1
|
Scheler G, Schumann ML, Schumann J. Localist neural plasticity identified by mutual information. J Comput Neurosci 2025:10.1007/s10827-025-00901-w. [PMID: 40120001 DOI: 10.1007/s10827-025-00901-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/27/2024] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
We present a model of pattern memory and retrieval with novel, technically useful and biologically realistic properties. Specifically, we enter n variations of k pattern classes (n*k patterns) onto a cortex-like balanced inhibitory-excitatory network with heterogeneous neurons, and let the pattern spread within the recurrent network. We show that we can identify high mutual-information (MI) neurons as major information-bearing elements within each pattern representation. We employ a simple one-shot adaptive (learning) process focusing on high MI neurons and inhibition. Such 'localist plasticity' has high efficiency, because it requires only few adaptations for each pattern. Specifically, we store k=10 patterns of size s=400 in a 1000/1200 neuron network. We stimulate high MI neurons and in this way recall patterns, such that the whole network represents this pattern. We assess the quality of the representation (a) before learning, when entering the pattern into a naive network, (b) after learning, on the adapted network, and (c) after recall by stimulation. The recalled patterns could be easily recognized by a trained classifier. The recalled pattern 'unfolds' over the recurrent network with high similarity to the original input pattern. We discuss the distribution of neuron properties in the network, and find that an initial Gaussian distribution changes into a more heavy-tailed, lognormal distribution during the adaptation process. The remarkable result is that we are able to achieve reliable pattern recall by stimulating only high information neurons. This work provides a biologically-inspired model of cortical memory and may have interesting technical applications.
Collapse
Affiliation(s)
- Gabriele Scheler
- Carl Correns Foundation for Mathematical Biology, 1030 Judson Dr, Mountain View, CA, 94040, USA.
| | - Martin L Schumann
- Dept. of Computer Science, Ludwig Maximilian University, Munich, Germany
| | - Johann Schumann
- Carl Correns Foundation for Mathematical Biology, 1030 Judson Dr, Mountain View, CA, 94040, USA
| |
Collapse
|
2
|
Liang J, Yang Z, Zhou C. Excitation-Inhibition Balance, Neural Criticality, and Activities in Neuronal Circuits. Neuroscientist 2025; 31:31-46. [PMID: 38291889 DOI: 10.1177/10738584231221766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Neural activities in local circuits exhibit complex and multilevel dynamic features. Individual neurons spike irregularly, which is believed to originate from receiving balanced amounts of excitatory and inhibitory inputs, known as the excitation-inhibition balance. The spatial-temporal cascades of clustered neuronal spikes occur in variable sizes and durations, manifested as neural avalanches with scale-free features. These may be explained by the neural criticality hypothesis, which posits that neural systems operate around the transition between distinct dynamic states. Here, we summarize the experimental evidence for and the underlying theory of excitation-inhibition balance and neural criticality. Furthermore, we review recent studies of excitatory-inhibitory networks with synaptic kinetics as a simple solution to reconcile these two apparently distinct theories in a single circuit model. This provides a more unified understanding of multilevel neural activities in local circuits, from spontaneous to stimulus-response dynamics.
Collapse
Affiliation(s)
- Junhao Liang
- Eberhard Karls University of Tübingen and Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Zhuda Yang
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- Life Science Imaging Centre, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- Research Centre, Hong Kong Baptist University Institute of Research and Continuing Education, Shenzhen, China
| |
Collapse
|
3
|
Qi Y. Moment neural network and an efficient numerical method for modeling irregular spiking activity. Phys Rev E 2024; 110:024310. [PMID: 39295055 DOI: 10.1103/physreve.110.024310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 09/21/2024]
Abstract
Continuous rate-based neural networks have been widely applied to modeling the dynamics of cortical circuits. However, cortical neurons in the brain exhibit irregular spiking activity with complex correlation structures that cannot be captured by mean firing rate alone. To close this gap, we consider a framework for modeling irregular spiking activity, called the moment neural network, which naturally generalizes rate models to second-order moments and can accurately capture the firing statistics of spiking neural networks. We propose an efficient numerical method that allows for rapid evaluation of moment mappings for neuronal activations without solving the underlying Fokker-Planck equation. This allows simulation of coupled interactions of mean firing rate and firing variability of large-scale neural circuits while retaining the advantage of analytical tractability of continuous rate models. We demonstrate how the moment neural network can explain a range of phenomena including diverse Fano factor in networks with quenched disorder and the emergence of irregular oscillatory dynamics in excitation-inhibition networks with delay.
