1
|
Tripathy M, Srivastava A. Non-affine deformation analysis and 3D packing defects: A new way to probe membrane heterogeneity in molecular simulations. Methods Enzymol 2024; 701:541-577. [PMID: 39025582 DOI: 10.1016/bs.mie.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Here, we discuss a new framework developed over the last 5 years in our group to probe nanoscale membrane heterogeneity. The framework is based on the idea of characterizing lateral heterogeneity through non-affine deformation (NAD) measurements, transverse heterogeneity through three dimensional (3D) lipid packing defects, and using these approaches to formalize the seemingly trivial correlation between lateral organization and lipid packing in biological membranes. We find that measurements from NAD analysis, a prescription which is borrowed from Physics of glasses and granular material, can faithfully distinguish between liquid-ordered and disordered phases in membranes at molecular length scales and, can also be used to identify phase boundaries with high precision. Concomitantly, 3D-packing defects can not only distinguish between the two co-existing fluid phases based on their molecular scale packing (or membrane free volume), but also provide a route to connect the membrane domains to their functionality, such as exploring the molecular origins of inter-leaflet domain registration and peptide partitioning. The correlation between lateral membrane order and transverse packing presents novel molecular design-level features that can explain functions such as protein/peptide partitioning and small-molecule permeation dynamics in complex and heterogeneous membranes with high-fidelity. The framework allows us to explore the nature of lateral organization and molecular packing as a manifestation of intricate molecular interactions among a chemically rich variety of lipids and other molecules in a membrane with complex membrane composition and asymmetry across leaflets.
Collapse
Affiliation(s)
- Madhusmita Tripathy
- Department of Chemistry, Technical University of Darmstadt, Darmstadt, Germany.
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, Karnataka, India.
| |
Collapse
|
2
|
Ahalawat N, Sahil M, Mondal J. Resolving Protein Conformational Plasticity and Substrate Binding via Machine Learning. J Chem Theory Comput 2023; 19:2644-2657. [PMID: 37068044 DOI: 10.1021/acs.jctc.2c00932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
A long-standing target in elucidating the biomolecular recognition process is the identification of binding-competent conformations of the receptor protein. However, protein conformational plasticity and the stochastic nature of the recognition processes often preclude the assignment of a specific protein conformation to an individual ligand-bound pose. Here, we demonstrate that a computational framework coined as RF-TICA-MD, which integrates an ensemble decision-tree-based Random Forest (RF) machine learning (ML) technique with an unsupervised dimension reduction approach time-structured independent component analysis (TICA), provides an efficient and unambiguous solution toward resolving protein conformational plasticity and the substrate binding process. In particular, we consider multimicrosecond-long molecular dynamics (MD) simulation trajectories of a ligand recognition process in solvent-inaccessible cavities of archetypal proteins T4 lysozyme and cytochrome P450cam. We show that in a scenario in which clear correspondence between protein conformation and binding-competent macrostates could not be obtained via an unsupervised dimension reduction approach, an a priori decision-tree-based supervised classification of the simulated recognition trajectories via RF would help characterize key amino acid residue pairs of the protein that are deemed sensitive for ligand binding. A subsequent unsupervised dimensional reduction of the selected residue pairs via TICA would then delineate a conformational landscape of protein which is able to demarcate ligand-bound poses from unbound ones. The proposed RF-TICA-MD approach is shown to be data agnostic and found to be robust when using other ML-based classification methods such as XGBoost. As a promising spinoff of the protocol, the framework is found to be capable of identifying distal protein locations which would be allosterically important for ligand binding and would characterize their roles in recognition pathways. A Python implementation of a proposed ML workflow is available in GitHub https://github.com/navjeet0211/rf-tica-md.
Collapse
Affiliation(s)
- Navjeet Ahalawat
- Department of Bioinformatics and Computational Biology, College of Biotechnology, CCS Haryana Agricultural University, Hisar 125 004, Haryana, India
| | - Mohammad Sahil
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Jagannath Mondal
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| |
Collapse
|
3
|
Bari KJ, Prakashchand DD. Fundamental Challenges and Outlook in Simulating Liquid-Liquid Phase Separation of Intrinsically Disordered Proteins. J Phys Chem Lett 2021; 12:1644-1656. [PMID: 33555894 DOI: 10.1021/acs.jpclett.0c03404] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Intrinsically disordered proteins (IDPs) populate an ensemble of dynamic conformations, making their structural characterization by experiments challenging. Many IDPs undergo liquid-liquid phase separation into dense membraneless organelles with myriad cellular functions. Multivalent interactions in low-complexity IDPs promote the formation of these subcellular coacervates. While solution NMR, Förster resonance energy transfer (FRET), and small-angle X-ray scattering (SAXS) studies on IDPs have their own challenges, recent computational methods draw a rational trade-off to characterize the driving forces underlying phase separation. In this Perspective, we critically evaluate the scope of approximation-free field theoretic simulations, well-tempered ensemble methods, enhanced sampling techniques, coarse-grained force fields, and slab simulation approaches to offer an improved understanding of phase separation. A synergy between simulation length scale and model resolution would reduce the existing caveats and enable theories of polymer physics to elucidate finer details of liquid-liquid phase separation (LLPS). These computational advances offer promise for rigorous characterization of the IDP proteome and designing peptides with tunable material and self-assembly properties.
