1
|
Wang Y, Shtylla B, Chou T. Order-of-Mutation Effects on Cancer Progression: Models for Myeloproliferative Neoplasm. Bull Math Biol 2024; 86:32. [PMID: 38363386 PMCID: PMC10873249 DOI: 10.1007/s11538-024-01257-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024]
Abstract
In some patients with myeloproliferative neoplasms (MPN), two genetic mutations are often found: JAK2 V617F and one in the TET2 gene. Whether one mutation is present influences how the other subsequent mutation will affect the regulation of gene expression. In other words, when a patient carries both mutations, the order of when they first arose has been shown to influence disease progression and prognosis. We propose a nonlinear ordinary differential equation, the Moran process, and Markov chain models to explain the non-additive and non-commutative mutation effects on recent clinical observations of gene expression patterns, proportions of cells with different mutations, and ages at diagnosis of MPN. Combined, these observations are used to shape our modeling framework. Our key proposal is that bistability in gene expression provides a natural explanation for many observed order-of-mutation effects. We also propose potential experimental measurements that can be used to confirm or refute predictions of our models.
Collapse
Affiliation(s)
- Yue Wang
- Department of Computational Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Statistics, Irving Institute for Cancer Dynamics, Columbia University, New York, NY, 10027, USA
| | - Blerta Shtylla
- Mathematics Department, Pomona College, Claremont, CA, 91711, USA
- Pharmacometrics and Systems Pharmacology, Pfizer Research and Development, San Diego, CA, 92121, USA
| | - Tom Chou
- Department of Computational Medicine, UCLA, Los Angeles, CA, 90095, USA.
- Department of Mathematics, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
2
|
Guo F, Langworthy B, Ogino S, Wang M. Comparison between inverse-probability weighting and multiple imputation in Cox model with missing failure subtype. Stat Methods Med Res 2024; 33:344-356. [PMID: 38262434 DOI: 10.1177/09622802231226328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Identifying and distinguishing risk factors for heterogeneous disease subtypes has been of great interest. However, missingness in disease subtypes is a common problem in those data analyses. Several methods have been proposed to deal with the missing data, including complete-case analysis, inverse-probability weighting, and multiple imputation. Although extant literature has compared these methods in missing problems, none has focused on the competing risk setting. In this paper, we discuss the assumptions required when complete-case analysis, inverse-probability weighting, and multiple imputation are used to deal with the missing failure subtype problem, focusing on how to implement these methods under various realistic scenarios in competing risk settings. Besides, we compare these three methods regarding their biases, efficiency, and robustness to model misspecifications using simulation studies. Our results show that complete-case analysis can be seriously biased when the missing completely at random assumption does not hold. Inverse-probability weighting and multiple imputation estimators are valid when we correctly specify the corresponding models for missingness and for imputation, and multiple imputation typically shows higher efficiency than inverse-probability weighting. However, in real-world studies, building imputation models for the missing subtypes can be more challenging than building missingness models. In that case, inverse-probability weighting could be preferred for its easy usage. We also propose two automated model selection procedures and demonstrate their usage in a study of the association between smoking and colorectal cancer subtypes in the Nurses' Health Study and Health Professional Follow-Up Study.
Collapse
Affiliation(s)
- Fuyu Guo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA,USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Molin Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA,USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Wang Y, Shtylla B, Chou T. Order-of-mutation effects on cancer progression: models for myeloproliferative neoplasm. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.16.23294177. [PMID: 37662184 PMCID: PMC10473807 DOI: 10.1101/2023.08.16.23294177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
In some patients with myeloproliferative neoplasms (MPN), two genetic mutations are often found, JAK2 V617F and one in the TET2 gene. Whether or not one mutation is present will influence how the other subsequent mutation affects the regulation of gene expression. When both mutations are present, the order of their occurrence has been shown to influence disease progression and prognosis. We propose a nonlinear ordinary differential equation (ODE), Moran process, and Markov chain models to explain the non-additive and non-commutative mutation effects on recent clinical observations of gene expression patterns, proportions of cells with different mutations, and ages at diagnosis of MPN. These observations consistently shape our modeling framework. Our key proposal is that bistability in gene expression provides a natural explanation for many observed order-of-mutation effects. We also propose potential experimental measurements that can be used to confirm or refute predictions of our models.