Collapse
Affiliation(s)
- Yang Qi
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai 200433, China; and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
4
|
Bardella G, Giuffrida V, Giarrocco F, Brunamonti E, Pani P, Ferraina S. Response inhibition in premotor cortex corresponds to a complex reshuffle of the mesoscopic information network. Netw Neurosci 2024; 8:597-622. [PMID: 38952814 PMCID: PMC11168728 DOI: 10.1162/netn_a_00365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/18/2024] [Indexed: 07/03/2024] Open
Abstract
Recent studies have explored functional and effective neural networks in animal models; however, the dynamics of information propagation among functional modules under cognitive control remain largely unknown. Here, we addressed the issue using transfer entropy and graph theory methods on mesoscopic neural activities recorded in the dorsal premotor cortex of rhesus monkeys. We focused our study on the decision time of a Stop-signal task, looking for patterns in the network configuration that could influence motor plan maturation when the Stop signal is provided. When comparing trials with successful inhibition to those with generated movement, the nodes of the network resulted organized into four clusters, hierarchically arranged, and distinctly involved in information transfer. Interestingly, the hierarchies and the strength of information transmission between clusters varied throughout the task, distinguishing between generated movements and canceled ones and corresponding to measurable levels of network complexity. Our results suggest a putative mechanism for motor inhibition in premotor cortex: a topological reshuffle of the information exchanged among ensembles of neurons.
Collapse
Affiliation(s)
- Giampiero Bardella
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Valentina Giuffrida
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Franco Giarrocco
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Emiliano Brunamonti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Pierpaolo Pani
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Stefano Ferraina
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
Ni S, Harris B, Gong P. Distributed and dynamical communication: a mechanism for flexible cortico-cortical interactions and its functional roles in visual attention. Commun Biol 2024; 7:550. [PMID: 38719883 PMCID: PMC11078951 DOI: 10.1038/s42003-024-06228-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Perceptual and cognitive processing relies on flexible communication among cortical areas; however, the underlying neural mechanism remains unclear. Here we report a mechanism based on the realistic spatiotemporal dynamics of propagating wave patterns in neural population activity. Using a biophysically plausible, multiarea spiking neural circuit model, we demonstrate that these wave patterns, characterized by their rich and complex dynamics, can account for a wide variety of empirically observed neural processes. The coordinated interactions of these wave patterns give rise to distributed and dynamic communication (DDC) that enables flexible and rapid routing of neural activity across cortical areas. We elucidate how DDC unifies the previously proposed oscillation synchronization-based and subspace-based views of interareal communication, offering experimentally testable predictions that we validate through the analysis of Allen Institute Neuropixels data. Furthermore, we demonstrate that DDC can be effectively modulated during attention tasks through the interplay of neuromodulators and cortical feedback loops. This modulation process explains many neural effects of attention, underscoring the fundamental functional role of DDC in cognition.
Collapse
Affiliation(s)
- Shencong Ni
- School of Physics, University of Sydney, Sydney, NSW, Australia
| | - Brendan Harris
- School of Physics, University of Sydney, Sydney, NSW, Australia
| | - Pulin Gong
- School of Physics, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
6
|
Lasnick OHM, Hoeft F. Sensory temporal sampling in time: an integrated model of the TSF and neural noise hypothesis as an etiological pathway for dyslexia. Front Hum Neurosci 2024; 17:1294941. [PMID: 38234592 PMCID: PMC10792016 DOI: 10.3389/fnhum.2023.1294941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024] Open
Abstract
Much progress has been made in research on the causal mechanisms of developmental dyslexia. In recent years, the "temporal sampling" account of dyslexia has evolved considerably, with contributions from neurogenetics and novel imaging methods resulting in a much more complex etiological view of the disorder. The original temporal sampling framework implicates disrupted neural entrainment to speech as a causal factor for atypical phonological representations. Yet, empirical findings have not provided clear evidence of a low-level etiology for this endophenotype. In contrast, the neural noise hypothesis presents a theoretical view of the manifestation of dyslexia from the level of genes to behavior. However, its relative novelty (published in 2017) means that empirical research focused on specific predictions is sparse. The current paper reviews dyslexia research using a dual framework from the temporal sampling and neural noise hypotheses and discusses the complementary nature of these two views of dyslexia. We present an argument for an integrated model of sensory temporal sampling as an etiological pathway for dyslexia. Finally, we conclude with a brief discussion of outstanding questions.
