the substrate exchange process. Mutation in the PIP2 binding site leads to the displacement of TM7 and further stabilizes the interaction between the TMD and the NTD. Reduced substrate transport activity and conformation similar to AE2 in acidic pH indicating the central contribution of PIP2 to the function of AE2.
Collapse
Affiliation(s)
- Weiqi Zhang
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Dian Ding
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yishuo Lu
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Hongyi Chen
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Peijun Jiang
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Peng Zuo
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Guangxi Wang
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Juan Luo
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Yue Yin
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jianyuan Luo
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
6
|
Biasini GM, Botrè F, de la Torre X, Donati F. Age-Markers on the Red Blood Cell Surface and Erythrocyte Microparticles may Constitute a Multi-parametric Strategy for Detection of Autologous Blood Transfusion. SPORTS MEDICINE - OPEN 2023; 9:113. [PMID: 38038869 PMCID: PMC10692063 DOI: 10.1186/s40798-023-00662-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/19/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Autologous blood transfusion is one of the illicit strategies, banned by the World Anti-Doping Agency, to increase the levels of hemoglobin, with a consequent improvement in the delivery of oxygen to tissues. At present, this practice is detectable exclusively by the individual, longitudinal monitoring of hematological biomarkers, as in the hematological module of the Athlete Biological Passport; but this indirect approach may suffer from different confounding factors. We are presenting a multi-parametric, analytical strategy to detect autologous blood transfusions by targeting the modification of the red blood cells during storage. We focused on the assessment of "storage lesions", targeting (i) membrane proteins: Glycophorin-A and Band 3 complex, (ii) biomarkers of oxidative stress: Peroxiredoxin-2, (iii) biomarkers of senescence: CD47 and Phosphatidylserine, (iv) erythrocytes microparticles. RESULTS All of the above markers were monitored, by immunological and flow cytofluorimetric methods, on samples of stored whole blood collected at different time intervals, and on fresh blood samples, collected for official doping control tests, mixed "ex vivo" to simulate an autotransfusion. Although anonymized before the delivery to the laboratory, it was possible to mix samples belonging to the same subject based on the "athlete biological passport" code. Our results showed that the irreversible alteration of RBCs morphology, the loss of membrane integrity, the occurrence of hemolysis phenomena, and, more in general, the "aging" of the erythrocytes during storage are closely related to: (i) the reduced concentration, on the erythrocyte membrane, of Band 3 protein (decrease of 19% and of 39% after 20 and 40 days of storage respectively) and of glycophorin A (- 47% and - 63% respectively); (ii) the externalization of phosphatidyl serine (with a five-fold increase after 20 days and a further 2× increase after 40 days); (iii) the reduced concentration of CD47; and (iv) increased levels of erythrocyte microparticles. CONCLUSIONS The most promising method to detect the presence of transfused blood in whole blood samples can be based on a multi-parametric strategy, considering jointly both protein expression on RBCs membranes and micro-vesiculation phenomena.
Collapse
Affiliation(s)
- Giorgia M Biasini
- Sapienza University of Rome, Rome, Italy
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Francesco Botrè
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy.
- REDs - Research and Expertise in anti-Doping Sciences, ISSUL - Institute of Sport Sciences University of Lausanne, Lausanne, Switzerland.
| | - Xavier de la Torre
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Francesco Donati
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy.
| |
Collapse
|
7
|
Lu Y, Zuo P, Chen H, Shan H, Wang W, Dai Z, Xu H, Chen Y, Liang L, Ding D, Jin Y, Yin Y. Structural insights into the conformational changes of BTR1/SLC4A11 in complex with PIP 2. Nat Commun 2023; 14:6157. [PMID: 37788993 PMCID: PMC10547724 DOI: 10.1038/s41467-023-41924-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023] Open
Abstract
BTR1 (SLC4A11) is a NH3 stimulated H+ (OH-) transporter belonging to the SLC4 family. Dysfunction of BTR1 leads to diseases such as congenital hereditary endothelial dystrophy (CHED) and Fuchs endothelial corneal dystrophy (FECD). However, the mechanistic basis of BTR1 activation by alkaline pH, transport activity regulation and pathogenic mutations remains elusive. Here, we present cryo-EM structures of human BTR1 in the outward-facing state in complex with its activating ligands PIP2 and the inward-facing state with the pathogenic R125H mutation. We reveal that PIP2 binds at the interface between the transmembrane domain and the N-terminal cytosolic domain of BTR1. Disruption of either the PIP2 binding site or protonation of PIP2 phosphate groups by acidic pH can transform BTR1 into an inward-facing conformation. Our results provide insights into the mechanisms of how the transport activity and conformation changes of BTR1 are regulated by PIP2 binding and interaction of TMD and NTD.
Collapse
Affiliation(s)
- Yishuo Lu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Peng Zuo
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Hongyi Chen
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Hui Shan
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Weize Wang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zonglin Dai
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | | | | | - Ling Liang
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Dian Ding
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yan Jin
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yuxin Yin
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
8
|
Capper MJ, Yang S, Stone AC, Vatansever S, Zilberg G, Mathiharan YK, Habib R, Hutchinson K, Zhao Y, Schlessinger A, Mezei M, Osman R, Zhang B, Wacker D. Substrate binding and inhibition of the anion exchanger 1 transporter. Nat Struct Mol Biol 2023; 30:1495-1504. [PMID: 37679563 PMCID: PMC11008770 DOI: 10.1038/s41594-023-01085-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/28/2023] [Indexed: 09/09/2023]
Abstract
Anion exchanger 1 (AE1), a member of the solute carrier (SLC) family, is the primary bicarbonate transporter in erythrocytes, regulating pH levels and CO2 transport between lungs and tissues. Previous studies characterized its role in erythrocyte structure and provided insight into transport regulation. However, key questions remain regarding substrate binding and transport, mechanisms of drug inhibition and modulation by membrane components. Here we present seven cryo-EM structures in apo, bicarbonate-bound and inhibitor-bound states. These, combined with uptake and computational studies, reveal important molecular features of substrate recognition and transport, and illuminate sterol binding sites, to elucidate distinct inhibitory mechanisms of research chemicals and prescription drugs. We further probe the substrate binding site via structure-based ligand screening, identifying an AE1 inhibitor. Together, our findings provide insight into mechanisms of solute carrier transport and inhibition.