Collapse
Affiliation(s)
- Yue Wang
- Dept. of Computational Medicine, UCLA, Los Angeles, CA 90095
- Irving Institute for Cancer Dynamics and Department of Statistics, Columbia University, New York, NY 10027
| | - Blerta Shtylla
- Mathematics Department, Pomona College, Claremont, CA, 91711
- Quantitative Systems Pharmacology, Oncology, Pfizer, San Diego, CA 92121
| | - Tom Chou
- Dept. of Computational Medicine, UCLA, Los Angeles, CA 90095
- Dept. of Mathematics, UCLA, Los Angeles, CA 90095
| |
Collapse
|
4
|
Wang Y, Shtylla B, Chou T. Order-of-mutation effects on cancer progression: models for myeloproliferative neoplasm. ARXIV 2023:arXiv:2308.09941v1. [PMID: 37645049 PMCID: PMC10462171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
In some patients with myeloproliferative neoplasms (MPN), two genetic mutations are often found, JAK2 V617F and one in the TET2 gene. Whether or not one mutation is present will influence how the other subsequent mutation affects the regulation of gene expression. When both mutations are present, the order of their occurrence has been shown to influence disease progression and prognosis. We propose a nonlinear ordinary differential equation (ODE), Moran process, and Markov chain models to explain the non-additive and non-commutative mutation effects on recent clinical observations of gene expression patterns, proportions of cells with different mutations, and ages at diagnosis of MPN. These observations consistently shape our modeling framework. Our key proposal is that bistability in gene expression provides a natural explanation for many observed order-of-mutation effects. We also propose potential experimental measurements that can be used to confirm or refute predictions of our models.
Collapse
Affiliation(s)
- Yue Wang
- Dept. of Computational Medicine, UCLA, Los Angeles, CA 90095
- Irving Institute for Cancer Dynamics and Department of Statistics, Columbia University, New York, NY 10027
| | - Blerta Shtylla
- Mathematics Department, Pomona College, Claremont, CA, 91711
- Quantitative Systems Pharmacology, Oncology, Pfizer, San Diego, CA 92121
| | - Tom Chou
- Dept. of Computational Medicine, UCLA, Los Angeles, CA 90095
- Dept. of Mathematics, UCLA, Los Angeles, CA 90095
| |
Collapse
|
5
|
Sashittal P, Zaccaria S, El-Kebir M. Parsimonious Clone Tree Integration in cancer. Algorithms Mol Biol 2022; 17:3. [PMID: 35282838 PMCID: PMC8919608 DOI: 10.1186/s13015-022-00209-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/25/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Every tumor is composed of heterogeneous clones, each corresponding to a distinct subpopulation of cells that accumulated different types of somatic mutations, ranging from single-nucleotide variants (SNVs) to copy-number aberrations (CNAs). As the analysis of this intra-tumor heterogeneity has important clinical applications, several computational methods have been introduced to identify clones from DNA sequencing data. However, due to technological and methodological limitations, current analyses are restricted to identifying tumor clones only based on either SNVs or CNAs, preventing a comprehensive characterization of a tumor's clonal composition. RESULTS To overcome these challenges, we formulate the identification of clones in terms of both SNVs and CNAs as a integration problem while accounting for uncertainty in the input SNV and CNA proportions. We thus characterize the computational complexity of this problem and we introduce PACTION (PArsimonious Clone Tree integratION), an algorithm that solves the problem using a mixed integer linear programming formulation. On simulated data, we show that tumor clones can be identified reliably, especially when further taking into account the ancestral relationships that can be inferred from the input SNVs and CNAs. On 49 tumor samples from 10 prostate cancer patients, our integration approach provides a higher resolution view of tumor evolution than previous studies. CONCLUSION PACTION is an accurate and fast method that reconstructs clonal architecture of cancer tumors by integrating SNV and CNA clones inferred using existing methods.
Collapse
|
6
|
Jablonski KP, Pirkl M, Ćevid D, Bühlmann P, Beerenwinkel N. Identifying cancer pathway dysregulations using differential causal effects. Bioinformatics 2021; 38:1550-1559. [PMID: 34927666 PMCID: PMC8896597 DOI: 10.1093/bioinformatics/btab847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/05/2021] [Accepted: 12/14/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Signaling pathways control cellular behavior. Dysregulated pathways, for example, due to mutations that cause genes and proteins to be expressed abnormally, can lead to diseases, such as cancer. RESULTS We introduce a novel computational approach, called Differential Causal Effects (dce), which compares normal to cancerous cells using the statistical framework of causality. The method allows to detect individual edges in a signaling pathway that are dysregulated in cancer cells, while accounting for confounding. Hence, technical artifacts have less influence on the results and dce is more likely to detect the true biological signals. We extend the approach to handle unobserved dense confounding, where each latent variable, such as, for example, batch effects or cell cycle states, affects many covariates. We show that dce outperforms competing methods on synthetic datasets and on CRISPR knockout screens. We validate its latent confounding adjustment properties on a GTEx (Genotype-Tissue Expression) dataset. Finally, in an exploratory analysis on breast cancer data from TCGA (The Cancer Genome Atlas), we recover known and discover new genes involved in breast cancer progression. AVAILABILITY AND IMPLEMENTATION The method dce is freely available as an R package on Bioconductor (https://bioconductor.org/packages/release/bioc/html/dce.html) as well as on https://github.com/cbg-ethz/dce. The GitHub repository also contains the Snakemake workflows needed to reproduce all results presented here. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | - Domagoj Ćevid
- Seminar for Statistics, ETH Zürich, 8092 Zürich, Switzerland
| | - Peter Bühlmann
- Seminar for Statistics, ETH Zürich, 8092 Zürich, Switzerland
| | | |
Collapse
|