1
|
Al-Kasasbeh AH, Khabour OF, Almomani R, Ababneh M, Ibdah R, Jarrah MI, Rawashdeh SI, Seif AM. The Association Between the rs2200733 SNP and Atrial Fibrillation Among Arabs: A Study from Jordan. Biologics 2024; 18:389-395. [PMID: 39711602 PMCID: PMC11662922 DOI: 10.2147/btt.s490891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024]
Abstract
Introduction Atrial fibrillation (AFib) is a common disorder featured by an irregular and fast heartbeat. The etiology of AFib is complex and involves genetic and environmental factors. The rs2200733 single nucleotide polymorphism (SNP) is located in close proximity to the promoter of paired-like homeodomain transcription factor 2 (PITX2) which plays a role in heart development. Objective In this study, the association between the rs2200733 SNP and AFib was examined in the Jordanian population. Methods The study included 450 subjects (274 controls and 176 patients with AFib). Patients were recruited from King Abdullah University Hospital based on the European Society of Cardiology criteria. The rs2200733 SNP was genotyped using restriction fragment length polymorphism-polymerase chain reaction (RFLP-PCR) technique. Results The mutant T allele of the rs2200733 SNP was common in the studied population with a frequency of 19%. The T allele and CT/TT genotypes were prevalent among patients with AFib compared with the controls (P<0.05, OR [CI]: 1.65 [1.12-2.43]). In addition, body mass index, diabetes, and hypertension were found to be associated with AFib risk. Conclusion The rs2200733 SNP was associated with AFib among Jordanian patients. The mutant T allele of the rs2200733 SNP might increase the risk of AFib.
Collapse
Affiliation(s)
- Abdullah H Al-Kasasbeh
- Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Rowida Almomani
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Muhannad Ababneh
- Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Rashid Ibdah
- Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohamad Ismail Jarrah
- Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Sukaina I Rawashdeh
- Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Abdelsamea Mohammed Seif
- Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
2
|
Bai J, Lo A, Kennelly J, Sharma R, Zhao N, Trew ML, Zhao J. Mechanisms of pulmonary arterial hypertension-induced atrial fibrillation: insights from multi-scale models of the human atria. Interface Focus 2023; 13:20230039. [PMID: 38106916 PMCID: PMC10722211 DOI: 10.1098/rsfs.2023.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/25/2023] [Indexed: 12/19/2023] Open
Abstract
This study aimed to use multi-scale atrial models to investigate pulmonary arterial hypertension (PAH)-induced atrial fibrillation mechanisms. The results of our computer simulations revealed that, at the single-cell level, PAH-induced remodelling led to a prolonged action potential (AP) (ΔAPD: 49.6 ms in the right atria (RA) versus 41.6 ms in the left atria (LA)) and an increased calcium transient (CaT) (ΔCaT: 7.5 × 10-2 µM in the RA versus 0.9 × 10-3 µM in the LA). Moreover, heterogeneous remodelling increased susceptibility to afterdepolarizations, particularly in the RA. At the tissue level, we observed a significant reduction in conduction velocity (CV) (ΔCV: -0.5 m s-1 in the RA versus -0.05 m s-1 in the LA), leading to a shortened wavelength in the RA, but not in the LA. Additionally, afterdepolarizations in the RA contributed to enhanced repolarization dispersion and facilitated unidirectional conduction block. Furthermore, the increased fibrosis in the RA amplified the likelihood of excitation wave breakdown and the occurrence of sustained re-entries. Our results indicated that the RA is characterized by increased susceptibility to afterdepolarizations, slow conduction, reduced wavelength and upregulated fibrosis. These findings shed light on the underlying factors that may promote atrial fibrillation in patients with PAH.
Collapse
Affiliation(s)
- Jieyun Bai
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, People's Republic of China
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Andy Lo
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - James Kennelly
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Roshan Sharma
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Na Zhao
- School of Instrument Science and Engineering, Southeast University, Nanjing, People's Republic of China
| | - Mark L. Trew
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Song E. Effects of hydroxychloroquine on atrial electrophysiology in in silico wild-type and PITX2 +/- atrial cardiomyocytes. Herz 2023; 48:384-392. [PMID: 36732468 PMCID: PMC9894744 DOI: 10.1007/s00059-023-05162-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/07/2022] [Accepted: 12/30/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Hydroxychloroquine (HCQ) is commonly used in the treatment of autoimmune diseases and increases the risk of QT interval prolongation. However, it is unclear how HCQ affects atrial electrophysiology and the risk of atrial fibrillation (AF). METHODS We quantitatively examined the potential atrial arrhythmogenic effects of HCQ on AF using a computational model of human atrial cardiomyocytes. We measured atrial electrophysiological markers after systematically varying HCQ concentrations. RESULTS The HCQ concentrations were positively correlated with the action potential duration (APD), resting membrane potential, refractory period, APD alternans threshold, and calcium transient alternans threshold (p < 0.05). By contrast, HCQ concentrations were inversely correlated with the maximum upstroke velocity and calcium transient amplitude (p < 0.05). When the therapeutic concentration (Cmax) of HCQ was applied, HCQ increased APD90 by 1.4% in normal sinus rhythm, 1.8% in wild-type AF, and 2.6% in paired-like homeodomain transcription factor 2 (PITX2)+/- AF, but did not affect the alternans thresholds. The overall in silico results suggest no significant atrial arrhythmogenic effects of HCQ at Cmax, instead implying a potential antiarrhythmic role of low-dose HCQ in AF. However, at an HCQ concentration of fourfold Cmax, a rapid pacing rate of 4 Hz induced prominent APD alternans, particularly in the PITX2+/- AF model. CONCLUSION Our in silico analysis suggests a potential antiarrhythmic role of low-dose HCQ in AF. Concomitant PITX2 mutations and high-dose HCQ treatments may increase the risk of AF, and this potential genotype/dose-dependent arrhythmogenic effect of HCQ should be investigated further.
