1
|
Blazanin M, Moore J, Olsen S, Travisano M. Fight Not Flight: Parasites Drive the Bacterial Evolution of Resistance, Not Escape. Am Nat 2025; 205:125-136. [PMID: 39913937 DOI: 10.1086/733414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
AbstractIn the face of ubiquitous threats from parasites, hosts can evolve strategies to resist infection or to altogether avoid parasitism, for instance by avoiding behavior that could expose them to parasites or by dispersing away from local parasite threats. At the microbial scale, bacteria frequently encounter viral parasites, bacteriophages. While bacteria are known to utilize a number of strategies to resist infection by phages and can have the capacity to avoid moving toward phage-infected cells, it is unknown whether bacteria can evolve dispersal to escape from phages. To answer this question, we combined experimental evolution and mathematical modeling. Experimental evolution of the bacterium Pseudomonas fluorescens in environments with differing spatial distributions of the phage Phi2 revealed that the host bacteria evolved resistance depending on parasite distribution but did not evolve dispersal to escape parasite infection. Simulations using parameterized mathematical models of bacterial growth and swimming motility showed that this is a general finding: while increased dispersal is adaptive in the absence of parasites, in the presence of parasites that fitness benefit disappears and resistance becomes adaptive, regardless of the spatial distribution of parasites. Together, these experiments suggest that parasites should rarely, if ever, drive the evolution of bacterial escape via dispersal.
Collapse
|
2
|
He T, Xie J, Jin L, Zhao J, Zhang X, Liu H, Li XD. Seasonal dynamics of the phage-bacterium linkage and associated antibiotic resistome in airborne PM 2.5 of urban areas. ENVIRONMENT INTERNATIONAL 2024; 194:109155. [PMID: 39647412 DOI: 10.1016/j.envint.2024.109155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/10/2024]
Abstract
Inhalable microorganisms in airborne fine particulate matter (PM2.5), including bacteria and phages, are major carriers of antibiotic resistance genes (ARGs) with strong ecological linkages and potential health implications for urban populations. A full-spectrum study on ARG carriers and phage-bacterium linkages will shed light on the environmental processes of antibiotic resistance from airborne dissemination to the human lung microbiome. Our metagenomic study reveals the seasonal dynamics of phage communities in PM2.5, their impacts on clinically important ARGs, and potential implications for the human respiratory microbiome in selected cities of China. Gene-sharing network comparisons show that air harbours a distinct phage community connected to human- and water-associated viromes, with 57 % of the predicted hosts being potential bacterial pathogens. The ARGs of common antibiotics, e.g., peptide and tetracycline, dominate both the antibiotic resistome associated with bacteria and phages in PM2.5. Over 60 % of the predicted hosts of vARG-carrying phages are potential bacterial pathogens, and about 67 % of these hosts have not been discovered as direct carriers of the same ARGs. The profiles of ARG-carrying phages are distinct among urban sites, but show a significant enrichment in abundance, diversity, temperate lifestyle, and matches of CRISPR (short for 'clustered regularly interspaced short palindromic repeats') to identified bacterial genomes in winter and spring. Moreover, phages putatively carry 52 % of the total mobile genetic element (MGE)-ARG pairs with a unique 'flu season' pattern in urban areas. This study highlights the role that phages play in the airborne dissemination of ARGs and their delivery of ARGs to specific opportunistic pathogens in human lungs, independent of other pathways of horizontal gene transfer. Natural and anthropogenic stressors, particularly wind speed, UV index, and level of ozone, potentially explained over 80 % of the seasonal dynamics of phage-bacterial pathogen linkages on antibiotic resistance. Therefore, understanding the phage-host linkages in airborne PM2.5, the full-spectrum of antibiotic resistomes, and the potential human pathogens involved, will be of benefit to protect human health in urban areas.