Collapse
Affiliation(s)
- Oliver H. M. Lasnick
- brainLENS Laboratory, Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | | |
Collapse
|
7
|
Nakajima R, Shirakami A, Tsumura H, Matsuda K, Nakamura E, Shimono M. Mutual generation in neuronal activity across the brain via deep neural approach, and its network interpretation. Commun Biol 2023; 6:1105. [PMID: 37907640 PMCID: PMC10618281 DOI: 10.1038/s42003-023-05453-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023] Open
Abstract
In the brain, many regions work in a network-like association, yet it is not known how durable these associations are in terms of activity and could survive without structural connections. To assess the association or similarity between brain regions with a generating approach, this study evaluated the similarity of activities of neurons within each region after disconnecting between regions. The "generation" approach here refers to using a multi-layer LSTM (Long Short-Term Memory) model to learn the rules of activity generation in one region and then apply that knowledge to generate activity in other regions. Surprisingly, the results revealed that activity generation from one region to disconnected regions was possible with similar accuracy to generation between the same regions in many cases. Notably, firing rates and synchronization of firing between neuron pairs, often used as neuronal representations, could be reproduced with precision. Additionally, accuracies were associated with the relative angle between brain regions and the strength of the structural connections that initially connected them. This outcome enables us to look into trends governing non-uniformity of the cortex based on the potential to generate informative data and reduces the need for animal experiments.
Collapse
Affiliation(s)
- Ryota Nakajima
- Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | | | - Hayato Tsumura
- Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Kouki Matsuda
- Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Eita Nakamura
- Kyoto University, Graduate School of Informatics, Kyoto, Japan
- Kyoto University, The Hakubi Center for Advanced Research, Kyoto, Japan
| | - Masanori Shimono
- Kyoto University, Graduate School of Medicine, Kyoto, Japan.
- Kyoto University, The Hakubi Center for Advanced Research, Kyoto, Japan.
- Osaka University, Graduate School of Informatics, Kyoto, Japan.
| |
Collapse
|
8
|
Qi Y, Gong P. Fractional neural sampling as a theory of spatiotemporal probabilistic computations in neural circuits. Nat Commun 2022; 13:4572. [PMID: 35931698 PMCID: PMC9356069 DOI: 10.1038/s41467-022-32279-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 07/22/2022] [Indexed: 11/08/2022] Open
Abstract
A range of perceptual and cognitive processes have been characterized from the perspective of probabilistic representations and inference. To understand the neural circuit mechanism underlying these probabilistic computations, we develop a theory based on complex spatiotemporal dynamics of neural population activity. We first implement and explore this theory in a biophysically realistic, spiking neural circuit. Population activity patterns emerging from the circuit capture realistic variability or fluctuations of neural dynamics both in time and in space. These activity patterns implement a type of probabilistic computations that we name fractional neural sampling (FNS). We further develop a mathematical model to reveal the algorithmic nature of FNS and its computational advantages for representing multimodal distributions, a major challenge faced by existing theories. We demonstrate that FNS provides a unified account of a diversity of experimental observations of neural spatiotemporal dynamics and perceptual processes such as visual perception inference, and that FNS makes experimentally testable predictions.
Collapse
Affiliation(s)
- Yang Qi
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Pulin Gong
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
9
|
Wardak A, Gong P. Extended Anderson Criticality in Heavy-Tailed Neural Networks. PHYSICAL REVIEW LETTERS 2022; 129:048103. [PMID: 35939004 DOI: 10.1103/physrevlett.129.048103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/08/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
We investigate the emergence of complex dynamics in networks with heavy-tailed connectivity by developing a non-Hermitian random matrix theory. We uncover the existence of an extended critical regime of spatially multifractal fluctuations between the quiescent and active phases. This multifractal critical phase combines features of localization and delocalization and differs from the edge of chaos in classical networks by the appearance of universal hallmarks of Anderson criticality over an extended region in phase space. We show that the rich nonlinear response properties of the extended critical regime can account for a variety of neural dynamics such as the diversity of timescales, providing a computational advantage for persistent classification in a reservoir setting.