Collapse
Affiliation(s)
- Euijun Song
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Dasí A, Pope MT, Wijesurendra RS, Betts TR, Sachetto R, Bueno‐Orovio A, Rodriguez B. What determines the optimal pharmacological treatment of atrial fibrillation? Insights from in silico trials in 800 virtual atria. J Physiol 2023; 601:4013-4032. [PMID: 37475475 PMCID: PMC10952228 DOI: 10.1113/jp284730] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
The best pharmacological treatment for each atrial fibrillation (AF) patient is unclear. We aim to exploit AF simulations in 800 virtual atria to identify key patient characteristics that guide the optimal selection of anti-arrhythmic drugs. The virtual cohort considered variability in electrophysiology and low voltage areas (LVA) and was developed and validated against experimental and clinical data from ionic currents to ECG. AF sustained in 494 (62%) atria, with large inward rectifier K+ current (IK1 ) and Na+ /K+ pump (INaK ) densities (IK1 0.11 ± 0.03 vs. 0.07 ± 0.03 S mF-1 ; INaK 0.68 ± 0.15 vs. 0.38 ± 26 S mF-1 ; sustained vs. un-sustained AF). In severely remodelled left atrium, with LVA extensions of more than 40% in the posterior wall, higher IK1 (median density 0.12 ± 0.02 S mF-1 ) was required for AF maintenance, and rotors localized in healthy right atrium. For lower LVA extensions, rotors could also anchor to LVA, in atria presenting short refractoriness (median L-type Ca2+ current, ICaL , density 0.08 ± 0.03 S mF-1 ). This atrial refractoriness, modulated by ICaL and fast Na+ current (INa ), determined pharmacological treatment success for both small and large LVA. Vernakalant was effective in atria presenting long refractoriness (median ICaL density 0.13 ± 0.05 S mF-1 ). For short refractoriness, atria with high INa (median density 8.92 ± 2.59 S mF-1 ) responded more favourably to amiodarone than flecainide, and the opposite was found in atria with low INa (median density 5.33 ± 1.41 S mF-1 ). In silico drug trials in 800 human atria identify inward currents as critical for optimal stratification of AF patient to pharmacological treatment and, together with the left atrial LVA extension, for accurately phenotyping AF dynamics. KEY POINTS: Atrial fibrillation (AF) maintenance is facilitated by small L-type Ca2+ current (ICaL ) and large inward rectifier K+ current (IK1 ) and Na+ /K+ pump. In severely remodelled left atrium, with low voltage areas (LVA) covering more than 40% of the posterior wall, sustained AF requires higher IK1 and rotors localize in healthy right atrium. For lower LVA extensions, rotors can also anchor to LVA, if the atria present short refractoriness (low ICaL ) Vernakalant is effective in atria presenting long refractoriness (high ICaL ). For short refractoriness, atria with fast Na+ current (INa ) up-regulation respond more favourably to amiodarone than flecainide, and the opposite is found in atria with low INa . The inward currents (ICaL and INa ) are critical for optimal stratification of AF patient to pharmacological treatment and, together with the left atrial LVA extension, for accurately phenotyping AF dynamics.
Collapse
Affiliation(s)
- Albert Dasí
- Department of Computer ScienceUniversity of OxfordOxfordUK
| | - Michael T.B. Pope
- Department of CardiologyOxford University Hospitals NHS Foundation TrustOxfordUK
- Department for Human Development and HealthUniversity of SouthamptonSouthamptonUK
| | - Rohan S. Wijesurendra
- Department of CardiologyOxford University Hospitals NHS Foundation TrustOxfordUK
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Tim R. Betts
- Department of CardiologyOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Rafael Sachetto
- Departamento de Ciência da ComputaçãoUniversidade Federal de São João del‐ReiSão João del‐ReiBrazil
| | | | | |
Collapse
|
5
|
Bai J, Zhao J, Ni H, Yin D. Editorial: Diagnosis, monitoring, and treatment of heart rhythm: new insights and novel computational methods. Front Physiol 2023; 14:1272377. [PMID: 37664424 PMCID: PMC10469313 DOI: 10.3389/fphys.2023.1272377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Affiliation(s)
- Jieyun Bai
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Jichao Zhao
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Haibo Ni
- Department of Pharmacology, University of California Davis, Davis, CA, United States
| | - Dechun Yin
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
Hennings E, Blum S, Aeschbacher S, Coslovsky M, Knecht S, Eken C, Lischer M, Paladini RE, Krisai P, Reichlin T, Rodondi N, Beer JH, Ammann P, Conte G, De Perna ML, Kobza R, Blum MR, Bossard M, Kastner P, Ziegler A, Müller C, Bonati LH, Pfister O, Zuern CS, Conen D, Kühne M, Osswald S, the Swiss‐AF Investigators. Bone Morphogenetic Protein 10-A Novel Biomarker to Predict Adverse Outcomes in Patients With Atrial Fibrillation. J Am Heart Assoc 2023; 12:e028255. [PMID: 36926939 PMCID: PMC10111531 DOI: 10.1161/jaha.122.028255] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/01/2023] [Indexed: 03/18/2023]
Abstract
Background Patients with atrial fibrillation (AF) face an increased risk of death and major adverse cardiovascular events (MACE). We aimed to assess the predictive value of the novel atrial-specific biomarker BMP10 (bone morphogenetic protein 10) for death and MACE in patients with AF in comparison with NT-proBNP (N-terminal prohormone of B-type natriuretic peptide). Methods and Results BMP10 and NT-proBNP were measured in patients with AF enrolled in Swiss-AF (Swiss Atrial Fibrillation Study), a prospective multicenter cohort study. A total of 2219 patients were included (median follow-up 4.3 years [interquartile range 3.9, 5.1], mean age 73±9 years, 73% male). In multivariable Cox proportional hazard models, the adjusted hazard ratio (aHR) associated with 1 ng/mL increase of BMP10 was 1.60 (95% CI, 1.37-1.87) for all-cause death, and 1.54 (95% CI, 1.35-1.76) for MACE. For all-cause death, the concordance index was 0.783 (95% CI, 0.763-0.809) for BMP10, 0.784 (95% CI, 0.765-0.810) for NT-proBNP, and 0.789 (95% CI, 0.771-0.815) for both biomarkers combined. For MACE, the concordance index was 0.732 (95% CI, 0.715-0.754) for BMP10, 0.747 (95% CI, 0.731-0.768) for NT-proBNP, and 0.750 (95% CI, 0.734-0.771) for both biomarkers combined. When grouping patients according to NT-proBNP categories (<300, 300-900, >900 ng/L), higher aHRs were observed in patients with high BMP10 in the categories of low NT-proBNP (all-cause death aHR, 2.28 [95% CI, 1.15-4.52], MACE aHR, 1.88 [95% CI, 1.07-3.28]) and high NT-proBNP (all-cause death aHR, 1.61 [95% CI, 1.14-2.26], MACE aHR, 1.38 [95% CI, 1.07-1.80]). Conclusions BMP10 strongly predicted all-cause death and MACE in patients with AF. BMP10 provided additional prognostic information in low- and high-risk patients according to NT-proBNP stratification. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT02105844.