Collapse
Affiliation(s)
- Tangtian He
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Jiawen Xie
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China.
| | - Jue Zhao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Xiaohua Zhang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Hang Liu
- The University Research Facility in Chemical and Environmental Analysis, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Xiang Dong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
3
|
Chantapakul B, Sabaratnam S, Wang S. Isolation and characterization of bacteriophages for controlling Rhizobium radiobacter - causing stem and crown gall of highbush blueberry. Front Microbiol 2024; 15:1437536. [PMID: 39155984 PMCID: PMC11328917 DOI: 10.3389/fmicb.2024.1437536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/27/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction Stem and crown gall disease caused by the plant pathogen Rhizobium radiobacter has a significant impact on highbush blueberry (Vaccinium corymbosum) production. Current methods for controlling the bacterium are limited. Lytic phages, which can specifically target host bacteria, have been widely gained interest in agriculture. Methods In this study, 76 bacteriophages were recovered from sewage influent and screened for their inhibitory effect against Rhizobium spp. The phages were genetically characterized through whole-genome sequencing, and their lytic cycle was confirmed. Results Five potential candidate phages (isolates IC12, IG49, AN01, LG08, and LG11) with the ability to lyse a broad range of hosts were chosen and assessed for their morphology, environmental stability, latent period, and burst size. The morphology of these selected phages revealed a long contractile tail under transmission electron microscopy. Single-step growth curves displayed that these phages had a latent period of 80-110 min and a burst size ranging from 8 to 33 phages per infected cell. None of these phages contained any antimicrobial resistance or virulence genes in their genomes. Subsequently, a combination of two-, three- and four-phage cocktails were formulated and tested for their efficacy in a broth system. A three-phage cocktail composed of the isolates IC12, IG49 and LG08 showed promising results in controlling a large number of R. radiobacter strains in vitro. In a soil/peat-based model, the three-phage cocktail was tested against R. radiobacter PL17, resulting in a significant reduction (p < 0.05) of 2.9 and 1.3 log10 CFU/g after 24 and 48 h of incubation, respectively. Discussion These findings suggest that the three-phage cocktail (IC12, IG49 and LG08) has the potential to serve as a proactive antimicrobial solution for controlling R. radiobacter on blueberry.
Collapse
Affiliation(s)
| | - Siva Sabaratnam
- Abbotsford Agriculture Centre, Ministry of Agriculture and Food, Abbotsford, BC, Canada
| | - Siyun Wang
- Food, Nutrition and Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Wang T, Cheng B, Jiao R, Zhang X, Zhang D, Cheng X, Ling N, Ye Y. Characterization of a novel high-efficiency cracking Burkholderia gladiolus phage vB_BglM_WTB and its application in black fungus. Int J Food Microbiol 2024; 414:110615. [PMID: 38325260 DOI: 10.1016/j.ijfoodmicro.2024.110615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Burkholderia gladiolus (B. gladiolus) is foodborne pathogenic bacteria producing bongkrekic acid (BA), which causes food poisoning and has a mortality rate of up to 40 % or more. However, no drugs have been reported in the literature for the prevention and treatment of this infection. In this study, a phage was identified to control B. gladiolus. The novel phage vB_BglM_WTB (WTB), which lyse B. gladiolus with high efficiency, was isolated from sewage of Huaihe Road Throttle Well Sewage Treatment Plant in Hefei. Transmission electron microscopy showed that WTB had an icosahedral head (69 ± 2 nm) and a long retractable tail (108 ± 2 nm). Its optimal temperature and pH ranges to control B. gladiolus were 25 °C -65 °C and 3-11 respectively. The phage WTB was identified as a linear double-stranded DNA phage of 68, 541 bp with 60.04 % G + C content, with a long latent period of 60 min. Phylogenetic analysis and comparative genetic analysis indicated that phage WTB has low identity (<50 %) with other phages, with the highest similarity to Burkholderia phage Maja (25.7 %), which showed that it does not belong to any previous genera recognized by the International Committee on Taxonomy of Viruses (ICTV) and was a candidate for a new genus within the Caudoviricetes. We have submitted a new proposal to ICTV to create a new genus, Bglawtbvirus. No transfer RNA (tRNA), virulence associated and antibiotic resistance genes were detected in phage WTB. Experimental results indicated that WTB at 4 °C and 25 °C had excellent inhibition activity against B. gladiolus in the black fungus, with an inhibition efficiency of over 99 %. The amount of B. gladiolus in the black fungus was reduced to a minimum of 89 CFU/mL when treated by WTB at 25 °C for 2 h. The inhibition rate remained at 99.97 % even after 12 h. The findings showed that the phage WTB could be applied as a food-cleaning agent for enhancing food safety and contributed to our understanding of phage biology and diversity.
