1
|
Guerrero-Hurtado M, Garćia-Villalba M, Gonzalo A, Durán E, Martinez-Legazpi P, Ávila P, Kahn AM, Chen MY, McVeigh E, Bermejo J, Álamo JCD, Flores O. Hemodynamics affects factor XI/XII anticoagulation efficacy in patient-derived left atrial models. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 267:108761. [PMID: 40318574 DOI: 10.1016/j.cmpb.2025.108761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/29/2025] [Accepted: 03/30/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND AND OBJECTIVE Atrial fibrillation (AF) is a common arrhythmia that disrupts blood circulation in the left atrium (LA), causing stasis in the left atrial appendage (LAA) and increasing thromboembolic risk. In patients at sufficiently high risk, anticoagulation is indicated. This benefit may be counterbalanced by an increased risk of bleeding. Novel anticoagulants under development, such as factor XI/XII inhibitors, may be associated with a lower bleeding risk. However, their efficacy in preventing thrombosis is not fully understood. We hypothesized that patient-specific flow patterns in the LA and LAA not only influence the risk of thrombosis but also the effectiveness of anticoagulation agents. METHODS To test our hypothesis, we simulated blood flow and the intrinsic coagulation pathway in patient-specific LA anatomies with and without factor XI/XII inhibition. We included a heterogeneous cohort of thirteen patients, some in sinus rhythm and others in AF, four of whom had an LAA thrombus or a history of transient ischemic attacks. We used computational fluid dynamics based on 4D CT imaging and a detailed 32-coagulation factor system to run 247 simulations. We analyzed baseline LA flow patterns and evaluated various factor XI/XII inhibition levels. Implementing a novel multi-fidelity coagulation modeling approach accelerated computations by two orders of magnitude, enabling many simulations to be performed. RESULTS The simulations provided spatiotemporally resolved maps of thrombin concentration throughout the LA, showing that it peaks inside the LAA. Coagulation metrics based on peak LAA thrombin dynamics suggested patients could be classified as having no, moderate or high thromboembolic risk. High-risk patients had slower flows and higher residence times in the LAA than those with moderate thromboembolic risk, and they required stronger factor XI/XII inhibition to prevent thrombin growth. These data suggest that the anticoagulation effect was also related to the LAA hemodynamics. CONCLUSION The methodology outlined in this study has the potential to enable personalized assessments of coagulation risk and to tailor anticoagulation therapy by analyzing flow dynamics in patient-derived LA models, representing a significant step towards advancing the application of digital twins in cardiovascular medicine.
Collapse
Affiliation(s)
- M Guerrero-Hurtado
- Department of Aerospace Engineering, Universidad Carlos III de Madrid, Leganés, Spain
| | - M Garćia-Villalba
- Institute of Fluid Mechanics and Heat Transfer, TU Wien, 1060 Vienna, Austria
| | - A Gonzalo
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - E Durán
- Department of Mechanical, Thermal and Fluids Engineering, Universidad de Málaga, Málaga, Spain
| | - P Martinez-Legazpi
- Dept. of Mathematical Physics and Fluids, Universidad Nacional de Educación a Distancia, Spain; CIBERCV, Madrid, Spain
| | - P Ávila
- CIBERCV, Madrid, Spain; Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - A M Kahn
- Division of Cardiovascular Medicine, University of California San Diego, La Jolla, CA, USA
| | - M Y Chen
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - E McVeigh
- Division of Cardiovascular Medicine, University of California San Diego, La Jolla, CA, USA; Department of Bioengineering, University of California San Diego, La Jolla, CA, USA; Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - J Bermejo
- CIBERCV, Madrid, Spain; Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - J C Del Álamo
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA; Division of Cardiology, University of Washington, Seattle, WA, USA
| | - O Flores
- Department of Aerospace Engineering, Universidad Carlos III de Madrid, Leganés, Spain.