Collapse
Affiliation(s)
- Elisa Hennings
- Cardiovascular Research Institute BaselUniversity Hospital Basel, University of BaselBaselSwitzerland
- CardiologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Steffen Blum
- Cardiovascular Research Institute BaselUniversity Hospital Basel, University of BaselBaselSwitzerland
- CardiologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Stefanie Aeschbacher
- Cardiovascular Research Institute BaselUniversity Hospital Basel, University of BaselBaselSwitzerland
- CardiologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Michael Coslovsky
- Department of Clinical ResearchUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Sven Knecht
- Cardiovascular Research Institute BaselUniversity Hospital Basel, University of BaselBaselSwitzerland
- CardiologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Ceylan Eken
- Cardiovascular Research Institute BaselUniversity Hospital Basel, University of BaselBaselSwitzerland
- CardiologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Mirko Lischer
- Cardiovascular Research Institute BaselUniversity Hospital Basel, University of BaselBaselSwitzerland
- CardiologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Rebecca E. Paladini
- Cardiovascular Research Institute BaselUniversity Hospital Basel, University of BaselBaselSwitzerland
- CardiologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Philipp Krisai
- Cardiovascular Research Institute BaselUniversity Hospital Basel, University of BaselBaselSwitzerland
- CardiologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Tobias Reichlin
- Department of CardiologyInselspital, Bern University Hospital, University of BernBernSwitzerland
| | - Nicolas Rodondi
- Department of General Internal MedicineInselspital, Bern University Hospital, University of BernBernSwitzerland
- Institute of Primary Health Care (BIHAM)University of BernBernSwitzerland
| | - Jürg H. Beer
- Department of Internal MedicineCantonal Hospital BadenBadenSwitzerland
| | - Peter Ammann
- Department of CardiologyKantonsspital St. GallenSt. GallenSwitzerland
| | - Giulio Conte
- Cardiocentro Ticino InstituteEnte Ospedaliero CantonaleLuganoSwitzerland
| | | | - Richard Kobza
- Cardiology DivisionHeart Center, Luzerner KantonsspitalLuzernSwitzerland
| | - Manuel R. Blum
- Department of General Internal MedicineInselspital, Bern University Hospital, University of BernBernSwitzerland
- Institute of Primary Health Care (BIHAM)University of BernBernSwitzerland
| | - Matthias Bossard
- Cardiology DivisionHeart Center, Luzerner KantonsspitalLuzernSwitzerland
| | | | - André Ziegler
- Roche Diagnostics International AGRotkreuzSwitzerland
| | - Christian Müller
- Cardiovascular Research Institute BaselUniversity Hospital Basel, University of BaselBaselSwitzerland
- CardiologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Leo H. Bonati
- Cardiovascular Research Institute BaselUniversity Hospital Basel, University of BaselBaselSwitzerland
- Department of Neurology and Stroke CenterUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Otmar Pfister
- Cardiovascular Research Institute BaselUniversity Hospital Basel, University of BaselBaselSwitzerland
- CardiologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Christine S. Zuern
- Cardiovascular Research Institute BaselUniversity Hospital Basel, University of BaselBaselSwitzerland
- CardiologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - David Conen
- Population Health Research InstituteMcMaster UniversityHamiltonCanada
| | - Michael Kühne
- Cardiovascular Research Institute BaselUniversity Hospital Basel, University of BaselBaselSwitzerland
- CardiologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Stefan Osswald
- Cardiovascular Research Institute BaselUniversity Hospital Basel, University of BaselBaselSwitzerland
- CardiologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | | |
Collapse
|
7
|
García-Padilla C, Domínguez JN, Lodde V, Munk R, Abdelmohsen K, Gorospe M, Jiménez-Sábado V, Ginel A, Hove-Madsen L, Aránega AE, Franco D. Identification of atrial-enriched lncRNA Walras linked to cardiomyocyte cytoarchitecture and atrial fibrillation. FASEB J 2022; 36:e22051. [PMID: 34861058 PMCID: PMC8684585 DOI: 10.1096/fj.202100844rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 01/03/2023]
Abstract
Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia in humans. Genetic and genomic analyses have recently demonstrated that the homeobox transcription factor Pitx2 plays a fundamental role regulating expression of distinct growth factors, microRNAs and ion channels leading to morphological and molecular alterations that promote the onset of AF. Here we address the plausible contribution of long non-coding (lnc)RNAs within the Pitx2>Wnt>miRNA signaling pathway. In silico analyses of annotated lncRNAs in the vicinity of the Pitx2, Wnt8 and Wnt11 chromosomal loci identified five novel lncRNAs with differential expression during cardiac development. Importantly, three of them, Walaa, Walras, and Wallrd, are evolutionarily conserved in humans and displayed preferential atrial expression during embryogenesis. In addition, Walrad displayed moderate expression during embryogenesis but was more abundant in the right atrium. Walaa, Walras and Wallrd were distinctly regulated by Pitx2, Wnt8, and Wnt11, and Wallrd was severely elevated in conditional atrium-specific Pitx2-deficient mice. Furthermore, pro-arrhythmogenic and pro-hypertrophic substrate administration to primary cardiomyocyte cell cultures consistently modulate expression of these lncRNAs, supporting distinct modulatory roles of the AF cardiovascular risk factors in the regulation of these lncRNAs. Walras affinity pulldown assays revealed its association with distinct cytoplasmic and nuclear proteins previously involved in cardiac pathophysiology, while loss-of-function assays further support a pivotal role of this lncRNA in cytoskeletal organization. We propose that lncRNAs Walaa, Walras and Wallrd, distinctly regulated by Pitx2>Wnt>miRNA signaling and pro-arrhythmogenic and pro-hypertrophic factors, are implicated in atrial arrhythmogenesis, and Walras additionally in cardiomyocyte cytoarchitecture.