Collapse
Affiliation(s)
- Ting Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Bin Cheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Rui Jiao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiyan Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Diwei Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiangyu Cheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Na Ling
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Yingwang Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
5
|
de Castro P, Urbina F, Norambuena A, Guzmán-Lastra F. Sequential epidemic-like spread between agglomerates of self-propelled agents in one dimension. Phys Rev E 2023; 108:044104. [PMID: 37978653 DOI: 10.1103/physreve.108.044104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/13/2023] [Indexed: 11/19/2023]
Abstract
Motile organisms can form stable agglomerates such as cities or colonies. In the outbreak of a highly contagious disease, the control of large-scale epidemic spread depends on factors like the number and size of agglomerates, travel rate between them, and disease recovery rate. While the emergence of agglomerates permits early interventions, it also explains longer real epidemics. In this work, we study the spread of susceptible-infected-recovered (SIR) epidemics (or any sort of information exchange by contact) in one-dimensional spatially structured systems. By working in one dimension, we establish a necessary foundation for future investigation in higher dimensions and mimic micro-organisms in narrow channels. We employ a model of self-propelled particles which spontaneously form multiple clusters. For a lower rate of stochastic reorientation, particles have a higher tendency to agglomerate and therefore the clusters become larger and less numerous. We examine the time evolution averaged over many epidemics and how it is affected by the existence of clusters through the eventual recovery of infected particles before reaching new clusters. New terms appear in the SIR differential equations in the last epidemic stages. We show how the final number of ever-infected individuals depends nontrivially on single-individual parameters. In particular, the number of ever-infected individuals first increases with the reorientation rate since particles escape sooner from clusters and spread the disease. For higher reorientation rate, travel between clusters becomes too diffusive and the clusters too small, decreasing the number of ever-infected individuals.
Collapse
Affiliation(s)
- Pablo de Castro
- ICTP-South American Institute for Fundamental Research - Instituto de Física Teórica da UNESP, Rua Dr. Bento Teobaldo Ferraz 271, 01140-070 São Paulo, Brazil
| | - Felipe Urbina
- Centro Multidisciplinario de Física, Universidad Mayor, Huechuraba, 8580745 Santiago, Chile
| | - Ariel Norambuena
- Centro Multidisciplinario de Física, Universidad Mayor, Huechuraba, 8580745 Santiago, Chile
| | | |
Collapse
|
6
|
Smith WPJ, Wucher BR, Nadell CD, Foster KR. Bacterial defences: mechanisms, evolution and antimicrobial resistance. Nat Rev Microbiol 2023:10.1038/s41579-023-00877-3. [PMID: 37095190 DOI: 10.1038/s41579-023-00877-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/26/2023]
Abstract
Throughout their evolutionary history, bacteria have faced diverse threats from other microorganisms, including competing bacteria, bacteriophages and predators. In response to these threats, they have evolved sophisticated defence mechanisms that today also protect bacteria against antibiotics and other therapies. In this Review, we explore the protective strategies of bacteria, including the mechanisms, evolution and clinical implications of these ancient defences. We also review the countermeasures that attackers have evolved to overcome bacterial defences. We argue that understanding how bacteria defend themselves in nature is important for the development of new therapies and for minimizing resistance evolution.
Collapse
Affiliation(s)
- William P J Smith
- Division of Genomics, Infection and Evolution, University of Manchester, Manchester, UK.
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Benjamin R Wucher
- Department of Biological sciences, Dartmouth College, Hanover, NH, USA
| | - Carey D Nadell
- Department of Biological sciences, Dartmouth College, Hanover, NH, USA
| | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Michaelis C, Grohmann E. Horizontal Gene Transfer of Antibiotic Resistance Genes in Biofilms. Antibiotics (Basel) 2023; 12:antibiotics12020328. [PMID: 36830238 PMCID: PMC9952180 DOI: 10.3390/antibiotics12020328] [Citation(s) in RCA: 157] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Most bacteria attach to biotic or abiotic surfaces and are embedded in a complex matrix which is known as biofilm. Biofilm formation is especially worrisome in clinical settings as it hinders the treatment of infections with antibiotics due to the facilitated acquisition of antibiotic resistance genes (ARGs). Environmental settings are now considered as pivotal for driving biofilm formation, biofilm-mediated antibiotic resistance development and dissemination. Several studies have demonstrated that environmental biofilms can be hotspots for the dissemination of ARGs. These genes can be encoded on mobile genetic elements (MGEs) such as conjugative and mobilizable plasmids or integrative and conjugative elements (ICEs). ARGs can be rapidly transferred through horizontal gene transfer (HGT) which has been shown to occur more frequently in biofilms than in planktonic cultures. Biofilm models are promising tools to mimic natural biofilms to study the dissemination of ARGs via HGT. This review summarizes the state-of-the-art of biofilm studies and the techniques that visualize the three main HGT mechanisms in biofilms: transformation, transduction, and conjugation.