| |
Collapse
|
2
|
Qian Y, Zhu G, Zhang Z, Modepalli S, Zheng Y, Zheng X, Frydman G, Li H. Coagulo-Net: Enhancing the mathematical modeling of blood coagulation using physics-informed neural networks. Neural Netw 2024; 180:106732. [PMID: 39305783 PMCID: PMC11578045 DOI: 10.1016/j.neunet.2024.106732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 11/14/2024]
Abstract
Blood coagulation, which involves a group of complex biochemical reactions, is a crucial step in hemostasis to stop bleeding at the injury site of a blood vessel. Coagulation abnormalities, such as hypercoagulation and hypocoagulation, could either cause thrombosis or hemorrhage, resulting in severe clinical consequences. Mathematical models of blood coagulation have been widely used to improve the understanding of the pathophysiology of coagulation disorders, guide the design and testing of new anticoagulants or other therapeutic agents, and promote precision medicine. However, estimating the parameters in these coagulation models has been challenging as not all reaction rate constants and new parameters derived from model assumptions are measurable. Although various conventional methods have been employed for parameter estimation for coagulation models, the existing approaches have several shortcomings. Inspired by the physics-informed neural networks, we propose Coagulo-Net, which synergizes the strengths of deep neural networks with the mechanistic understanding of the blood coagulation processes to enhance the mathematical models of the blood coagulation cascade. We assess the performance of the Coagulo-Net using two existing coagulation models with different extents of complexity. Our simulation results illustrate that Coagulo-Net can efficiently infer the unknown model parameters and dynamics of species based on sparse measurement data and data contaminated with noise. In addition, we show that Coagulo-Net can process a mixture of synthetic and experimental data and refine the predictions of existing mathematical models of coagulation. These results demonstrate the promise of Coagulo-Net in enhancing current coagulation models and aiding the creation of novel models for physiological and pathological research. These results showcase the potential of Coagulo-Net to advance computational modeling in the study of blood coagulation, improving both research methodologies and the development of new therapies for treating patients with coagulation disorders.
Collapse
Affiliation(s)
- Ying Qian
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, USA
| | - Ge Zhu
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, USA
| | - Zhen Zhang
- Division of Applied Mathematics, Brown University, Providence, RI, USA
| | | | - Yihao Zheng
- Department of Mechanical and Material Engineering, Worcester Polytechnic Institute, Worcester, USA
| | - Xiaoning Zheng
- Department of Mathematics, College of Information Science & Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Galit Frydman
- Division of Trauma, Emergency Surgery and Surgical Critical Care at the Massachusetts General Hospital, Boston, MA, USA; Division of Comparative Medicine, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - He Li
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, USA.
| |
Collapse
|
3
|
Watson C, Saaid H, Vedula V, Cardenas JC, Henke PK, Nicoud F, Xu XY, Hunt BJ, Manning KB. Venous Thromboembolism: Review of Clinical Challenges, Biology, Assessment, Treatment, and Modeling. Ann Biomed Eng 2024; 52:467-486. [PMID: 37914979 DOI: 10.1007/s10439-023-03390-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
Venous thromboembolism (VTE) is a massive clinical challenge, annually affecting millions of patients globally. VTE is a particularly consequential pathology, as incidence is correlated with extremely common risk factors, and a large cohort of patients experience recurrent VTE after initial intervention. Altered hemodynamics, hypercoagulability, and damaged vascular tissue cause deep-vein thrombosis and pulmonary embolism, the two permutations of VTE. Venous valves have been identified as likely locations for initial blood clot formation, but the exact pathway by which thrombosis occurs in this environment is not entirely clear. Several risk factors are known to increase the likelihood of VTE, particularly those that increase inflammation and coagulability, increase venous resistance, and damage the endothelial lining. While these risk factors are useful as predictive tools, VTE diagnosis prior to presentation of outward symptoms is difficult, chiefly due to challenges in successfully imaging deep-vein thrombi. Clinically, VTE can be managed by anticoagulants or mechanical intervention. Recently, direct oral anticoagulants and catheter-directed thrombolysis have emerged as leading tools in resolution of venous thrombosis. While a satisfactory VTE model has yet to be developed, recent strides have been made in advancing in silico models of venous hemodynamics, hemorheology, fluid-structure interaction, and clot growth. These models are often guided by imaging-informed boundary conditions or inspired by benchtop animal models. These gaps in knowledge are critical targets to address necessary improvements in prediction and diagnosis, clinical management, and VTE experimental and computational models.