Collapse
Affiliation(s)
- Michael J Capper
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shifan Yang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander C Stone
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sezen Vatansever
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gregory Zilberg
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yamuna Kalyani Mathiharan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raul Habib
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keino Hutchinson
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yihan Zhao
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mihaly Mezei
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roman Osman
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bin Zhang
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Wacker
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
9
|
Hamadani CM, Dasanayake GS, Chism CM, Gorniak ME, Monroe WG, Merrell A, Pride MC, Heintz R, Wong K, Hossain M, Taylor G, Edgecomb SX, Jones D, Dhar J, Banka A, Singh G, Vashisth P, Randall J, Darlington DS, Everett J, Jarrett E, Werfel TA, Eniola-Adefeso O, Tanner EEL. Selective Blood Cell Hitchhiking in Whole Blood with Ionic Liquid-Coated PLGA Nanoparticles to Redirect Biodistribution After Intravenous Injection. RESEARCH SQUARE 2023:rs.3.rs-3146716. [PMID: 37502854 PMCID: PMC10371090 DOI: 10.21203/rs.3.rs-3146716/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Less than 5% of intravenously-injected nanoparticles (NPs) reach destined sites in the body due to opsonization and immune-based clearance in vascular circulation. By hitchhiking in situ onto specific blood components post-injection, NPs can selectively target tissue sites for unprecedentedly high drug delivery rates. Choline carboxylate ionic liquids (ILs) are biocompatible liquid salts <100X composed of bulky asymmetric cations and anions. This class of ILs has been previously shown to significantly extend circulation time and redirect biodistribution in BALB/c mice post-IV injection via hitchhiking on red blood cell (RBC) membranes. Herein, we synthesized & screened 60 choline carboxylic acid-based ILs to coat PLGA NPs and present the impact of structurally engineering the coordinated anion identity to selectively interface and hitchhike lymphocytes, monocytes, granulocytes, platelets, and RBCs in whole mouse blood for in situ targeted drug delivery. Furthermore, we find this nanoparticle platform to be biocompatible (non-cytotoxic), translate to human whole blood by resisting serum uptake and maintaining modest hitchhiking, and also significantly extend circulation retention over 24 hours in BALB/c healthy adult mice after IV injection. Because of their altered circulation profiles, we additionally observe dramatically different organ accumulation profiles compared to bare PLGA NPs. This study establishes an initial breakthrough platform for a modular and transformative targeting technology to hitchhike onto blood components with high efficacy and safety in the bloodstream post-IV administration.
Collapse
|
10
|
Zhekova HR, Ramirez-Echemendía DP, Sejdiu BI, Pushkin A, Tieleman DP, Kurtz I. Coarse-grained molecular dynamics simulations of lipid-protein interactions in SLC4 proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546592. [PMID: 37425774 PMCID: PMC10327080 DOI: 10.1101/2023.06.26.546592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The SLC4 family of secondary bicarbonate transporters is responsible for the transport of HCO 3 -, CO 3 2- , Cl - , Na + , K + , NH 3 and H + necessary for regulation of pH and ion homeostasis. They are widely expressed in numerous tissues throughout the body and function in different cell types with different membrane properties. Potential lipid roles in SLC4 function have been reported in experimental studies, focusing mostly on two members of the family: AE1 (Cl - /HCO 3 - exchanger) and NBCe1 (Na + -CO 3 2- cotransporter). Previous computational studies of the outward facing (OF) state of AE1 with model lipid membranes revealed enhanced protein-lipid interactions between cholesterol (CHOL) and phosphatidylinositol bisphosphate (PIP2). However, the protein-lipid interactions in other members of the family and other conformation states are still poorly understood and this precludes the detailed studies of a potential regulatory role for lipids in the SLC4 family. In this work, we performed multiple 50 µs coarse-grained molecular dynamics simulations on three members of the SLC4 family with different transport modes: AE1, NBCe1 and NDCBE (a Na + -CO 3 2- /Cl - exchanger), in model HEK293 membranes consisting of CHOL, PIP2, phosphatidylcholine (POPC), phosphatidylethanolamine (POPE), phosphatidylserine (POPS), and sphingomyelin (POSM). The recently resolved inward-facing (IF) state of AE1 was also included in the simulations. Lipid-protein contact analysis of the simulated trajectories was performed with the ProLint server, which provides a multitude of visualization tools for illustration of areas of enhanced lipid-protein contact and identification of putative lipid binding sites within the protein matrix. We observed enrichment of CHOL and PIP2 around all proteins with subtle differences in their distribution depending on the protein type and conformation state. Putative binding sites were identified for CHOL, PIP2, POPC, and POSM in the three studied proteins and their potential roles in the SLC4 transport function, conformational transition and protein dimerization were discussed. Statement of significance The SLC4 protein family is involved in critical physiological processes like pH and blood pressure regulation and maintenance of ion homeostasis. Its members can be found in various tissues. A number of studies suggest possible lipid regulation of the SLC4 function. However, the protein-lipid interactions in the SLC4 family are still poorly understood. Here we make use of long coarse-grained molecular dynamics simulations to assess the protein-lipid interactions in three SLC4 proteins with different transport modes, AE1, NBCe1, and NDCBE. We identify putative lipid binding sites for several lipid types of potential mechanistic importance, discuss them in the framework of the known experimental data and provide a necessary basis for further studies on lipid regulation of SLC4 function.