Collapse
Affiliation(s)
- Carlos García-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Jorge N. Domínguez
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Valeria Lodde
- Laboratory of Genetics and Genomics, National Institute on Aging IRP, National Institutes of Health, Baltimore, Maryland, USA,Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging IRP, National Institutes of Health, Baltimore, Maryland, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging IRP, National Institutes of Health, Baltimore, Maryland, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging IRP, National Institutes of Health, Baltimore, Maryland, USA
| | | | - Antonino Ginel
- Department Cardiac Surgery, Hospital de Sant Pau, Barcelona, Spain,Biomedical Research Institute IIB Sant Pau, Barcelona, Spain
| | - Leif Hove-Madsen
- CIBERCV, Barcelona, Spain,Biomedical Research Institute IIB Sant Pau, Barcelona, Spain,Biomedical Research Institute Barcelona (IIBB-CSIC), Barcelona, Spain
| | - Amelia E. Aránega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| |
Collapse
|
8
|
Boyle PM, Ochs AR, Ali RL, Paliwal N, Trayanova NA. Characterizing the arrhythmogenic substrate in personalized models of atrial fibrillation: sensitivity to mesh resolution and pacing protocol in AF models. Europace 2021; 23:i3-i11. [PMID: 33751074 DOI: 10.1093/europace/euaa385] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
AIMS Computationally guided persistent atrial fibrillation (PsAF) ablation has emerged as an alternative to conventional treatment planning. To make this approach scalable, computational cost and the time required to conduct simulations must be minimized while maintaining predictive accuracy. Here, we assess the sensitivity of the process to finite-element mesh resolution. We also compare methods for pacing site distribution used to evaluate inducibility arrhythmia sustained by re-entrant drivers (RDs). METHODS AND RESULTS Simulations were conducted in low- and high-resolution models (average edge lengths: 400/350 µm) reconstructed from PsAF patients' late gadolinium enhancement magnetic resonance imaging scans. Pacing was simulated from 80 sites to assess RD inducibility. When pacing from the same site led to different outcomes in low-/high-resolution models, we characterized divergence dynamics by analysing dissimilarity index over time. Pacing site selection schemes prioritizing even spatial distribution and proximity to fibrotic tissue were evaluated. There were no RD sites observed in low-resolution models but not high-resolution models, or vice versa. Dissimilarity index analysis suggested that differences in simulation outcome arising from differences in discretization were the result of isolated conduction block incidents in one model but not the other; this never led to RD sites unique to one mesh resolution. Pacing site selection based on fibrosis proximity led to the best observed trade-off between number of stimulation locations and predictive accuracy. CONCLUSION Simulations conducted in meshes with 400 µm average edge length and ∼40 pacing sites proximal to fibrosis are sufficient to reveal the most comprehensive possible list of RD sites, given feasibility constraints.
Collapse
Affiliation(s)
- Patrick M Boyle
- Department of Bioengineering, University of Washington, Seattle, Foege N310H UW Mailbox 355061, WA 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA.,Center for Cardiovascular Biology, University of Washington, Seattle, WA 98195, USA
| | - Alexander R Ochs
- Department of Bioengineering, University of Washington, Seattle, Foege N310H UW Mailbox 355061, WA 98195, USA
| | - Rheeda L Ali
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Hackerman 216, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Nikhil Paliwal
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Hackerman 216, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Natalia A Trayanova
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Hackerman 216, 3400 N Charles St, Baltimore, MD 21218, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
9
|
Fong SPT, Agrawal S, Gong M, Zhao J. Modulated Calcium Homeostasis and Release Events Under Atrial Fibrillation and Its Risk Factors: A Meta-Analysis. Front Cardiovasc Med 2021; 8:662914. [PMID: 34355025 PMCID: PMC8329373 DOI: 10.3389/fcvm.2021.662914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/11/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Atrial fibrillation (AF) is associated with calcium (Ca2+) handling remodeling and increased spontaneous calcium release events (SCaEs). Nevertheless, its exact mechanism remains unclear, resulting in suboptimal primary and secondary preventative strategies. Methods: We searched the PubMed database for studies that investigated the relationship between SCaEs and AF and/or its risk factors. Meta-analysis was used to examine the Ca2+ mechanisms involved in the primary and secondary AF preventative groups. Results: We included a total of 74 studies, out of the identified 446 publications from inception (1982) until March 31, 2020. Forty-five were primary and 29 were secondary prevention studies for AF. The main Ca2+ release events, calcium transient (standardized mean difference (SMD) = 0.49; I2 = 35%; confidence interval (CI) = 0.33–0.66; p < 0.0001), and spark amplitude (SMD = 0.48; I2 = 0%; CI = −0.98–1.93; p = 0.054) were enhanced in the primary diseased group, while calcium transient frequency was increased in the secondary group. Calcium spark frequency was elevated in both the primary diseased and secondary AF groups. One of the key cardiac currents, the L-type calcium current (ICaL) was significantly downregulated in primary diseased (SMD = −1.07; I2 = 88%; CI = −1.94 to −0.20; p < 0.0001) and secondary AF groups (SMD = −1.28; I2 = 91%; CI = −2.04 to −0.52; p < 0.0001). Furthermore, the sodium–calcium exchanger (INCX) and NCX1 protein expression were significantly enhanced in the primary diseased group, while only NCX1 protein expression was shown to increase in the secondary AF studies. The phosphorylation of the ryanodine receptor at S2808 (pRyR-S2808) was significantly elevated in both the primary and secondary groups. It was increased in the primary diseased and proarrhythmic subgroups (SMD = 0.95; I2 = 64%; CI = 0.12–1.79; p = 0.074) and secondary AF group (SMD = 0.66; I2 = 63%; CI = 0.01–1.31; p < 0.0001). Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) expression was elevated in the primary diseased and proarrhythmic drug subgroups but substantially reduced in the secondary paroxysmal AF subgroup. Conclusions: Our study identified that ICaL is reduced in both the primary and secondary diseased groups. Furthermore, pRyR-S2808 and NCX1 protein expression are enhanced. The remodeling leads to elevated Ca2+ functional activities, such as increased frequencies or amplitude of Ca2+ spark and Ca2+ transient. The main difference identified between the primary and secondary diseased groups is SERCA expression, which is elevated in the primary diseased group and substantially reduced in the secondary paroxysmal AF subgroup. We believe our study will add new evidence to AF mechanisms and treatment targets.