Collapse
Affiliation(s)
- Connor Watson
- Department of Biomedical Engineering, The Pennsylvania State University, 122 Chemical and Biomedical Engineering Building, University Park, PA, 16802-4400, USA
| | - Hicham Saaid
- Department of Biomedical Engineering, The Pennsylvania State University, 122 Chemical and Biomedical Engineering Building, University Park, PA, 16802-4400, USA
| | - Vijay Vedula
- Department of Mechanical Engineering, Fu Foundation School of Engineering and Applied Science, Columbia University, New York, NY, USA
| | - Jessica C Cardenas
- Department of Surgery and the Center for Translational Injury Research, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Peter K Henke
- Section of Vascular Surgery, Department of Surgery, University of Michigan Health System, Ann Arbor, MI, USA
| | - Franck Nicoud
- CNRS, IMAG, Université de Montpellier, Montpellier, France
- Institut Universitaire de France, Paris, France
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Beverley J Hunt
- Department of Thrombosis and Haemostasis, King's College, London, UK
- Thrombosis and Haemophilia Centre, Guy's & St Thomas' NHS Trust, London, UK
| | - Keefe B Manning
- Department of Biomedical Engineering, The Pennsylvania State University, 122 Chemical and Biomedical Engineering Building, University Park, PA, 16802-4400, USA.
- Department of Surgery, Penn State Hershey Medical Center, Hershey, PA, USA.
| |
Collapse
|
4
|
Du J, Fogelson AL. A computational investigation of occlusive arterial thrombosis. Biomech Model Mechanobiol 2024; 23:157-178. [PMID: 37702979 PMCID: PMC11697383 DOI: 10.1007/s10237-023-01765-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/16/2023] [Indexed: 09/14/2023]
Abstract
The generation of occlusive thrombi in stenotic arteries involves the rapid deposition of millions of circulating platelets under high shear flow. The process is mediated by the formation of molecular bonds of several distinct types between platelets; the bonds capture the moving platelets and stabilize the growing thrombi under flow. We investigated the mechanisms behind occlusive thrombosis in arteries with a two-phase continuum model. The model explicitly tracks the formation and rupture of the two types of interplatelet bonds, the rates of which are coupled with the local flow conditions. The motion of platelets in the thrombi results from competition between the viscoelastic forces generated by the interplatelet bonds and the fluid drag. Our simulation results indicate that stable occlusive thrombi form only under specific combinations for the ranges of model parameters such as rates of bond formation and rupture, platelet activation time, and number of bonds required for platelet attachment.
Collapse
Affiliation(s)
- Jian Du
- Department of Mathematical Sciences, Florida Institute of Technology, 150 W. University BLVD, Melbourne, FL, 32901, USA.
| | - Aaron L Fogelson
- Departments of Mathematics and Biomedical Engineering, University of Utah, 155 South 1400 East, Salt Lake City, UT, 84112, USA
| |
Collapse
|
5
|
Teeraratkul C, Tomaiuolo M, Stalker TJ, Mukherjee D. Investigating clot-flow interactions by integrating intravital imaging with in silico modeling for analysis of flow, transport, and hemodynamic forces. Sci Rep 2024; 14:696. [PMID: 38184693 PMCID: PMC10771506 DOI: 10.1038/s41598-023-49945-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 12/13/2023] [Indexed: 01/08/2024] Open
Abstract
As a blood clot forms, grows, deforms, and embolizes following a vascular injury, local clot-flow interactions lead to a highly dynamic flow environment. The local flow influences transport of biochemical species relevant for clotting, and determines the forces on the clot that in turn lead to clot deformation and embolization. Despite this central role, quantitative characterization of this dynamic clot-flow interaction and flow environment in the clot neighborhood remains a major challenge. Here, we propose an approach that integrates dynamic intravital imaging with computer geometric modeling and computational flow and transport modeling to develop a unified in silico framework to quantify the dynamic clot-flow interactions. We outline the development of the methodology referred to as Intravital Integrated In Silico Modeling or IVISim, and then demonstrate the method on a sample set of simulations comprising clot formation following laser injury in two mouse cremaster arteriole injury model data: one wild-type mouse case, and one diYF knockout mouse case. Simulation predictions are verified against experimental observations of transport of caged fluorescent Albumin (cAlb) in both models. Through these simulations, we illustrate how the IVISim methodology can provide insights into hemostatic processes, the role of flow and clot-flow interactions, and enable further investigations comparing and contrasting different biological model scenarios and parameter variations.