Collapse
|
11
|
Dehghani-Ghahnaviyeh S, Zhao Z, Tajkhorshid E. Lipid-mediated prestin organization in outer hair cell membranes and its implications in sound amplification. Nat Commun 2022; 13:6877. [PMID: 36371434 PMCID: PMC9653410 DOI: 10.1038/s41467-022-34596-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
Abstract
Prestin is a high-density motor protein in the outer hair cells (OHCs), whose conformational response to acoustic signals alters the shape of the cell, thereby playing a major role in sound amplification by the cochlea. Despite recent structures, prestin's intimate interactions with the membrane, which are central to its function remained unresolved. Here, employing a large set (collectively, more than 0.5 ms) of coarse-grained molecular dynamics simulations, we demonstrate the impact of prestin's lipid-protein interactions on its organization at densities relevant to the OHCs and its effectiveness in reshaping OHCs. Prestin causes anisotropic membrane deformation, which mediates a preferential membrane organization of prestin where deformation patterns by neighboring copies are aligned constructively. The resulting reduced membrane rigidity is hypothesized to maximize the impact of prestin on OHC reshaping. These results demonstrate a clear case of protein-protein cooperative communication in membrane, purely mediated by interactions with lipids.
Collapse
Affiliation(s)
- Sepehr Dehghani-Ghahnaviyeh
- grid.35403.310000 0004 1936 9991Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Zhiyu Zhao
- grid.35403.310000 0004 1936 9991Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Emad Tajkhorshid
- grid.35403.310000 0004 1936 9991Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| |
Collapse
|
12
|
Holmes AOM, Goldman A, Kalli AC. mPPases create a conserved anionic membrane fingerprint as identified via multi-scale simulations. PLoS Comput Biol 2022; 18:e1010578. [PMID: 36191052 PMCID: PMC9560603 DOI: 10.1371/journal.pcbi.1010578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 10/13/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022] Open
Abstract
Membrane-integral pyrophosphatases (mPPases) are membrane-bound enzymes responsible for hydrolysing inorganic pyrophosphate and translocating a cation across the membrane. Their function is essential for the infectivity of clinically relevant protozoan parasites and plant maturation. Recent developments have indicated that their mechanism is more complicated than previously thought and that the membrane environment may be important for their function. In this work, we use multiscale molecular dynamics simulations to demonstrate for the first time that mPPases form specific anionic lipid interactions at 4 sites at the distal and interfacial regions of the protein. These interactions are conserved in simulations of the mPPases from Thermotoga maritima, Vigna radiata and Clostridium leptum and characterised by interactions with positive residues on helices 1, 2, 3 and 4 for the distal site, or 9, 10, 13 and 14 for the interfacial site. Due to the importance of these helices in protein stability and function, these lipid interactions may play a crucial role in the mPPase mechanism and enable future structural and functional studies.
Collapse
Affiliation(s)
- Alexandra O. M. Holmes
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Adrian Goldman
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- Research Program in Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland
| | - Antreas C. Kalli
- Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Centre for Structural Biology, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
A Bioinformatics Study of Ropivacaine plus Dexamethasone Prolonging the Duration of Nerve Block. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:5869103. [PMID: 35990127 PMCID: PMC9388245 DOI: 10.1155/2022/5869103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022]
Abstract
The study focuses on the potential function of dexamethasone on ropivacaine in sciatic nerve blocks. Nine Sprague–Dawley (SD) rats were randomly divided into three groups: normal group (NG), control group (CG), and experimental group (EG), with three rats in each group. The CG was injected with diluted ropivacaine (0.5% concentration); the EG was injected with a diluted ropivacaine+dexamethasone mixture, and the NG was injected with an equal amount of saline. The sciatic nerve in the thigh was collected for sequencing two days after injection in each group. Differential analysis was performed for NG-vs-CG, NG-vs-EG, and CG-vs-EG based on the sequencing dataset. The modular genes associated with ropivacaine and ropivacaine+ dexamethasone were screened by weighted coexpression network analysis (WGCNA), differentially expressed modules among them were enriched for analysis, and protein-protein interaction (PPI) networks were constructed to observe high and low expression among key genes in immune cells. Twenty-two and three differential genes associated with ropivacaine (green-yellow module) and ropivacaine+dexamethasone (palevioletred3 module) were acquired, respectively, which played important roles in biological processes such as erythrocyte homeostasis, erythroid differentiation, and hemoglobin metabolic processes. PPI revealed that AHSP, ALAS2, EPB42, HBB, and SLC4A1 were interacting and the expression of these five genes was upregulated in the CG compared with the NG, while the expression of them was downregulated in the EG compared with the CG. The immunological analysis also showed significant differences in the expression of various immune cells in the 3 groups. AHSP, ALAS2, EPB42, HBB, and SLC4A1 are genes associated with hemoglobin, and dexamethasone combined with ropivacaine may prolong anesthesia by affecting local vasoconstriction to some extent.
Collapse
|
14
|
Vallese F, Kim K, Yen LY, Johnston JD, Noble AJ, Calì T, Clarke OB. Architecture of the human erythrocyte ankyrin-1 complex. Nat Struct Mol Biol 2022; 29:706-718. [PMID: 35835865 PMCID: PMC10373098 DOI: 10.1038/s41594-022-00792-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/24/2022] [Indexed: 12/28/2022]
Abstract
The stability and shape of the erythrocyte membrane is provided by the ankyrin-1 complex, but how it tethers the spectrin-actin cytoskeleton to the lipid bilayer and the nature of its association with the band 3 anion exchanger and the Rhesus glycoproteins remains unknown. Here we present structures of ankyrin-1 complexes purified from human erythrocytes. We reveal the architecture of a core complex of ankyrin-1, the Rhesus proteins RhAG and RhCE, the band 3 anion exchanger, protein 4.2, glycophorin A and glycophorin B. The distinct T-shaped conformation of membrane-bound ankyrin-1 facilitates recognition of RhCE and, unexpectedly, the water channel aquaporin-1. Together, our results uncover the molecular details of ankyrin-1 association with the erythrocyte membrane, and illustrate the mechanism of ankyrin-mediated membrane protein clustering.