Collapse
Affiliation(s)
- Sarah Pei Ting Fong
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Shaleka Agrawal
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Mengqi Gong
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Bai J, Lu Y, Zhu Y, Wang H, Yin D, Zhang H, Franco D, Zhao J. Understanding PITX2-Dependent Atrial Fibrillation Mechanisms through Computational Models. Int J Mol Sci 2021; 22:7681. [PMID: 34299303 PMCID: PMC8307824 DOI: 10.3390/ijms22147681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 01/11/2023] Open
Abstract
Atrial fibrillation (AF) is a common arrhythmia. Better prevention and treatment of AF are needed to reduce AF-associated morbidity and mortality. Several major mechanisms cause AF in patients, including genetic predispositions to AF development. Genome-wide association studies have identified a number of genetic variants in association with AF populations, with the strongest hits clustering on chromosome 4q25, close to the gene for the homeobox transcription PITX2. Because of the inherent complexity of the human heart, experimental and basic research is insufficient for understanding the functional impacts of PITX2 variants on AF. Linking PITX2 properties to ion channels, cells, tissues, atriums and the whole heart, computational models provide a supplementary tool for achieving a quantitative understanding of the functional role of PITX2 in remodelling atrial structure and function to predispose to AF. It is hoped that computational approaches incorporating all we know about PITX2-related structural and electrical remodelling would provide better understanding into its proarrhythmic effects leading to development of improved anti-AF therapies. In the present review, we discuss advances in atrial modelling and focus on the mechanistic links between PITX2 and AF. Challenges in applying models for improving patient health are described, as well as a summary of future perspectives.
Collapse
Affiliation(s)
- Jieyun Bai
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (Y.Z.)
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| | - Yaosheng Lu
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (Y.Z.)
| | - Yijie Zhu
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (Y.Z.)
| | - Huijin Wang
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (Y.Z.)
| | - Dechun Yin
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin 150000, China;
| | - Henggui Zhang
- Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester M13 9PL, UK;
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain;
| | - Jichao Zhao
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
11
|
Dai W, Kesaraju S, Weber CR. Transcriptional factors in calcium mishandling and atrial fibrillation development. Pflugers Arch 2021; 473:1177-1197. [PMID: 34003377 DOI: 10.1007/s00424-021-02553-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/19/2021] [Accepted: 02/05/2021] [Indexed: 12/19/2022]
Abstract
Healthy cardiac conduction relies on the coordinated electrical activity of distinct populations of cardiomyocytes. Disruption of cell-cell conduction results in cardiac arrhythmias, a leading cause of morbidity and mortality worldwide. Recent genetic studies have highlighted a major heritable component and identified numerous loci associated with risk of atrial fibrillation, including transcription factor genes, particularly those important in cardiac development, microRNAs, and long noncoding RNAs. Identification of such genetic factors has prompted the search to understand the mechanisms that underlie the genetic component of AF. Recent studies have found several mechanisms by which genetic alterations can result in AF formation via disruption of calcium handling. Loss of developmental transcription factors in adult cardiomyocytes can result in disruption of SR calcium ATPase, sodium calcium exchanger, calcium channels, among other ion channels, which underlie action potential abnormalities and triggered activity that can contribute to AF. This review aims to summarize the complex network of transcription factors and their roles in calcium handling.
Collapse
Affiliation(s)
- Wenli Dai
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Sneha Kesaraju
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
12
|
Yang PC, Giles WR, Belardinelli L, Clancy CE. Mechanisms of flecainide induced negative inotropy: An in silico study. J Mol Cell Cardiol 2021; 158:26-37. [PMID: 34004185 PMCID: PMC8772296 DOI: 10.1016/j.yjmcc.2021.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/27/2022]
Abstract
It is imperative to develop better approaches to predict how antiarrhythmic drugs with multiple interactions and targets may alter the overall electrical and/or mechanical function of the heart. Safety Pharmacology studies have provided new insights into the multi-target effects of many different classes of drugs and have been aided by the addition of robust new in vitro and in silico technology. The primary focus of Safety Pharmacology studies has been to determine the risk profile of drugs and drug candidates by assessing their effects on repolarization of the cardiac action potential. However, for decades experimental and clinical studies have described substantial and potentially detrimental effects of Na+ channel blockers in addition to their well-known conduction slowing effects. One such side effect, associated with administration of some Na+ channel blocking drugs is negative inotropy. This reduces the pumping function of the heart, thereby resulting in hypotension. Flecainide is a well-known example of a Na+ channel blocking drug, that exhibits strong rate-dependent block of INa and may cause negative cardiac inotropy. While the phenomenon of Na+ channel suppression and resulting negative inotropy is well described, the mechanism(s) underlying this effect are not. Here, we set out to use a modeling and simulation approach to reveal plausible mechanisms that could explain the negative inotropic effect of flecainide. We utilized the Grandi-Bers model [1] of the cardiac ventricular myocyte because of its robust descriptions of ion homeostasis in order to characterize and resolve the relative effects of QRS widening, flecainide off-target effects and changes in intracellular Ca2+ and Na+ homeostasis. The results of our investigations and predictions reconcile multiple data sets and illustrate how multiple mechanisms may play a contributing role in the flecainide induced negative cardiac inotropic effect.