Collapse
|
8
|
Shaer Tamar E, Kishony R. Multistep diversification in spatiotemporal bacterial-phage coevolution. Nat Commun 2022; 13:7971. [PMID: 36577749 PMCID: PMC9797572 DOI: 10.1038/s41467-022-35351-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 11/29/2022] [Indexed: 12/29/2022] Open
Abstract
The evolutionary arms race between phages and bacteria, where bacteria evolve resistance to phages and phages retaliate with resistance-countering mutations, is a major driving force of molecular innovation and genetic diversification. Yet attempting to reproduce such ongoing retaliation dynamics in the lab has been challenging; laboratory coevolution experiments of phage and bacteria are typically performed in well-mixed environments and often lead to rapid stagnation with little genetic variability. Here, co-culturing motile E. coli with the lytic bacteriophage T7 on swimming plates, we observe complex spatiotemporal dynamics with multiple genetically diversifying adaptive cycles. Systematically quantifying over 10,000 resistance-infectivity phenotypes between evolved bacteria and phage isolates, we observe diversification into multiple coexisting ecotypes showing a complex interaction network with both host-range expansion and host-switch tradeoffs. Whole-genome sequencing of these evolved phage and bacterial isolates revealed a rich set of adaptive mutations in multiple genetic pathways including in genes not previously linked with phage-bacteria interactions. Synthetically reconstructing these new mutations, we discover phage-general and phage-specific resistance phenotypes as well as a strong synergy with the more classically known phage-resistance mutations. These results highlight the importance of spatial structure and migration for driving phage-bacteria coevolution, providing a concrete system for revealing new molecular mechanisms across diverse phage-bacterial systems.
Collapse
Affiliation(s)
- Einat Shaer Tamar
- grid.6451.60000000121102151Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
| | - Roy Kishony
- grid.6451.60000000121102151Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel ,grid.6451.60000000121102151Faculty of Computer Science, Technion–Israel Institute of Technology, Haifa, Israel ,grid.6451.60000000121102151Faculty of Biomedical Engineering, Technion–Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
9
|
Efficacy of Repeated Applications of Bacteriophages on Salmonella enterica-Infected Alfalfa Sprouts during Germination. Pathogens 2022; 11:pathogens11101156. [PMID: 36297213 PMCID: PMC9610501 DOI: 10.3390/pathogens11101156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/01/2022] [Accepted: 10/01/2022] [Indexed: 11/13/2022] Open
Abstract
Nontyphoidal Salmonella enterica is one of the leading pathogens for foodborne outbreaks in a multitude of food commodities, including alfalfa sprouts, which are commonly consumed raw. The food industry has commonly used chlorinated washes, but such methods may not be perceived as natural; this can be a detriment as a large portion of sprouts are designated for the organic market. A natural and affordable antimicrobial method that has been acquiring popularity is the use of bacteriophages. This study compared the efficacy of repeated daily applications and a single application of two separate bacteriophage cocktails (SE14, SE20, SF6 and SE14, SF5, SF6) against four Salmonella enterica (S. enterica) strains on germinating alfalfa sprout seeds from days 0 to 7. The results show S. Enteritidis to be the most susceptible to both cocktails with ~2.5 log CFU/mL decrease on day 0 with cocktail SE14, SF5, and SF6. S. enterica populations on all strains continued to grow even with repeated daily bacteriophage applications but in a significantly decreased rate (p < 0.05) compared with a single bacteriophage application. The extent of the reduction was dependent on the S. enterica strain, but the results do show benefits to using repeated bacteriophage applications during sprout germination to reduce S. enterica populations compared with a single bacteriophage application.