Collapse
Affiliation(s)
- Francesca Vallese
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA.,Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA.,Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, USA
| | - Kookjoo Kim
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA.,Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA.,Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, USA
| | - Laura Y Yen
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Jake D Johnston
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA.,Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Alex J Noble
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Tito Calì
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Padua Neuroscience Center (PNC), University of Padua, Padua, Italy.,Study Center for Neurodegeneration (CESNE), University of Padua, Padua, Italy
| | - Oliver Biggs Clarke
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA. .,Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA. .,Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, USA.
| |
Collapse
|
15
|
Qin X, Tieleman DP, Liang Q. Effects of Cholesterol and PIP2 on Interactions between Glycophorin A and Band 3 in Lipid Bilayers. Biophys J 2022; 121:2069-2077. [PMID: 35524411 DOI: 10.1016/j.bpj.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/17/2022] [Accepted: 05/02/2022] [Indexed: 11/02/2022] Open
Abstract
In the erythrocyte membrane, the interactions between Glycophorin A (GPA) and Band 3 are associated strongly with the biological function of the membrane and several blood disorders. In this work, using coarse-grained molecular dynamics simulation, we systematically investigate the effects of cholesterol and phosphatidylinositol-4,5-bisphosphate (PIP2) on the interactions of GPA with Band 3 in the model erythrocyte membranes. We examine the dynamics of the interactions of GPA with Band 3 in different lipid bilayers on the microsecond time scale and calculate the binding free energy between GPA and Band 3. The results indicate that cholesterols thermodynamically favor the binding of GPA to Band 3 by increasing the thickness of the lipid bilayer and by producing an effective attraction between the proteins due to the depletion effect. Cholesterols also slow the kinetics of the binding of GPA to Band 3 by reducing the lateral mobility of the lipids and proteins and may influence the binding sites between the proteins. The anionic PIP2 lipids prefer binding to the surface of the proteins through electrostatic attraction between the PIP2 headgroup and the positively charged residues on the protein surface. Ions in the solvent facilitate the PIP2 aggregation which promotes the binding of GPA to Band 3.
Collapse
Affiliation(s)
- Xiaoxue Qin
- Center for Statistical and Theoretical Condensed Matter Physics and Department of Physics, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - D Peter Tieleman
- Centre for Molecular Simulations and Department of Biological Science, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| | - Qing Liang
- Center for Statistical and Theoretical Condensed Matter Physics and Department of Physics, Zhejiang Normal University, Jinhua 321004, P. R. China.
| |
Collapse
|
16
|
Kalli AC, Reithmeier RAF. Organization and Dynamics of the Red Blood Cell Band 3 Anion Exchanger SLC4A1: Insights From Molecular Dynamics Simulations. Front Physiol 2022; 13:817945. [PMID: 35283786 PMCID: PMC8914234 DOI: 10.3389/fphys.2022.817945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/27/2022] [Indexed: 01/16/2023] Open
Abstract
Molecular dynamics (MD) simulations have provided new insights into the organization and dynamics of the red blood cell Band 3 anion exchanger (AE1, SLC4A1). Band 3, like many solute carriers, works by an alternating access mode of transport where the protein rapidly (104/s) changes its conformation between outward and inward-facing states via a transient occluded anion-bound intermediate. While structural studies of membrane proteins usually reveal valuable structural information, these studies provide a static view often in the presence of detergents. Membrane transporters are embedded in a lipid bilayer and associated lipids play a role in their folding and function. In this review, we highlight MD simulations of Band 3 in realistic lipid bilayers that revealed specific lipid and protein interactions and were used to re-create a model of the Wright (Wr) blood group antigen complex of Band 3 and Glycophorin A. Current MD studies of Band 3 and related transporters are focused on describing the trajectory of substrate binding and translocation in real time. A structure of the intact Band 3 protein has yet to be achieved experimentally, but cryo-electron microscopy in combination with MD simulations holds promise to capture the conformational changes associated with anion transport in exquisite molecular detail.
Collapse
Affiliation(s)
- Antreas C. Kalli
- Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Center for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Reinhart A. F. Reithmeier
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- *Correspondence: Reinhart A. F. Reithmeier,
| |
Collapse
|
17
|
Jennings ML. Cell Physiology and Molecular Mechanism of Anion Transport by Erythrocyte Band 3/AE1. Am J Physiol Cell Physiol 2021; 321:C1028-C1059. [PMID: 34669510 PMCID: PMC8714990 DOI: 10.1152/ajpcell.00275.2021] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The major transmembrane protein of the red blood cell, known as band 3, AE1, and SLC4A1, has two main functions: 1) catalysis of Cl-/HCO3- exchange, one of the steps in CO2 excretion; 2) anchoring the membrane skeleton. This review summarizes the 150 year history of research on red cell anion transport and band 3 as an experimental system for studying membrane protein structure and ion transport mechanisms. Important early findings were that red cell Cl- transport is a tightly coupled 1:1 exchange and band 3 is labeled by stilbenesulfonate derivatives that inhibit anion transport. Biochemical studies showed that the protein is dimeric or tetrameric (paired dimers) and that there is one stilbenedisulfonate binding site per subunit of the dimer. Transport kinetics and inhibitor characteristics supported the idea that the transporter acts by an alternating access mechanism with intrinsic asymmetry. The sequence of band 3 cDNA provided a framework for detailed study of protein topology and amino acid residues important for transport. The identification of genetic variants produced insights into the roles of band 3 in red cell abnormalities and distal renal tubular acidosis. The publication of the membrane domain crystal structure made it possible to propose concrete molecular models of transport. Future research directions include improving our understanding of the transport mechanism at the molecular level and of the integrative relationships among band 3, hemoglobin, carbonic anhydrase, and gradients (both transmembrane and subcellular) of HCO3-, Cl-, O2, CO2, pH, and NO metabolites during pulmonary and systemic capillary gas exchange.