Collapse
Affiliation(s)
- Pei-Chi Yang
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, United States of America
| | - Wayne R Giles
- Department of Physiology & Pharmacology, University of Calgary, Canada
| | | | - Colleen E Clancy
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, United States of America.
| |
Collapse
|
13
|
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia, largely associated to morbidity and mortality. Over the past decades, research in appearance and progression of this arrhythmia have turned into significant advances in its management. However, the incidence of AF continues to increase with the aging of the population and many important fundamental and translational underlaying mechanisms remain elusive. Here, we review recent advances in molecular and cellular basis for AF initiation, maintenance and progression. We first provide an overview of the basic molecular and electrophysiological mechanisms that lead and characterize AF. Next, we discuss the upstream regulatory factors conducting the underlying mechanisms which drive electrical and structural AF-associated remodeling, including genetic factors (risk variants associated to AF as transcriptional regulators and genetic changes associated to AF), neurohormonal regulation (i.e., cAMP) and oxidative stress imbalance (cGMP and mitochondrial dysfunction). Finally, we discuss the potential therapeutic implications of those findings, the knowledge gaps and consider future approaches to improve clinical management.
Collapse
|
14
|
Bai J, Zhu Y, Lo A, Gao M, Lu Y, Zhao J, Zhang H. In Silico Assessment of Class I Antiarrhythmic Drug Effects on Pitx2-Induced Atrial Fibrillation: Insights from Populations of Electrophysiological Models of Human Atrial Cells and Tissues. Int J Mol Sci 2021; 22:1265. [PMID: 33514068 PMCID: PMC7866025 DOI: 10.3390/ijms22031265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Electrical remodelling as a result of homeodomain transcription factor 2 (Pitx2)-dependent gene regulation was linked to atrial fibrillation (AF) and AF patients with single nucleotide polymorphisms at chromosome 4q25 responded favorably to class I antiarrhythmic drugs (AADs). The possible reasons behind this remain elusive. The purpose of this study was to assess the efficacy of the AADs disopyramide, quinidine, and propafenone on human atrial arrhythmias mediated by Pitx2-induced remodelling, from a single cell to the tissue level, using drug binding models with multi-channel pharmacology. Experimentally calibrated populations of human atrial action po-tential (AP) models in both sinus rhythm (SR) and Pitx2-induced AF conditions were constructed by using two distinct models to represent morphological subtypes of AP. Multi-channel pharmaco-logical effects of disopyramide, quinidine, and propafenone on ionic currents were considered. Simulated results showed that Pitx2-induced remodelling increased maximum upstroke velocity (dVdtmax), and decreased AP duration (APD), conduction velocity (CV), and wavelength (WL). At the concentrations tested in this study, these AADs decreased dVdtmax and CV and prolonged APD in the setting of Pitx2-induced AF. Our findings of alterations in WL indicated that disopyramide may be more effective against Pitx2-induced AF than propafenone and quinidine by prolonging WL.
Collapse
Affiliation(s)
- Jieyun Bai
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Yijie Zhu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Andy Lo
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand; (A.L.); (J.Z.)
| | - Meng Gao
- Department of Computer Science and Technology, College of Electrical Engineering and Information, Northeast Agricultural University, Harbin 150030, China
| | - Yaosheng Lu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Jichao Zhao
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand; (A.L.); (J.Z.)
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK;
| |
Collapse
|
15
|
Zhu Y, Bai J, Lo A, Lu Y, Zhao J. Mechanisms underlying pro-arrhythmic abnormalities arising from Pitx2-induced electrical remodelling: an in silico intersubject variability study. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:106. [PMID: 33569408 PMCID: PMC7867875 DOI: 10.21037/atm-20-5660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background Electrical remodelling as a result of the homeodomain transcription factor 2 (Pitx2)-dependent gene regulation induces atrial fibrillation (AF) with different mechanisms. The purpose of this study was to identify Pitx2-induced changes in ionic currents that cause action potential (AP) shortening and lead to triggered activity. Methods Populations of computational atrial AP models were developed based on AP recordings from sinus rhythm (SR) and AF patients. Models in the AF population were divided into triggered and untriggered AP groups to evaluate the relationship between each ion current regulated by Pitx2 and triggered APs. Untriggered AP models were then divided into shortened and unshortened AP groups to determine which Pitx2-dependent ion currents contribute to AP shortening. Results According to the physiological range of AP biomarkers measured experimentally, populations of 2,885 SR and 4,781 AF models out of the initial pool of 30,000 models were selected. Models in the AF population predicted AP shortening and triggered activity observed in experiments in Pitx2-induced remodelling conditions. The AF models included 925 triggered AP models, 1,412 shortened AP models and 2,444 unshortened AP models. Intersubject variability in IKs and ICaL primarily modulated variability in AP duration (APD) in all shortened and unshortened AP models, whereas intersubject variability in IK1 and SERCA mainly contributed to the variability in AP morphology in all triggered and untriggered AP models. The incidence of shortened AP was positively correlated with IKs and IK1 and was negatively correlated with INa , ICaL and SERCA, whereas the incidence of triggered AP was negatively correlated with IKs and IK1 and was positively correlated with INa , ICaL and SERCA. Conclusions Electrical remodelling due to Pitx2 upregulation may increase the incidence of shortened AP, whereas electrical remodelling arising from Pitx2 downregulation may favor to the genesis of triggered AP.