Collapse
Affiliation(s)
- Khandekar Jishan Bari
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Gopanpally, Hyderabad 500107, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Berhampur, Odisha 760010, India
| | - Dube Dheeraj Prakashchand
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Gopanpally, Hyderabad 500107, India
| |
Collapse
|
4
|
Ahalawat N, Mondal J. An Appraisal of Computer Simulation Approaches in Elucidating Biomolecular Recognition Pathways. J Phys Chem Lett 2021; 12:633-641. [PMID: 33382941 DOI: 10.1021/acs.jpclett.0c02785] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Computer simulation approaches in biomolecular recognition processes have come a long way. In this Perspective, we highlight a series of recent success stories in which computer simulations have played a remarkable role in elucidating the atomic resolution mechanism of kinetic processes of protein-ligand binding in a quantitative fashion. In particular, we show that a robust combination of unbiased simulation, harnessed by a high-fidelity computing environment, and Markov state modeling approaches has been instrumental in revealing novel protein-ligand recognition pathways in multiple systems. We also elucidate the role of recent developments in enhanced sampling approaches in providing the much-needed impetus in accelerating simulation of the ligand recognition process. We identify multiple key issues, including force fields and the sampling bottleneck, which are currently preventing the field from achieving quantitative reconstruction of experimental measurements. Finally, we suggest a possible way forward via adoption of multiscale approaches and coarse-grained simulations as next steps toward efficient elucidation of ligand binding kinetics.
Collapse
Affiliation(s)
- Navjeet Ahalawat
- Department of Molecular Biology, Biotechnology and Bioinformatics, Chaudhary Charan Singh, Haryana Agricultural University, Hisar 125004, India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences, Hyderabad 500046, India
| |
Collapse
|
5
|
Menéndez CA, Byléhn F, Perez-Lemus GR, Alvarado W, de Pablo JJ. Molecular characterization of ebselen binding activity to SARS-CoV-2 main protease. SCIENCE ADVANCES 2020; 6:sciadv.abd0345. [PMID: 32917717 PMCID: PMC7486088 DOI: 10.1126/sciadv.abd0345] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/28/2020] [Indexed: 05/09/2023]
Abstract
There is an urgent need to repurpose drugs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recent computational-experimental screenings have identified several existing drugs that could serve as effective inhibitors of the virus' main protease, Mpro, which is involved in gene expression and replication. Among these, ebselen (2-phenyl-1,2-benzoselenazol-3-one) appears to be particularly promising. Here, we examine, at a molecular level, the potential of ebselen to decrease Mpro activity. We find that it exhibits a distinct affinity for the catalytic region. Our results reveal a higher-affinity, previously unknown binding site localized between the II and III domains of the protein. A detailed strain analysis indicates that, on such a site, ebselen exerts a pronounced allosteric effect that regulates catalytic site access through surface-loop interactions, thereby inducing a reconfiguration of water hotspots. Together, these findings highlight the promise of ebselen as a repurposed drug against SARS-CoV-2.
Collapse
Affiliation(s)
- Cintia A Menéndez
- Pritzker School of Molecular Engineering, University of Chicago, 5640, S. Ellis Avenue, Chicago, IL 60637, USA
| | - Fabian Byléhn
- Pritzker School of Molecular Engineering, University of Chicago, 5640, S. Ellis Avenue, Chicago, IL 60637, USA
| | - Gustavo R Perez-Lemus
- Pritzker School of Molecular Engineering, University of Chicago, 5640, S. Ellis Avenue, Chicago, IL 60637, USA
| | - Walter Alvarado
- Pritzker School of Molecular Engineering, University of Chicago, 5640, S. Ellis Avenue, Chicago, IL 60637, USA
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, 5640, S. Ellis Avenue, Chicago, IL 60637, USA.