Collapse
Affiliation(s)
- Asem Wardak
- School of Physics, University of Sydney, New South Wales 2006, Australia
| | - Pulin Gong
- School of Physics, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
10
|
Chen G, Gong P. A spatiotemporal mechanism of visual attention: Superdiffusive motion and theta oscillations of neural population activity patterns. SCIENCE ADVANCES 2022; 8:eabl4995. [PMID: 35452293 PMCID: PMC9032965 DOI: 10.1126/sciadv.abl4995] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Recent evidence has demonstrated that during visual spatial attention sampling, neural activity and behavioral performance exhibit large fluctuations. To understand the origin of these fluctuations and their functional role, here, we introduce a mechanism based on the dynamical activity pattern (attention spotlight) emerging from neural circuit models in the transition regime between different dynamical states. This attention activity pattern with rich spatiotemporal dynamics flexibly samples from different stimulus locations, explaining many key aspects of temporal fluctuations such as variable theta oscillations of visual spatial attention. Moreover, the mechanism expands our understanding of how visual attention exploits spatially complex fluctuations characterized by superdiffusive motion in space and makes experimentally testable predictions. We further illustrate that attention sampling based on such spatiotemporal fluctuations provides profound functional advantages such as adaptive switching between exploitation and exploration activities and is particularly efficient at sampling natural scenes with multiple salient objects.
Collapse
Affiliation(s)
- Guozhang Chen
- School of Physics, University of Sydney, NSW 2006, Australia
- ARC Center of Excellence for Integrative Brain Function, University of Sydney, NSW 2006, Australia
- Institute of Theoretical Computer Science, Graz University of Technology, Graz, Austria
| | - Pulin Gong
- School of Physics, University of Sydney, NSW 2006, Australia
- ARC Center of Excellence for Integrative Brain Function, University of Sydney, NSW 2006, Australia
- Corresponding author.
| |
Collapse
|
11
|
Liang J, Zhou C. Criticality enhances the multilevel reliability of stimulus responses in cortical neural networks. PLoS Comput Biol 2022; 18:e1009848. [PMID: 35100254 PMCID: PMC8830719 DOI: 10.1371/journal.pcbi.1009848] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 02/10/2022] [Accepted: 01/18/2022] [Indexed: 11/18/2022] Open
Abstract
Cortical neural networks exhibit high internal variability in spontaneous dynamic activities and they can robustly and reliably respond to external stimuli with multilevel features–from microscopic irregular spiking of neurons to macroscopic oscillatory local field potential. A comprehensive study integrating these multilevel features in spontaneous and stimulus–evoked dynamics with seemingly distinct mechanisms is still lacking. Here, we study the stimulus–response dynamics of biologically plausible excitation–inhibition (E–I) balanced networks. We confirm that networks around critical synchronous transition states can maintain strong internal variability but are sensitive to external stimuli. In this dynamical region, applying a stimulus to the network can reduce the trial-to-trial variability and shift the network oscillatory frequency while preserving the dynamical criticality. These multilevel features widely observed in different experiments cannot simultaneously occur in non-critical dynamical states. Furthermore, the dynamical mechanisms underlying these multilevel features are revealed using a semi-analytical mean-field theory that derives the macroscopic network field equations from the microscopic neuronal networks, enabling the analysis by nonlinear dynamics theory and linear noise approximation. The generic dynamical principle revealed here contributes to a more integrative understanding of neural systems and brain functions and incorporates multimodal and multilevel experimental observations. The E–I balanced neural network in combination with the effective mean-field theory can serve as a mechanistic modeling framework to study the multilevel neural dynamics underlying neural information and cognitive processes. The complexity and variability of brain dynamical activity range from neuronal spiking and neural avalanches to oscillatory local field potentials of local neural circuits in both spontaneous and stimulus-evoked states. Such multilevel variable brain dynamics are functionally and behaviorally relevant and are principal components of the underlying circuit organization. To more comprehensively clarify their neural mechanisms, we use a bottom-up approach to study the stimulus–response dynamics of neural circuits. Our model assumes the following key biologically plausible components: excitation–inhibition (E–I) neuronal interaction and chemical synaptic coupling. We show that the circuits with E–I balance have a special dynamic sub-region, the critical region. Circuits around this region could account for the emergence of multilevel brain response patterns, both ongoing and stimulus-induced, observed in different experiments, including the reduction of trial-to-trial variability, effective modulation of gamma frequency, and preservation of criticality in the presence of a stimulus. We further analyze the corresponding nonlinear dynamical principles using a novel and highly generalizable semi-analytical mean-field theory. Our computational and theoretical studies explain the cross-level brain dynamical organization of spontaneous and evoked states in a more integrative manner.