Collapse
Affiliation(s)
- Chayut Teeraratkul
- Paul M Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, USA
| | - Maurizio Tomaiuolo
- Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, USA
| | | | - Debanjan Mukherjee
- Paul M Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, USA.
| |
Collapse
|
6
|
Grande Gutiérrez N, Mukherjee D, Bark D. Decoding thrombosis through code: a review of computational models. J Thromb Haemost 2024; 22:35-47. [PMID: 37657562 PMCID: PMC11064820 DOI: 10.1016/j.jtha.2023.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
From the molecular level up to a blood vessel, thrombosis and hemostasis involves many interconnected biochemical and biophysical processes over a wide range of length and time scales. Computational modeling has gained eminence in offering insights into these processes beyond what can be obtained from in vitro or in vivo experiments, or clinical measurements. The multiscale and multiphysics nature of thrombosis has inspired a wide range of modeling approaches that aim to address how a thrombus forms and dismantles. Here, we review recent advances in computational modeling with a focus on platelet-based thrombosis. We attempt to summarize the diverse range of modeling efforts straddling the wide-spectrum of physical phenomena, length scales, and time scales; highlighting key advancements and insights from existing studies. Potential information gleaned from models is discussed, ranging from identification of thrombus-prone regions in patient-specific vasculature to modeling thrombus deformation and embolization in response to fluid forces. Furthermore, we highlight several limitations of current models, future directions in the field, and opportunities for clinical translation, to illustrate the state-of-the-art. There are a plethora of opportunity areas for which models can be expanded, ranging from topics of thromboinflammation to platelet production and clearance. Through successes demonstrated in existing studies described here, as well as continued advancements in computational methodologies and computer processing speeds and memory, in silico investigations in thrombosis are poised to bring about significant knowledge growth in the years to come.
Collapse
Affiliation(s)
- Noelia Grande Gutiérrez
- Carnegie Mellon University, Department of Mechanical Engineering Pittsburgh, PA, USA. https://twitter.com/ngrandeg
| | - Debanjan Mukherjee
- University of Colorado Boulder, Paul M. Rady Department of Mechanical Engineering Boulder, CO, USA. https://twitter.com/debanjanmukh
| | - David Bark
- Washington University in St Louis, Department of Pediatrics, Division of Hematology and Oncology St Louis, MO, USA; Washington University in St Louis, Department of Biomedical Engineering St Louis, MO, USA.
| |
Collapse
|
7
|
Michael C, Pancaldi F, Britton S, Kim OV, Peshkova AD, Vo K, Xu Z, Litvinov RI, Weisel JW, Alber M. Combined computational modeling and experimental study of the biomechanical mechanisms of platelet-driven contraction of fibrin clots. Commun Biol 2023; 6:869. [PMID: 37620422 PMCID: PMC10449797 DOI: 10.1038/s42003-023-05240-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
While blood clot formation has been relatively well studied, little is known about the mechanisms underlying the subsequent structural and mechanical clot remodeling called contraction or retraction. Impairment of the clot contraction process is associated with both life-threatening bleeding and thrombotic conditions, such as ischemic stroke, venous thromboembolism, and others. Recently, blood clot contraction was observed to be hindered in patients with COVID-19. A three-dimensional multiscale computational model is developed and used to quantify biomechanical mechanisms of the kinetics of clot contraction driven by platelet-fibrin pulling interactions. These results provide important biological insights into contraction of platelet filopodia, the mechanically active thin protrusions of the plasma membrane, described previously as performing mostly a sensory function. The biomechanical mechanisms and modeling approach described can potentially apply to studying other systems in which cells are embedded in a filamentous network and exert forces on the extracellular matrix modulated by the substrate stiffness.