Collapse
Affiliation(s)
- Yijie Zhu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Jieyun Bai
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Andy Lo
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Yaosheng Lu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Jichao Zhao
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Bifulco SF, Akoum N, Boyle PM. Translational applications of computational modelling for patients with cardiac arrhythmias. Heart 2020; 107:heartjnl-2020-316854. [PMID: 33303478 PMCID: PMC10896425 DOI: 10.1136/heartjnl-2020-316854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 11/04/2022] Open
Abstract
Cardiac arrhythmia is associated with high morbidity, and its underlying mechanisms are poorly understood. Computational modelling and simulation approaches have the potential to improve standard-of-care therapy for these disorders, offering deeper understanding of complex disease processes and sophisticated translational tools for planning clinical procedures. This review provides a clinician-friendly summary of recent advancements in computational cardiology. Organ-scale models automatically generated from clinical-grade imaging data are used to custom tailor our understanding of arrhythmia drivers, estimate future arrhythmogenic risk and personalise treatment plans. Recent mechanistic insights derived from atrial and ventricular arrhythmia simulations are highlighted, and the potential avenues to patient care (eg, by revealing new antiarrhythmic drug targets) are covered. Computational approaches geared towards improving outcomes in resynchronisation therapy have used simulations to elucidate optimal patient selection and lead location. Technology to personalise catheter ablation procedures are also covered, specifically preliminary outcomes form early-stage or pilot clinical studies. To conclude, future developments in computational cardiology are discussed, including improving the representation of patient-specific fibre orientations and fibrotic remodelling characterisation and how these might improve understanding of arrhythmia mechanisms and provide transformative tools for patient-specific therapy.
Collapse
Affiliation(s)
- Savannah F Bifulco
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Nazem Akoum
- Department of Cardiology, University of Washington, Seattle, Washington, USA
| | - Patrick M Boyle
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
17
|
Mikhailov AV, Kalyanasundaram A, Li N, Scott SS, Artiga EJ, Subr MM, Zhao J, Hansen BJ, Hummel JD, Fedorov VV. Comprehensive evaluation of electrophysiological and 3D structural features of human atrial myocardium with insights on atrial fibrillation maintenance mechanisms. J Mol Cell Cardiol 2020; 151:56-71. [PMID: 33130148 DOI: 10.1016/j.yjmcc.2020.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022]
Abstract
Atrial fibrillation (AF) occurrence and maintenance is associated with progressive remodeling of electrophysiological (repolarization and conduction) and 3D structural (fibrosis, fiber orientations, and wall thickness) features of the human atria. Significant diversity in AF etiology leads to heterogeneous arrhythmogenic electrophysiological and structural substrates within the 3D structure of the human atria. Since current clinical methods have yet to fully resolve the patient-specific arrhythmogenic substrates, mechanism-based AF treatments remain underdeveloped. Here, we review current knowledge from in-vivo, ex-vivo, and in-vitro human heart studies, and discuss how these studies may provide new insights on the synergy of atrial electrophysiological and 3D structural features in AF maintenance. In-vitro studies on surgically acquired human atrial samples provide a great opportunity to study a wide spectrum of AF pathology, including functional changes in single-cell action potentials, ion channels, and gene/protein expression. However, limited size of the samples prevents evaluation of heterogeneous AF substrates and reentrant mechanisms. In contrast, coronary-perfused ex-vivo human hearts can be studied with state-of-the-art functional and structural technologies, such as high-resolution near-infrared optical mapping and contrast-enhanced MRI. These imaging modalities can resolve atrial arrhythmogenic substrates and their role in reentrant mechanisms maintaining AF and validate clinical approaches. Nonetheless, longitudinal studies are not feasible in explanted human hearts. As no approach is perfect, we suggest that combining the strengths of direct human atrial studies with high fidelity approaches available in the laboratory and in realistic patient-specific computer models would elucidate deeper knowledge of AF mechanisms. We propose that a comprehensive translational pipeline from ex-vivo human heart studies to longitudinal clinically relevant AF animal studies and finally to clinical trials is necessary to identify patient-specific arrhythmogenic substrates and develop novel AF treatments.
Collapse
Affiliation(s)
- Aleksei V Mikhailov
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Arrhythmology Research Department, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - Anuradha Kalyanasundaram
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ning Li
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Shane S Scott
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Esthela J Artiga
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Megan M Subr
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Brian J Hansen
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - John D Hummel
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Vadim V Fedorov
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
18
|
Boyle PM, Del Álamo JC, Akoum N. Fibrosis, atrial fibrillation and stroke: clinical updates and emerging mechanistic models. Heart 2020; 107:99-105. [PMID: 33097562 DOI: 10.1136/heartjnl-2020-317455] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
The current paradigm of stroke risk assessment and mitigation in patients with atrial fibrillation (AF) is centred around clinical risk factors which, in the presence of AF, lead to thrombus formation. The mechanisms by which these clinical risk factors lead to thromboembolism, including any role played by atrial fibrosis, are not understood. In patients who had embolic stroke of undetermined source (ESUS), the problem is compounded by the absence of AF in a majority of patients despite long-term monitoring. Atrial fibrosis has emerged as a unifying mechanism that independently provides a substrate for arrhythmia and thrombus formation. Fibrosis-based computational models of AF initiation and maintenance promise to identify therapeutic targets in catheter ablation. In ESUS, fibrosis is also increasingly recognised as a major risk factor, but the underlying mechanism of this correlation is unclear. Simulations have uncovered potential vulnerability to arrhythmia induction in patients who had ESUS. Likewise, computational models of fluid dynamics representing blood flow in the left atrium and left atrium appendage have improved our understanding of thrombus formation, in particular left atrium appendage shapes and blood flow changes influenced by atrial remodelling. Multiscale modelling of blood flow dynamics based on structural fibrotic and morphological changes with associated cellular and tissue electrical remodelling leading to electromechanical abnormalities holds tremendous promise in providing a mechanistic understanding of the clinical problem of thromboembolisation. We present a review of clinical knowledge alongside computational modelling frameworks and conclude with a vision of a future paradigm integrating simulations in formulating personalised treatment plans for each patient.