Collapse
Affiliation(s)
- Michael L Jennings
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| |
Collapse
|
18
|
Yamaguchi T, Manaka C, Ogura A, Nagadome S. Importance of Cholesterol Side Chain in the Membrane Stability of Human Erythrocytes. Biol Pharm Bull 2021; 44:888-893. [PMID: 34078822 DOI: 10.1248/bpb.b21-00134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cholesterol suppresses the hemolysis and the detachment of cytoskeletal proteins from bilayer in the human erythrocyte membrane under stress conditions. However, there is little information on how cholesterol functions. So, examining the role of a short side chain of cholesterol, we used the plant sterols such as β-sitosterol and stigmasterol. Incorporation of sterols into the membrane using a sterol/methyl-β-cyclodextrin complex was confirmed by the mass spectrometry. Hemolysis of human erythrocytes under high hydrostatic pressure (200 MPa) or hypotonic conditions was suppressed by cholesterol, but not by β-sitosterol and stigmasterol. Moreover, the bilayer-cytoskeleton interaction was also strengthened by cholesterol, but not by β-sitosterol and stigmasterol. Taken together, we suggest that the short side chain of cholesterol plays an important role in the membrane stability of human erythrocytes.
Collapse
Affiliation(s)
- Takeo Yamaguchi
- Department of Chemistry, Faculty of Science, Fukuoka University
| | - Chiharu Manaka
- Department of Chemistry, Faculty of Science, Fukuoka University
| | - Ayaka Ogura
- Department of Chemistry, Faculty of Science, Fukuoka University
| | | |
Collapse
|
19
|
Plant transporters involved in combating boron toxicity: beyond 3D structures. Biochem Soc Trans 2021; 48:1683-1696. [PMID: 32779723 PMCID: PMC7458394 DOI: 10.1042/bst20200164] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022]
Abstract
Membrane transporters control the movement and distribution of solutes, including the disposal or compartmentation of toxic substances that accumulate in plants under adverse environmental conditions. In this minireview, in the light of the approaching 100th anniversary of unveiling the significance of boron to plants (K. Warington, 1923; Ann. Bot.37, 629) we discuss the current state of the knowledge on boron transport systems that plants utilise to combat boron toxicity. These transport proteins include: (i) nodulin-26-like intrinsic protein-types of aquaporins, and (ii) anionic efflux (borate) solute carriers. We describe the recent progress made on the structure–function relationships of these transport proteins and point out that this progress is integral to quantitative considerations of the transporter's roles in tissue boron homeostasis. Newly acquired knowledge at the molecular level has informed on the transport mechanics and conformational states of boron transport systems that can explain their impact on cell biology and whole plant physiology. We expect that this information will form the basis for engineering transporters with optimised features to alleviate boron toxicity tolerance in plants exposed to suboptimal soil conditions for sustained food production.
Collapse
|
20
|
Ekman S, Flower R, Barnard RT, Gould A, Bui XT. Computational modeling - an approach to the development of blood grouping reagents. Expert Rev Hematol 2021; 14:329-334. [PMID: 33759674 DOI: 10.1080/17474086.2021.1908119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Blood group antigens are defined by an immune response that generates antibodies against a red blood cell molecule. Antibodies against these antigens can be associated with hemolytic transfusion reactions. However, difficulties can arise when developing antibodies against antigens through the use of peptide sequences alone. Three-dimensional representations (models) of the molecular structure of antigen-bearing proteins can provide valuable insights into tertiary structures and their consequent antigenicity. This can be achieved through predictive computational modeling to produce both structural and molecular dynamics models of blood group proteins.Areas covered: Authors discuss the use of molecular dynamic simulations on existing structures, as well as the use of computational modeling techniques in the development of protein models lacking preexisting data. Finally, the authors discuss specific examples of the use of computationally derived models of the MNS blood group system and its use in attempts to produce antibodies against MNS proteins.Expert opinion: Although in silico techniques have limitations, computer-based predictive models can inform the direction of research into blood group proteins. It is to be expected that as computer-based techniques grow more powerful these contributions will be even more significant.
Collapse
Affiliation(s)
- Serena Ekman
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia.,Clinical Services and Research, Australian Red Cross Lifeblood (Formerly Australian Red Cross Blood Service), Research and Development, Kelvin Grove, Australia
| | - Robert Flower
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia.,Clinical Services and Research, Australian Red Cross Lifeblood (Formerly Australian Red Cross Blood Service), Research and Development, Kelvin Grove, Australia
| | - Ross T Barnard
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Alison Gould
- Australian Red Cross Lifeblood (Formerly Australian Red Cross Blood Service), Research and Development, Alexandria, Australia
| | - Xuan T Bui
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia.,Clinical Services and Research, Australian Red Cross Lifeblood (Formerly Australian Red Cross Blood Service), Research and Development, Kelvin Grove, Australia
| |
Collapse
|
21
|
Fairweather SJ, Shah N, Brӧer S. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 21:13-127. [PMID: 33052588 DOI: 10.1007/5584_2020_584] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost β uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.