Collapse
Affiliation(s)
- Junhao Liang
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- Centre for Integrative Neuroscience, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department for Sensory and Sensorimotor Systems, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- Department of Physics, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
12
|
Liu Y, Long X, Martin PR, Solomon SG, Gong P. Lévy walk dynamics explain gamma burst patterns in primate cerebral cortex. Commun Biol 2021; 4:739. [PMID: 34131276 PMCID: PMC8206356 DOI: 10.1038/s42003-021-02256-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/21/2021] [Indexed: 11/21/2022] Open
Abstract
Lévy walks describe patterns of intermittent motion with variable step sizes. In complex biological systems, Lévy walks (non-Brownian, superdiffusive random walks) are associated with behaviors such as search patterns of animals foraging for food. Here we show that Lévy walks also describe patterns of oscillatory activity in primate cerebral cortex. We used a combination of empirical observation and modeling to investigate high-frequency (gamma band) local field potential activity in visual motion-processing cortical area MT of marmoset monkeys. We found that gamma activity is organized as localized burst patterns that propagate across the cortical surface with Lévy walk dynamics. Lévy walks are fundamentally different from either global synchronization, or regular propagating waves, because they include large steps that enable activity patterns to move rapidly over cortical modules. The presence of Lévy walk dynamics therefore represents a previously undiscovered mode of brain activity, and implies a novel way for the cortex to compute. We apply a biophysically realistic circuit model to explain that the Lévy walk dynamics arise from critical-state transitions between asynchronous and localized propagating wave states, and that these dynamics yield optimal spatial sampling of the cortical sheet. We hypothesise that Lévy walk dynamics could help the cortex to efficiently process variable inputs, and to find links in patterns of activity among sparsely spiking populations of neurons.
Collapse
Affiliation(s)
- Yuxi Liu
- School of Physics, University of Sydney, Sydney, NSW, Australia
- ARC Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| | - Xian Long
- School of Physics, University of Sydney, Sydney, NSW, Australia
- ARC Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| | - Paul R Martin
- ARC Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
- Discipline of Physiology, University of Sydney, Sydney, NSW, Australia
- Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Samuel G Solomon
- Department of Experimental Psychology, University College London, London, UK
| | - Pulin Gong
- School of Physics, University of Sydney, Sydney, NSW, Australia.
- ARC Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
13
|
Propagating wave activity in a tangential cortical slice. Neuroreport 2021; 31:332-337. [PMID: 32058429 DOI: 10.1097/wnr.0000000000001408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Propagating neural waves in the cerebral cortex influence the integration of incoming sensory information with ongoing cortical activity. However, the neural circuit elements that support these cortical waves remain to be fully defined. Here, a novel tangential slice preparation was developed that exhibited propagating wave activity across the dorsal cortical sheet, as assessed using autofluorescence imaging following focal electrical stimulation. Analysis of functional connectivity in the slice preparation with laser-scanning photostimulation via glutamate uncaging revealed a lack of short-latency, presumed monosynaptic, long-range connections (>300 μm) in the slice preparation. These results establish a novel slice preparation for assessing cortical dynamics and support the proposition that interactions among local cortical elements are sufficient to enable widespread propagating wave activity.