Collapse
|
10
|
Igler C. Phenotypic flux: The role of physiology in explaining the conundrum of bacterial persistence amid phage attack. Virus Evol 2022; 8:veac086. [PMID: 36225237 PMCID: PMC9547521 DOI: 10.1093/ve/veac086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/11/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Bacteriophages, the viruses of bacteria, have been studied for over a century. They were not only instrumental in laying the foundations of molecular biology, but they are also likely to play crucial roles in shaping our biosphere and may offer a solution to the control of drug-resistant bacterial infections. However, it remains challenging to predict the conditions for bacterial eradication by phage predation, sometimes even under well-defined laboratory conditions, and, most curiously, if the majority of surviving cells are genetically phage-susceptible. Here, I propose that even clonal phage and bacterial populations are generally in a state of continuous 'phenotypic flux', which is caused by transient and nongenetic variation in phage and bacterial physiology. Phenotypic flux can shape phage infection dynamics by reducing the force of infection to an extent that allows for coexistence between phages and susceptible bacteria. Understanding the mechanisms and impact of phenotypic flux may be key to providing a complete picture of phage-bacteria coexistence. I review the empirical evidence for phenotypic variation in phage and bacterial physiology together with the ways they have been modeled and discuss the potential implications of phenotypic flux for ecological and evolutionary dynamics between phages and bacteria, as well as for phage therapy.
Collapse
Affiliation(s)
- Claudia Igler
- Department of Environmental Systems Science, ETH Zürich, Institute of Integrative Biology, Universitätstrasse 16, Zurich 8092, Switzerland
| |
Collapse
|
11
|
Wei T, Lai W, Chen Q, Zhang Y, Sun C, He X, Zhao G, Fu X, Liu C. Exploiting spatial dimensions to enable parallelized continuous directed evolution. Mol Syst Biol 2022; 18:e10934. [PMID: 36129229 PMCID: PMC9491160 DOI: 10.15252/msb.202210934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 12/03/2022] Open
Abstract
Current strategies to improve the throughput of continuous directed evolution technologies often involve complex mechanical fluid-controlling system or robotic platforms, which limits their popularization and application in general laboratories. Inspired by our previous study on bacterial range expansion, in this study, we report a system termed SPACE for rapid and extensively parallelizable evolution of biomolecules by introducing spatial dimensions into the landmark phage-assisted continuous evolution system. Specifically, M13 phages and chemotactic Escherichia coli cells were closely inoculated onto a semisolid agar. The phages came into contact with the expanding front of the bacterial range, and then comigrated with the bacteria. This system leverages competition over space, wherein evolutionary progress is closely associated with the production of spatial patterns, allowing the emergence of improved or new protein functions. In a prototypical problem, SPACE remarkably simplified the process and evolved the promoter recognition of T7 RNA polymerase (RNAP) to a library of 96 random sequences in parallel. These results establish SPACE as a simple, easy to implement, and massively parallelizable platform for continuous directed evolution in general laboratories.
Collapse
Affiliation(s)
- Ting Wei
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Wangsheng Lai
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Qian Chen
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yi Zhang
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Chenjian Sun
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xionglei He
- State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Guoping Zhao
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- CAS Key Laboratory for Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Xiongfei Fu
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Chenli Liu
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
12
|
You X, Klose N, Kallies R, Harms H, Chatzinotas A, Wick LY. Mycelia-Assisted Isolation of Non-Host Bacteria Able to Co-Transport Phages. Viruses 2022; 14:195. [PMID: 35215789 PMCID: PMC8877629 DOI: 10.3390/v14020195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/27/2022] Open
Abstract
Recent studies have demonstrated that phages can be co-transported with motile non-host bacteria, thereby enabling their invasion of biofilms and control of biofilm composition. Here, we developed a novel approach to isolate non-host bacteria able to co-transport phages from soil. It is based on the capability of phage-carrying non-host bacteria to move along mycelia out of soil and form colonies in plaques of their co-transported phages. The approach was tested using two model phages of differing surface hydrophobicity, i.e., hydrophobic Escherichia virus T4 (T4) and hydrophilic Pseudoalteromonas phage HS2 (HS2). The phages were mixed into soil and allowed to be transported by soil bacteria along the mycelia of Pythium ultimum. Five phage-carrying bacterial species were isolated (Viridibacillus sp., Enterobacter sp., Serratia sp., Bacillus sp., Janthinobacterium sp.). These bacteria exhibited phage adsorption efficiencies of ≈90-95% for hydrophobic T4 and 30-95% for hydrophilic HS2. The phage adsorption efficiency of Viridibacillus sp. was ≈95% for both phages and twofold higher than T4-or HS2-adsorption to their respective hosts, qualifying Viridibacillus sp. as a potential super carrier for phages. Our approach offers an effective and target-specific way to identify and isolate phage-carrying bacteria in natural and man-made environments.