Collapse
Affiliation(s)
- Stephen J Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia. .,Resarch School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nishank Shah
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
22
|
Doltchinkova V, Stoylov S, Angelova PR. Viper toxins affect membrane characteristics of human erythrocytes. Biophys Chem 2020; 270:106532. [PMID: 33360945 DOI: 10.1016/j.bpc.2020.106532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
Elucidating electrokinetic stability by which surface charges regulate toxins interaction with erythrocytes is crucial for understanding the cell functionality. Electrokinetic properties of human erythrocytes upon treatment of Vipoxin, phospholipase A2 (PLA2) and Vipoxin acidic component (VAC), isolated from Vipera ammodytes meridionalis venom were studied using particle microelectrophoresis. PLA2 and Vipoxin treatments alter the osmotic fragility of erythrocyte membranes. The increased stability of cells upon viper toxins is presented by the increased zeta potential of erythrocytes before sedimentation of cells during electric field applied preventing the aggregation of cells. Lipid peroxidation of low dose toxin-treated erythrocytes shows reduced LP products compared to untreated cells. The apparent proton efflux and conductivity assays are performed and the effectiveness PLA2 > Vipoxin>VAC is discussed. The reported results open perspectives to a further investigation of the electrokinetic properties of the membrane after viper toxins treatment to shed light on the molecular mechanisms driving the mechanisms of inflammation and neurodegenerative diseases.
Collapse
Affiliation(s)
- Virjinia Doltchinkova
- Department of Biophysics and Radiobiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164 Sofia, Bulgaria.
| | - Stoyl Stoylov
- "Rostislaw Kaischew" Institute of Physical Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Plamena R Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
23
|
Ekman S, Barnard RT, Flower R, Gould A, Bui XT. The interaction between Glycophorin A (GPA) and Band 3 in the formation of the Wright b (Wr b ) antigen. Vox Sang 2020; 116:489-492. [PMID: 33336813 DOI: 10.1111/vox.13055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/18/2020] [Accepted: 11/29/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Serena Ekman
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Red Cross Lifeblood (Formerly Australian Red Cross Blood Service), Research and Development, Kelvin Grove, QLD, Australia
| | - Ross T Barnard
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Robert Flower
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Red Cross Lifeblood (Formerly Australian Red Cross Blood Service), Research and Development, Kelvin Grove, QLD, Australia
| | - Alison Gould
- Australian Red Cross Lifeblood (formerly Australian Red Cross Blood Service), Research and Development, Alexandria, NSW, Australia
| | - Xuan T Bui
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Red Cross Lifeblood (Formerly Australian Red Cross Blood Service), Research and Development, Kelvin Grove, QLD, Australia
| |
Collapse
|
24
|
Petrova IV, Birulina YG, Belyaeva SN, Trubacheva OA, Sidekhmenova AV, Smagliy LV, Kovalev IV, Gusakova SV. The Effects of Gasomediators on the Са2+-Dependent Potassium Permeability of the Erythrocyte Membrane. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920040156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
25
|
Automation of RNA-based biomarker extraction from dried blood spots for the detection of blood doping. Bioanalysis 2020; 12:729-736. [DOI: 10.4155/bio-2020-0041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: Transcriptomic biomarkers originating from reticulocytes measured in dried blood spots (DBSs) may be reliable indicators of blood doping. Methods/results: Here, we examined changes in the expression levels of the erythropoiesis-related ALAS2, CA1 and SLC4A1 genes in DBS samples from elite athletes and volunteers of clinical study with recombinant erythropoietin dose. Conclusion: By comparing the mean intraday coefficients of variation for ALAS2L, ALASLC, CA1 and SLC4A1 between manual and automated RNA extractions, an average improvement was observed, whereas the assessment of interday variability provided comparable results for both manual and automated approaches. Our results confirmed that RNA biomarkers on DBS support are efficient to detect blood doping.
Collapse
|
26
|
Jin Y, Liang Q, Tieleman DP. Interactions between Band 3 Anion Exchanger and Lipid Nanodomains in Ternary Lipid Bilayers: Atomistic Simulations. J Phys Chem B 2020; 124:3054-3064. [DOI: 10.1021/acs.jpcb.0c01055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yapan Jin
- Center for Statistical and Theoretical Condensed Matter Physics and Department of Physics, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Qing Liang
- Center for Statistical and Theoretical Condensed Matter Physics and Department of Physics, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - D. Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
27
|
Bertocchio JP, Genetet S, Da Costa L, Walsh SB, Knebelmann B, Galimand J, Bessenay L, Guitton C, De Lafaille R, Vargas-Poussou R, Eladari D, Mouro-Chanteloup I. Red Blood Cell AE1/Band 3 Transports in Dominant Distal Renal Tubular Acidosis Patients. Kidney Int Rep 2020; 5:348-357. [PMID: 32154456 PMCID: PMC7056926 DOI: 10.1016/j.ekir.2019.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/26/2019] [Accepted: 12/31/2019] [Indexed: 11/30/2022] Open
Abstract
Introduction Anion exchanger 1 (AE1) (SLC4A1 gene product) is a membrane protein expressed in both kidney and red blood cells (RBCs): it exchanges extracellular bicarbonate (HCO3–) for intracellular chloride (Cl–) and participates in acid−base homeostasis. AE1 mutations in kidney α-intercalated cells can lead to distal renal tubular acidosis (dRTA). In RBC, AE1 (known as band 3) is also implicated in membrane stability: deletions can cause South Asian ovalocytosis (SAO). Methods We retrospectively collected clinical and biological data from patients harboring dRTA due to a SLC4A1 mutation and analyzed HCO3– and Cl– transports (by stopped-flow spectrophotometry) and expression (by flow cytometry, fluorescence activated cell sorting, and Coomassie blue staining) in RBCs, as well as RBC membrane stability (ektacytometry). Results Fifteen patients were included. All experience nephrolithiasis and/or nephrocalcinosis, 2 had SAO and dRTA (dRTA SAO+), 13 dominant dRTA (dRTA SAO−). The latter did not exert specific RBC membrane anomalies. Both HCO3– and Cl– transports were lower in patients with dRTA SAO+ than in those with dRTA SAO− or controls. Using 3 different extracellular probes, we report a decreased expression (by 52%, P < 0.05) in dRTA SAO+ patients by fluorescence activated cell sorting, whereas total amount of protein was not affected. Conclusion Band 3 transport function and expression in RBCs from dRTA SAO− patients is normal. However, in SAO RBCs, impaired conformation of AE1/band 3 corresponds to an impaired function. Thus, the driver of acid−base defect during dominant dRTA is probably an impaired membrane expression.