- Argonne National Laboratory, Lemont, IL 60439, USA
| |
Collapse
|
6
|
Iyer SS, Srivastava A. Degeneracy in molecular scale organization of biological membranes. SOFT MATTER 2020; 16:6752-6764. [PMID: 32628232 DOI: 10.1039/d0sm00619j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The scale-rich spatiotemporal organization in biological membranes has its origin in the differential inter- and intra-molecular interactions among their constituents. In this work, we explore the molecular-origin behind that variety and possible degeneracy in lateral organization in membranes. For our study, we post-process microsecond long all-atom molecular dynamics trajectories for three systems that exhibit fluid phase coexistence: (i) PSM/POPC/Chol (0.47/0.32/0.21), (ii) PSM/DOPC/Chol (0.43/0.38/0.19) and (iii) DPPC/DOPC/Chol (0.37/0.36/0.27). To distinguish the liquid ordered and disordered regions at molecular scales, we calculate the degree of non-affineness of individual lipids in their neighbourhood and track their topological rearrangements. Disconnectivity graph analysis with respect to membrane organization shows that the DPPC/DOPC/Chol and PSM/DOPC/Chol systems exhibit funnel-like energy landscapes as opposed to a highly frustrated energy landscape for the more biomimetic PSM/POPC/Chol system. We use these measurements to develop a continuous lattice Hamiltonian and evolve that using Monte Carlo simulated annealing to explore the possibility of structural degeneracy in membrane organization. Our data show that model membranes with lipid constituents that are biomimetic (PSM/POPC/Chol) have the ability to access a large range of membrane sub-structure space (higher degeneracy) as compared to the other two systems, which form only one kind of substructure even with changing composition. Since the spatiotemporal organization in biological membranes dictates the "molecular encounters" and in turn larger scale biological processes such as molecular transport, trafficking and cellular signalling, we posit that this structural degeneracy could enable access to a larger repository to functionally important molecular organization in systems with physiologically relevant compositions.
Collapse
Affiliation(s)
- Sahithya S Iyer
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.
| | | |
Collapse
|
7
|
Prakashchand DD, Ahalawat N, Bandyopadhyay S, Sengupta S, Mondal J. Nonaffine Displacements Encode Collective Conformational Fluctuations in Proteins. J Chem Theory Comput 2020; 16:2508-2516. [DOI: 10.1021/acs.jctc.9b01100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dube Dheeraj Prakashchand
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences, Hyderabad 500107, India
| | - Navjeet Ahalawat
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences, Hyderabad 500107, India
- Department of Molecular Biology, Biotechnology and Bioinformatics, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004, India
| | - Satyabrata Bandyopadhyay
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences, Hyderabad 500107, India
| | - Surajit Sengupta
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences, Hyderabad 500107, India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences, Hyderabad 500107, India
| |
Collapse
|
8
|
Popli P, Kayal S, Sollich P, Sengupta S. Exploring the link between crystal defects and nonaffine displacement fluctuations. Phys Rev E 2019; 100:033002. [PMID: 31639940 DOI: 10.1103/physreve.100.033002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Indexed: 11/07/2022]
Abstract
We generalize and then use a recently introduced formalism to study thermal fluctuations of atomic displacements in several two- and three-dimensional crystals. We study both close-packed and open crystals with multiatom bases. Atomic displacement fluctuations in a solid, once coarse grained over some neighborhood, may be decomposed into two mutually orthogonal components. In any dimension d there are always d^{2} affine displacements representing local strains and rotations of the ideal reference configuration. In addition, there exist a number of nonaffine localized displacement modes that cannot be represented as strains or rotations. The number of these modes depends on d and the size of the coarse-graining region. All thermodynamic averages and correlation functions concerning the affine and nonaffine displacements may be computed within harmonic theory. We show that for compact crystals, such as the square and triangular crystals in d=2 and the simple body-centered-cubic and face-centered-cubic crystals in d=3, a single set of d-fold degenerate modes always dominates the nonaffine subspace and is separated from the rest by a large gap. These modes may be identified with specific precursor configurations that lead to lattice defects. In open crystals, such as the honeycomb and kagome lattices, there is no prominent gap, although soft nonaffine modes continue to be associated with known floppy modes representing localized defects. Higher-order coupling between affine and nonaffine components of the displacements quantifies the tendency of the lattice to be destroyed by large homogeneous strains. We show that this coupling is larger by almost an order of magnitude for open lattices as compared to compact ones. Deformation mechanisms such as lattice slips and stacking faults in close-packed crystals can also be understood within this framework. The qualitative features of these conclusions are expected to be independent of the details of the atomic interactions.
Collapse
Affiliation(s)
- Pankaj Popli
- Tata Institute for Fundamental Research, Centre for Interdisciplinary Sciences, 36/P Gopanapally, Hyderabad 500107, India
| | - Sayantani Kayal
- Tata Institute for Fundamental Research, Centre for Interdisciplinary Sciences, 36/P Gopanapally, Hyderabad 500107, India
| | - Peter Sollich
- Department of Mathematics, King's College London, London WC2R 2LS, United Kingdom.,Institute for Theoretical Physics, University of Göttingen, 37077 Göttingen, Germany
| | - Surajit Sengupta
- Tata Institute for Fundamental Research, Centre for Interdisciplinary Sciences, 36/P Gopanapally, Hyderabad 500107, India
| |
Collapse
|