Collapse
Affiliation(s)
- Christian Michael
- Department of Mathematics, University of California Riverside, Riverside, CA, 92521, USA
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA, 92521, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Francesco Pancaldi
- Department of Mathematics, University of California Riverside, Riverside, CA, 92521, USA
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Samuel Britton
- Department of Mathematics, University of California Riverside, Riverside, CA, 92521, USA
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Oleg V Kim
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
- Department of Biomedical Engineering and Mechanics, Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Alina D Peshkova
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Khoi Vo
- Department of Mathematics, University of California Riverside, Riverside, CA, 92521, USA
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Zhiliang Xu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA.
| | - Mark Alber
- Department of Mathematics, University of California Riverside, Riverside, CA, 92521, USA.
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA, 92521, USA.
- Department of Bioengineering, University of California Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
8
|
Du J, Fogelson A. A Computational Investigation of Occlusive Arterial Thrombosis. RESEARCH SQUARE 2023:rs.3.rs-3011328. [PMID: 37333269 PMCID: PMC10275038 DOI: 10.21203/rs.3.rs-3011328/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The generation of occlusive thrombi in stenotic arteries involves the rapid deposition of millions of circulating platelets under high shear flow. The process is mediated by the formation of molecular bonds of several distinct types between platelets; the bonds capture the moving platelets and stabilize the growing thrombi under flow. We investigated the mechanisms behind occlusive thrombosis in arteries with a two-phase continuum model. The model explicitly tracks the formation and rupture of the two types of interplatelet bonds, the rates of which are coupled with the local flow conditions. The motion of platelets in the thrombi results from competition between the viscoelastic forces generated by the interplatelet bonds and the fluid drag. Our simulation results indicate that stable occlusive thrombi form only under specific combinations for the ranges of model parameters such as rates of bond formation and rupture, platelet activation time, and number of bonds required for platelet attachment.
Collapse
Affiliation(s)
- Jian Du
- Department of Mathematical Sciences, Florida Institute of Technology, 150 W. University BLVD, Melbourne, 32901, Florida, USA
| | - Aaron Fogelson
- Departments of Mathematics and Biomedical Engineering, University of Utah, 155 South 1400 East, Salt Lake City, 84112, Utah, USA
| |
Collapse
|
9
|
Wang P, Sheriff J, Zhang P, Deng Y, Bluestein D. A Multiscale Model for Shear-Mediated Platelet Adhesion Dynamics: Correlating In Silico with In Vitro Results. Ann Biomed Eng 2023; 51:1094-1105. [PMID: 37020171 DOI: 10.1007/s10439-023-03193-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/22/2023] [Indexed: 04/07/2023]
Abstract
Platelet adhesion to blood vessel walls is a key initial event in thrombus formation in both vascular disease processes and prosthetic cardiovascular devices. We extended a deformable multiscale model (MSM) of flowing platelets, incorporating Dissipative Particle Dynamics (DPD) and Coarse-Grained Molecular Dynamics (CGMD) describing molecular-scale intraplatelet constituents and their interaction with surrounding flow, to predict platelet adhesion dynamics under physiological flow shear stresses. Binding of platelet glycoprotein receptor Ibα (GPIbα) to von Willebrand factor (vWF) on the blood vessel wall was modeled by a molecular-level hybrid force field and validated with in vitro microchannel experiments of flowing platelets at 30 dyne/cm2. High frame rate videos of flipping platelets were analyzed with a Semi-Unsupervised Learning System (SULS) machine learning-guided imaging approach to segment platelet geometries and quantify adhesion dynamics parameters. In silico flipping dynamics followed in vitro measurements at 15 and 45 dyne/cm2 with high fidelity, predicting GPIbα-vWF bonding and debonding processes, distribution of bonds strength, and providing a biomechanical insight into initiation of the complex platelet adhesion process. The adhesion model and simulation framework can be further integrated with our established MSMs of platelet activation and aggregation to simulate initial mural thrombus formation on blood vessel walls.