Collapse
Affiliation(s)
- Jean-Philippe Bertocchio
- Renal and Metabolic Diseases Unit, Assistance Publique-Hôpitaux de Paris, European Georges Pompidou Hospital, Paris, France.,Faculty of Medicine, Paris Descartes University, Paris, France.,Reference Center for Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France.,Genito-urinary Medical Oncology and Research Department, MD Anderson Cancer Center, Houston, Texas, USA
| | - Sandrine Genetet
- UMR_S1134, Integrated Red Globule Biology (IRGB), Inserm, University of Paris, Paris, France.,Team 1, Physiology of Normal and Pathologic Red Blood Cell, Institut National de la Transfusion Sanguine (INTS), Paris, France
| | - Lydie Da Costa
- UMR_S1134, Integrated Red Globule Biology (IRGB), Inserm, University of Paris, Paris, France.,UMR_S1134, Inserm, Paris, France.,Service d'Hématologie Biologique, Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, Paris, France
| | - Stephen B Walsh
- Department of Renal Medicine, University College of London, London, UK
| | - Bertrand Knebelmann
- Nephrology Department, Assistance Publique-Hôpitaux de Paris, Necker-Enfants Malades Hospital, Paris, France
| | - Julie Galimand
- Service d'Hématologie Biologique, Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, Paris, France
| | - Lucie Bessenay
- Pediatrics Department, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Corinne Guitton
- Pediatrics Department, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Renaud De Lafaille
- Nephrology Department, University Hospital of Bordeaux, Bordeaux, Aquitaine, France
| | - Rosa Vargas-Poussou
- Reference Center for Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France.,Institut National pour la Santé et la Recherche Médicale (INSERM), Unité Mixte de Recherche UMRS1138, Cordeliers Research Center, Paris, France.,Genetics Department, Assistance Publique-Hôpitaux de Paris, European Georges Pompidou Hospital, Paris, France
| | - Dominique Eladari
- Renal and Metabolic Diseases Department, CHU de la Réunion, Felix Guyon Hospital, Saint Denis, France.,INSERM, UMRS 1283-European Genomic Institute for Diabetes, Lille, France
| | - Isabelle Mouro-Chanteloup
- UMR_S1134, Integrated Red Globule Biology (IRGB), Inserm, University of Paris, Paris, France.,Team 1, Physiology of Normal and Pathologic Red Blood Cell, Institut National de la Transfusion Sanguine (INTS), Paris, France
| |
Collapse
|
28
|
Non-oxidative band-3 clustering agents cause the externalization of phosphatidylserine on erythrocyte surfaces by a calcium-independent mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183231. [PMID: 32119860 DOI: 10.1016/j.bbamem.2020.183231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 01/17/2023]
Abstract
Aging of red blood cells (RBCs) is associated with alteration in a wide range of RBC features, occurring each on its own timescale. A number of these changes are interrelated and initiate a cascade of biochemical and structural transformations, including band-3 clustering and phosphatidylserine (PS) externalization. Using specific band-3 clustering agents (acridine orange (AO) and ZnCl2), we examined whether treatment of RBCs with these agents may affects PS externalization and whether this process is Ca2+-dependent. RBCs were isolated from the blood of eight healthy donors upon obtaining their informed consent. The suspension was supplemented with increasing concentrations of AO or ZnCl2 (from 0.5 to 2.0 mM) and incubated at 25 °C for 60 min. To detect PS at the RBC surface, we used allophycocyanin-conjugated recombinant human Annexin V. We demonstrated, that treatment of RBCs with both clustering agents caused an elevation in the percent of cells positively labeled by Annexin-V (RBCPS), and that this value was not dependent on the presence of calcium in the buffer: RBCs treated with AO in the presence of either EDTA, EGTA or calcium exhibited similar percentage of RBCPS. Moreover, the active influx of Zn2+ into RBCs induced by their co-incubation with both ZnCl2 and A23187 did not increase the percent of RBCPS as compared to RBCs incubated with ZnCl2 alone. Taken together, these results demonstrate that the band-3 clustering agents (AO or ZnCl2) induce PS externalization in a Ca2+ independent manner, and we hereby suggest a possible scenario for this phenomenon.
Collapse
|
29
|
Mitusińska K, Raczyńska A, Bzówka M, Bagrowska W, Góra A. Applications of water molecules for analysis of macromolecule properties. Comput Struct Biotechnol J 2020; 18:355-365. [PMID: 32123557 PMCID: PMC7036622 DOI: 10.1016/j.csbj.2020.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/26/2020] [Accepted: 02/01/2020] [Indexed: 01/12/2023] Open
Abstract
Water molecules maintain proteins' structures, functions, stabilities and dynamics. They can occupy certain positions or pass quickly via a protein's interior. Regardless of their behaviour, water molecules can be used for the analysis of proteins' structural features and biochemical properties. Here, we present a list of several software programs that use the information provided by water molecules to: i) analyse protein structures and provide the optimal positions of water molecules for protein hydration, ii) identify high-occupancy water sites in order to analyse ligand binding modes, and iii) detect and describe tunnels and cavities. The analysis of water molecules' distribution and trajectories sheds a light on proteins' interactions with small molecules, on the dynamics of tunnels and cavities, on protein composition and also on the functionality, transportation network and location of functionally relevant residues. Finally, the correct placement of water molecules in protein crystal structures can significantly improve the reliability of molecular dynamics simulations.