Collapse
Affiliation(s)
- Xin You
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany; (X.Y.); (N.K.); (R.K.); (H.H.); (A.C.)
| | - Niclas Klose
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany; (X.Y.); (N.K.); (R.K.); (H.H.); (A.C.)
| | - René Kallies
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany; (X.Y.); (N.K.); (R.K.); (H.H.); (A.C.)
| | - Hauke Harms
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany; (X.Y.); (N.K.); (R.K.); (H.H.); (A.C.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Antonis Chatzinotas
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany; (X.Y.); (N.K.); (R.K.); (H.H.); (A.C.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Talstr.33, 04103 Leipzig, Germany
| | - Lukas Y. Wick
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany; (X.Y.); (N.K.); (R.K.); (H.H.); (A.C.)
| |
Collapse
|
13
|
Abstract
Bacteriophages and bacterial biofilms are widely present in natural environments, a fact that has accelerated the evolution of phages and their bacterial hosts in these particular niches. Phage-host interactions in biofilm communities are rather complex, where phages are not always merely predators but also can establish symbiotic relationships that induce and strengthen biofilms. In this review we provide an overview of the main features affecting phage-biofilm interactions as well as the currently available methods of studying these interactions. In addition, we address the applications of phages for biofilm control in different contexts.
Collapse
Affiliation(s)
- Diana P Pires
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| | - Luís D R Melo
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| | - Joana Azeredo
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| |
Collapse
|
14
|
The multi-drug efflux system AcrABZ-TolC is essential for infection of Salmonella Typhimurium by the flagellum-dependent bacteriophage Chi. J Virol 2021; 95:JVI.00394-21. [PMID: 33731456 PMCID: PMC8139690 DOI: 10.1128/jvi.00394-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteriophages are the most abundant biological entities in the biosphere. Due to their host specificity and ability to kill bacteria rapidly, bacteriophages have many potential healthcare applications, including therapy against antibiotic-resistant bacteria. Infection by flagellotropic bacteriophages requires a properly rotating bacterial flagellar filament. The flagella-dependent phage χ (Chi) infects serovars of the pathogenic enterobacterium Salmonella enterica However, cell surface receptors and proteins involved in other stages of χ infection have not been discovered to date. We screened a multi-gene deletion library of S. enterica serovar Typhimurium by spotting mutants on soft agar plates seeded with bacteriophage χ and monitoring their ability to grow and form a swim ring, a characteristic of bacteriophage-resistant motile mutants. Those multi-gene deletion regions identified to be important for χ infectivity were further investigated by characterizing the phenotypes of corresponding single-gene deletion mutants. This way, we identified motile mutants with varying degrees of resistance to χ. Deletions in individual genes encoding the AcrABZ-TolC multi-drug efflux system drastically reduced infection by bacteriophage χ. Furthermore, an acrABtolC triple deletion strain was fully resistant to χ. Infection was severely reduced but not entirely blocked by the deletion of the gene tig encoding the molecular chaperone trigger factor. Finally, deletion in genes encoding enzymes involved in the synthesis of the antioxidants glutathione (GSH) and uric acid resulted in reduced infectivity. Our findings begin to elucidate poorly understood processes involved in later stages of flagellotropic bacteriophage infection and informs research aimed at the use of bacteriophages to combat antibiotic-resistant bacterial infections.IMPORTANCEAntimicrobial resistance is a large concern in the healthcare field. With more multi-drug resistant bacterial pathogens emerging, other techniques for eliminating bacterial infections are being explored. Among these is phage therapy, where combinations of specific phages are used to treat infections. Generally, phages utilize cell appendages and surface receptors for the initial attachment to their host. Phages that are flagellotropic are of particular interest because flagella are often important in bacterial virulence, making resistance to attachment of these phages harder to achieve without reducing virulence. This study discovered the importance of a multi-drug efflux pump for the infection of Salmonella enterica by a flagellotropic phage. In theory, if a bacterial pathogen develops phage resistance by altering expression of the efflux pump then the pathogen would simultaneously become more susceptible to the antibiotic substrates of the pump. Thus, co-administering antibiotics and flagellotropic phage may be a particularly potent antibacterial therapy.
Collapse
|