Collapse
|
14
|
Liang J, Zhou T, Zhou C. Hopf Bifurcation in Mean Field Explains Critical Avalanches in Excitation-Inhibition Balanced Neuronal Networks: A Mechanism for Multiscale Variability. Front Syst Neurosci 2020; 14:580011. [PMID: 33324179 PMCID: PMC7725680 DOI: 10.3389/fnsys.2020.580011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Cortical neural circuits display highly irregular spiking in individual neurons but variably sized collective firing, oscillations and critical avalanches at the population level, all of which have functional importance for information processing. Theoretically, the balance of excitation and inhibition inputs is thought to account for spiking irregularity and critical avalanches may originate from an underlying phase transition. However, the theoretical reconciliation of these multilevel dynamic aspects in neural circuits remains an open question. Herein, we study excitation-inhibition (E-I) balanced neuronal network with biologically realistic synaptic kinetics. It can maintain irregular spiking dynamics with different levels of synchrony and critical avalanches emerge near the synchronous transition point. We propose a novel semi-analytical mean-field theory to derive the field equations governing the network macroscopic dynamics. It reveals that the E-I balanced state of the network manifesting irregular individual spiking is characterized by a macroscopic stable state, which can be either a fixed point or a periodic motion and the transition is predicted by a Hopf bifurcation in the macroscopic field. Furthermore, by analyzing public data, we find the coexistence of irregular spiking and critical avalanches in the spontaneous spiking activities of mouse cortical slice in vitro, indicating the universality of the observed phenomena. Our theory unveils the mechanism that permits complex neural activities in different spatiotemporal scales to coexist and elucidates a possible origin of the criticality of neural systems. It also provides a novel tool for analyzing the macroscopic dynamics of E-I balanced networks and its relationship to the microscopic counterparts, which can be useful for large-scale modeling and computation of cortical dynamics.
Collapse
Affiliation(s)
- Junhao Liang
- Department of Physics, Centre for Nonlinear Studies, Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems, Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- Key Laboratory of Computational Mathematics, Guangdong Province, and School of Mathematics, Sun Yat-sen University, Guangzhou, China
| | - Tianshou Zhou
- Key Laboratory of Computational Mathematics, Guangdong Province, and School of Mathematics, Sun Yat-sen University, Guangzhou, China
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies, Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems, Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- Department of Physics, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Munn B, Zeater N, Pietersen AN, Solomon SG, Cheong SK, Martin PR, Gong P. Fractal spike dynamics and neuronal coupling in the primate visual system. J Physiol 2020; 598:1551-1571. [DOI: 10.1113/jp278935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/18/2019] [Indexed: 12/23/2022] Open
Affiliation(s)
- Brandon Munn
- School of Physics University of Sydney Sydney New South Wales 2006 Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function University of Sydney Sydney New South Wales 2006 Australia
| | - Natalie Zeater
- Australian Research Council Centre of Excellence for Integrative Brain Function University of Sydney Sydney New South Wales 2006 Australia
- Save Sight Institute Eye Hospital Campus University of Sydney Sydney New South Wales 2001 Australia
| | - Alexander N. Pietersen
- Australian Research Council Centre of Excellence for Integrative Brain Function University of Sydney Sydney New South Wales 2006 Australia
- Save Sight Institute Eye Hospital Campus University of Sydney Sydney New South Wales 2001 Australia
| | - Samuel G. Solomon
- Discipline of Physiology University of Sydney Sydney New South Wales 2006 Australia
- Department of Experimental Psychology University College London London WC1P 0AH UK
| | - Soon Keen Cheong
- Australian Research Council Centre of Excellence for Integrative Brain Function University of Sydney Sydney New South Wales 2006 Australia
- Save Sight Institute Eye Hospital Campus University of Sydney Sydney New South Wales 2001 Australia
| | - Paul R. Martin
- Australian Research Council Centre of Excellence for Integrative Brain Function University of Sydney Sydney New South Wales 2006 Australia
- Save Sight Institute Eye Hospital Campus University of Sydney Sydney New South Wales 2001 Australia
- Discipline of Physiology University of Sydney Sydney New South Wales 2006 Australia
| | - Pulin Gong
- School of Physics University of Sydney Sydney New South Wales 2006 Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function University of Sydney Sydney New South Wales 2006 Australia
| |
Collapse
|
16
|
The small scale functional topology of movement control: Hierarchical organization of local activity anticipates movement generation in the premotor cortex of primates. Neuroimage 2020; 207:116354. [DOI: 10.1016/j.neuroimage.2019.116354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/24/2019] [Accepted: 11/11/2019] [Indexed: 11/23/2022] Open
|