Collapse
Affiliation(s)
| | | | | | | | - Artur Góra
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, Gliwice, Poland
| |
Collapse
|
30
|
De Vecchis D, Reithmeier RAF, Kalli AC. Molecular Simulations of Intact Anion Exchanger 1 Reveal Specific Domain and Lipid Interactions. Biophys J 2019; 117:1364-1379. [PMID: 31540709 PMCID: PMC6818359 DOI: 10.1016/j.bpj.2019.08.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/30/2019] [Accepted: 08/22/2019] [Indexed: 12/23/2022] Open
Abstract
Anion exchanger 1 (AE1) is responsible for the exchange of bicarbonate and chloride across the erythrocyte plasma membrane. Human AE1 consists of a cytoplasmic and a membrane domain joined by a 33-residue flexible linker. Crystal structures of the individual domains have been determined, but the intact AE1 structure remains elusive. In this study, we use molecular dynamics simulations and modeling to build intact AE1 structures in a complex lipid bilayer that resembles the native erythrocyte plasma membrane. AE1 models were evaluated using available experimental data to provide an atomistic view of the interaction and dynamics of the cytoplasmic domain, the membrane domain, and the connecting linker in a complete model of AE1 in a lipid bilayer. Anionic lipids were found to interact strongly with AE1 at specific amino acid residues that are linked to diseases and blood group antigens. Cholesterol was found in the dimeric interface of AE1, suggesting that it may regulate subunit interactions and anion transport.
Collapse
Affiliation(s)
- Dario De Vecchis
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | | | - Antreas C Kalli
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
31
|
Marrink SJ, Corradi V, Souza PC, Ingólfsson HI, Tieleman DP, Sansom MS. Computational Modeling of Realistic Cell Membranes. Chem Rev 2019; 119:6184-6226. [PMID: 30623647 PMCID: PMC6509646 DOI: 10.1021/acs.chemrev.8b00460] [Citation(s) in RCA: 466] [Impact Index Per Article: 77.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 12/15/2022]
Abstract
Cell membranes contain a large variety of lipid types and are crowded with proteins, endowing them with the plasticity needed to fulfill their key roles in cell functioning. The compositional complexity of cellular membranes gives rise to a heterogeneous lateral organization, which is still poorly understood. Computational models, in particular molecular dynamics simulations and related techniques, have provided important insight into the organizational principles of cell membranes over the past decades. Now, we are witnessing a transition from simulations of simpler membrane models to multicomponent systems, culminating in realistic models of an increasing variety of cell types and organelles. Here, we review the state of the art in the field of realistic membrane simulations and discuss the current limitations and challenges ahead.
Collapse
Affiliation(s)
- Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Paulo C.T. Souza
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Helgi I. Ingólfsson
- Biosciences
and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Mark S.P. Sansom
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| |
Collapse
|
32
|
Corradi V, Sejdiu BI, Mesa-Galloso H, Abdizadeh H, Noskov SY, Marrink SJ, Tieleman DP. Emerging Diversity in Lipid-Protein Interactions. Chem Rev 2019; 119:5775-5848. [PMID: 30758191 PMCID: PMC6509647 DOI: 10.1021/acs.chemrev.8b00451] [Citation(s) in RCA: 303] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 02/07/2023]
Abstract
Membrane lipids interact with proteins in a variety of ways, ranging from providing a stable membrane environment for proteins to being embedded in to detailed roles in complicated and well-regulated protein functions. Experimental and computational advances are converging in a rapidly expanding research area of lipid-protein interactions. Experimentally, the database of high-resolution membrane protein structures is growing, as are capabilities to identify the complex lipid composition of different membranes, to probe the challenging time and length scales of lipid-protein interactions, and to link lipid-protein interactions to protein function in a variety of proteins. Computationally, more accurate membrane models and more powerful computers now enable a detailed look at lipid-protein interactions and increasing overlap with experimental observations for validation and joint interpretation of simulation and experiment. Here we review papers that use computational approaches to study detailed lipid-protein interactions, together with brief experimental and physiological contexts, aiming at comprehensive coverage of simulation papers in the last five years. Overall, a complex picture of lipid-protein interactions emerges, through a range of mechanisms including modulation of the physical properties of the lipid environment, detailed chemical interactions between lipids and proteins, and key functional roles of very specific lipids binding to well-defined binding sites on proteins. Computationally, despite important limitations, molecular dynamics simulations with current computer power and theoretical models are now in an excellent position to answer detailed questions about lipid-protein interactions.
Collapse
Affiliation(s)
- Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Besian I. Sejdiu
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haydee Mesa-Galloso
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haleh Abdizadeh
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Sergei Yu. Noskov
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
33
|
Hedger G, Koldsø H, Chavent M, Siebold C, Rohatgi R, Sansom MSP. Cholesterol Interaction Sites on the Transmembrane Domain of the Hedgehog Signal Transducer and Class F G Protein-Coupled Receptor Smoothened. Structure 2019; 27:549-559.e2. [PMID: 30595453 PMCID: PMC6408332 DOI: 10.1016/j.str.2018.11.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/28/2018] [Accepted: 11/02/2018] [Indexed: 12/12/2022]
Abstract
Transduction of Hedgehog signals across the plasma membrane is facilitated by the class F G-protein-coupled-receptor (GPCR) Smoothened (SMO). Recent studies suggest that SMO is modulated via interactions of its transmembrane (TM) domain with cholesterol. We apply molecular dynamics simulations of SMO embedded in cholesterol containing lipid bilayers, revealing a direct interaction of cholesterol with the TM domain at regions distinct from those observed in class A GPCRs. In particular the extracellular tips of helices TM2 and TM3 form a well-defined cholesterol interaction site. Potential of mean force calculations yield a free energy landscape for cholesterol binding. Alongside analysis of equilibrium cholesterol occupancy, this reveals the existence of a dynamic "greasy patch" interaction with the TM domain of SMO, which may be compared with previously identified lipid interaction sites on other membrane proteins. These predictions provide molecular-level insights into cholesterol interactions with a class F GPCR, suggesting potential druggable sites.
Collapse
Affiliation(s)
- George Hedger
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Heidi Koldsø
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Matthieu Chavent
- Institut de Pharmacologie et de Biologie Structurale IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Rajat Rohatgi
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|