Collapse
Affiliation(s)
- Peineng Wang
- Department of Biomedical Engineering, T08-50 Health Sciences Center, Stony Brook University, Stony Brook, NY, 11794-8084, USA
| | - Jawaad Sheriff
- Department of Biomedical Engineering, T08-50 Health Sciences Center, Stony Brook University, Stony Brook, NY, 11794-8084, USA
| | - Peng Zhang
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Yuefan Deng
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Danny Bluestein
- Department of Biomedical Engineering, T08-50 Health Sciences Center, Stony Brook University, Stony Brook, NY, 11794-8084, USA.
| |
Collapse
|
10
|
A mathematical model of fibrinogen-mediated erythrocyte-erythrocyte adhesion. Commun Biol 2023; 6:192. [PMID: 36801914 PMCID: PMC9938206 DOI: 10.1038/s42003-023-04560-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Erythrocytes are deformable cells that undergo progressive biophysical and biochemical changes affecting the normal blood flow. Fibrinogen, one of the most abundant plasma proteins, is a primary determinant for changes in haemorheological properties, and a major independent risk factor for cardiovascular diseases. In this study, the adhesion between human erythrocytes is measured by atomic force microscopy (AFM) and its effect observed by micropipette aspiration technique, in the absence and presence of fibrinogen. These experimental data are then used in the development of a mathematical model to examine the biomedical relevant interaction between two erythrocytes. Our designed mathematical model is able to explore the erythrocyte-erythrocyte adhesion forces and changes in erythrocyte morphology. AFM erythrocyte-erythrocyte adhesion data show that the work and detachment force necessary to overcome the adhesion between two erythrocytes increase in the presence of fibrinogen. The changes in erythrocyte morphology, the strong cell-cell adhesion and the slow separation of the two cells are successfully followed in the mathematical simulation. Erythrocyte-erythrocyte adhesion forces and energies are quantified and matched with experimental data. The changes observed on erythrocyte-erythrocyte interactions may give important insights about the pathophysiological relevance of fibrinogen and erythrocyte aggregation in hindering microcirculatory blood flow.
Collapse
|
11
|
Zhu G, Modepalli S, Anand M, Li H. Computational modeling of hypercoagulability in COVID-19. Comput Methods Biomech Biomed Engin 2023; 26:338-349. [PMID: 36154346 DOI: 10.1080/10255842.2022.2124858] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected more than 100 million people worldwide and claimed millions of lives. While the leading cause of mortality in COVID-19 patients is the hypoxic respiratory failure from acute respiratory distress syndrome, there is accumulating evidence that shows excessive coagulation also increases the fatalities in COVID-19. Thus, there is a pressing demand to understand the association between COVID-19-induced hypercoagulability and the extent of formation of undesired blood clots. Mathematical modeling of coagulation has been used as an important tool to identify novel reaction mechanisms and to identify targets for new drugs. Here, we employ the coagulation factor data of COVID-19 patients reported from published studies as inputs for two mathematical models of coagulation to identify how the concentrations of coagulation factors change in these patients. Our simulation results show that while the levels of many of the abnormal coagulation factors measured in COVID-19 patients promote the generation of thrombin and fibrin, two key components of blood clots, the increased level of fibrinogen and then the reduced level of antithrombin are the factors most responsible for boosting the level of fibrin and thrombin, respectively. Altogether, our study demonstrates the potential of mathematical modeling to identify coagulation factors responsible for the increased clot formation in COVID-19 patients where clinical data is scarce.
Collapse
Affiliation(s)
- Ge Zhu
- Center for Biomedical Engineering, Brown University, Providence, USA
| | | | - Mohan Anand
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India
| | - He Li
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, USA
| |
Collapse
|
12
|
Sun X, Li S, He Y, Liu Y, Ma T, Zeng R, Liu Z, Chen Y, Zheng Y, Liu X. Effects of cardiac function alterations on the risk of postoperative thrombotic complications in patients receiving endovascular aortic repair. Front Physiol 2023; 13:1114110. [PMID: 36703931 PMCID: PMC9871241 DOI: 10.3389/fphys.2022.1114110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction: Chronic heart disease (CHD) is a common comorbidity of patients receiving endovascular aneurysm repair (EVAR) for abdominal aortic aneurysms (AAA). The explicit relationship between ventricular systolic function and EVAR complication of thrombotic events is unknown. Methods: In this study, we proposed a three-dimensional numerical model coupled with the lumped-elements heart model, which is capable of simulating thrombus formation in diverse systolic functions. The relation of cardiac functions and the predicted risk of thrombus formation in the aorta and/or endograft of 4 patients who underwent EVAR was investigated. Relative risks for thrombus formation were identified using machine-learning algorithms. Results: The computational results demonstrate that thrombus tended to form on the interior side of the aorta arch and iliac branches, and cardiac function can affect blood flow field and affect thrombus formation, which is consistent with the four patients' post-operative imaging follow-up. We also found that RRT, OSI, TAWSS in thrombosis area are lower than whole average. In addition, we found that the thrombus formation has negative correlations with the maximum ventricular contractile force (r = -.281 ± .101) and positive correlations with the minimum ventricular contractile force (r = .238 ± .074), whereas the effect of heart rate (r = -.015 ± .121) on thrombus formation is not significant. Conclusion: In conclusion, changes in ventricular systolic function may alter the risk of thrombotic events after EVAR repair, which could provide insight into the selection of adjuvant therapy strategies for AAA patients with CHD.