Collapse
Affiliation(s)
- Patrick M Boyle
- Bioengineering, University of Washington, Seattle, Washington, USA
| | - Juan Carlos Del Álamo
- Mechanical Engineering, University of Washington College of Engineering, Seattle, Washington, USA
| | - Nazem Akoum
- Cardiology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
19
|
Bai J, Zhu Y, Lo A, Lu Y, Zhao J. In Silico Assessment of Genetic Variation in PITX2 Reveals the Molecular Mechanisms of Calcium-Mediated Cellular Triggered Activity in Atrial Fibrillation .. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:2353-2356. [PMID: 33018479 DOI: 10.1109/embc44109.2020.9175466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Genome-wide association studies have identified genetic variants including rs13143308T in the homeobox gene Pitx2 associated with atrial fibrillation (AF) populations. However, the molecular mechanisms leading to AF due to the rs13143308T variant are poorly understood. Therefore, this study aims to investigate the effects of this variant-induced alteration in calcium handling on properties of Ca2+-transients (CaT) and spontaneous calcium-release events (SCaEs). Based on recent experimental data on variants-induced alterations in ryanodine receptor channels (RyR) and sarcoplasmic reticulum (SR) calcium ATPase 2a (SERCA2a), we incorporated modifications to calcium handling into a previously published model of the human atrial cardiomyocyte with a spatial representation of calcium wave propagation. We identified that the rs13143308T variant has a higher incidence of spontaneous membrane depolarizations and amplitude of CaT than atrial myocytes without this variant. We showed a higher density of SCaEs and content of SR Ca2+ in atrial myocytes with the rs13143308T risk variant. Further computational analysis revealed that these calcium-mediated triggered activities were mainly linked to the gain of SERCA2a function but not the RyR2 dysfunction. Taken together, our model provides a powerful tool for assessing the impact of genetic variants in Pitx2, and these simulated results enhance our understanding of the molecular mechanisms underlying Pitx2-induced AF.
Collapse
|
20
|
Bai J, Lu Y, Lo A, Zhao J, Zhang H. PITX2 upregulation increases the risk of chronic atrial fibrillation in a dose-dependent manner by modulating IKs and ICaL -insights from human atrial modelling. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:191. [PMID: 32309338 PMCID: PMC7154416 DOI: 10.21037/atm.2020.01.90] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Functional analysis has shown that the paired-like homeodomain transcription factor 2 (PITX2) overexpression associated with atrial fibrillation (AF) leads to the slow delayed rectifier K+ current (IKs ) increase and the L-type Ca2+ current (ICaL ) reduction observed in isolated right atrial myocytes from chronic AF (CAF) patients. Through multiscale computational models, this study aimed to investigate the functional impact of the PITX2 overexpression on atrial electrical activity. METHODS The well-known Courtemanche-Ramirez-Nattel (CRN) model of human atrial action potentials (APs) was updated to incorporate experimental data on alterations in IKs and ICaL due to the PITX2 overexpression. These cell models for sinus rhythm (SR) and CAF were then incorporated into homogeneous multicellular one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) tissue models. The proarrhythmic effects of the PITX2 overexpression were quantified with ion current profiles, AP morphology, AP duration (APD) restitution, conduction velocity restitution (CVR), wavelength (WL), vulnerable window (VW) for unidirectional conduction block, and minimal substrate size required to induce re-entry. Dynamic behaviors of spiral waves were characterized by measuring lifespan (LS), tip patterns and dominant frequencies. RESULTS The IKs increase and the ICaL decrease arising from the PITX2 overexpression abbreviated APD and flattened APD restitution (APDR) curves in single cells. It reduced WL and increased CV at high excitation rates at the 1D tissue level. Although it had no effects on VW for initiating spiral waves, it decreased the minimal substrate size necessary to sustain re-entry. It also stabilized and accelerated spiral waves in 2D and 3D tissue models. CONCLUSIONS Electrical remodeling (IKs and ICaL ) due to the PITX2 overexpression increases susceptibility to AF due to increased tissue vulnerability, abbreviated APD, shortened WL and altered CV, which, in combination, facilitate initiation and maintenance of spiral waves.
Collapse
Affiliation(s)
- Jieyun Bai
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yaosheng Lu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China
| | - Andy Lo
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Henggui Zhang
- Biological Physics Group, School of Physics & Astronomy, University of Manchester, Manchester, UK
| |
Collapse
|
21
|
Bai J, Lu Y, Zhang H. In silico study of the effects of anti-arrhythmic drug treatment on sinoatrial node function for patients with atrial fibrillation. Sci Rep 2020; 10:305. [PMID: 31941982 PMCID: PMC6962222 DOI: 10.1038/s41598-019-57246-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022] Open
Abstract
Sinus node dysfunction (SND) is often associated with atrial fibrillation (AF). Amiodarone is the most frequently used agent for maintaining sinus rhythm in patients with AF, but it impairs the sinoatrial node (SAN) function in one-third of AF patients. This study aims to gain mechanistic insights into the effects of the antiarrhythmic agents in the setting of AF-induced SND. We have adapted a human SAN model to characterize the SND conditions by incorporating experimental data on AF-induced electrical remodelling, and then integrated actions of drugs into the modified model to assess their efficacy. Reductions in pacing rate upon the implementation of AF-induced electrical remodelling associated with SND agreed with the clinical observations. And the simulated results showed the reduced funny current (If) in these remodelled targets mainly contributed to the heart rate reduction. Computational drug treatment simulations predicted a further reduction in heart rate during amiodarone administration, indicating that the reduction was the result of actions of amiodarone on INa, IKur, ICaL, ICaT, If and beta-adrenergic receptors. However, the heart rate was increased in the presence of disopyramide. We concluded that disopyramide may be a desirable choice in reversing the AF-induced SND phenotype.
Collapse
Affiliation(s)
- Jieyun Bai
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China.
| | - Yaosheng Lu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Henggui Zhang
- Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|