Collapse
Affiliation(s)
- Xiaoning Sun
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Siting Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuan He
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yuxi Liu
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Tianxiang Ma
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Rong Zeng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhili Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yu Chen
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China,*Correspondence: Yuehong Zheng, ; Xiao Liu,
| | - Xiao Liu
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China,*Correspondence: Yuehong Zheng, ; Xiao Liu,
| |
Collapse
|
13
|
Pan Y, Li Y, Li Y, Zheng X, Zou C, Li J, Chen H. Nanodroplet-Coated Microbubbles Used in Sonothrombolysis with Two-Step Cavitation Strategy. Adv Healthc Mater 2023; 12:e2202281. [PMID: 36433664 DOI: 10.1002/adhm.202202281] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/23/2022] [Indexed: 11/27/2022]
Abstract
Thrombosis is a major cause of morbidity and mortality and sonothrombolysis is a promising method for its treatment. However, the slow diffusion of the thrombolytic agents into the thrombus results in slow recanalization. Here, nanodroplet-coated microbubbles (NCMBs) are designed and fabricated and a two-step cavitation strategy is used to accelerate the thrombolysis. The first cavitation of the NCMBs, cavitation and collapse of the microbubbles induced by low frequency ultrasound, drives the nanodroplets on the shell into the thrombus, while the second cavitation, the phase-change and volume expansion of drug-loaded nanodroplets triggered by high frequency ultrasound, loosens the thrombus by the sono-porosity effect. This two-step cavitation of the NCMBs is verified using a fibrin agarose model, where a rapid diffusion of the thrombolytic agents is observed. Furthermore, the NCMBs reach much higher thrombolysis efficiency in both in vitro and proof-of-concept experiments performed with living mice. The nanodroplet-coated microbubbles are a promising diffusion medicines carrier for efficient drug delivery.
Collapse
Affiliation(s)
- Yunfan Pan
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yongjian Li
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yan Li
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiaobing Zheng
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Chenghong Zou
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiang Li
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haosheng Chen
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
14
|
Zhussupbekov M, Méndez Rojano R, Wu WT, Antaki JF. von Willebrand factor unfolding mediates platelet deposition in a model of high-shear thrombosis. Biophys J 2022; 121:4033-4047. [PMID: 36196057 PMCID: PMC9675031 DOI: 10.1016/j.bpj.2022.09.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/21/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022] Open
Abstract
Thrombosis under high-shear conditions is mediated by the mechanosensitive blood glycoprotein von Willebrand factor (vWF). vWF unfolds in response to strong flow gradients and facilitates rapid recruitment of platelets in flowing blood. While the thrombogenic effect of vWF is well recognized, its conformational response in complex flows has largely been omitted from numerical models of thrombosis. We recently presented a continuum model for the unfolding of vWF, where we represented vWF transport and its flow-induced conformational change using convection-diffusion-reaction equations. Here, we incorporate the vWF component into our multi-constituent model of thrombosis, where the local concentration of stretched vWF amplifies the deposition rate of free-flowing platelets and reduces the shear cleaning of deposited platelets. We validate the model using three benchmarks: in vitro model of atherothrombosis, a stagnation point flow, and the PFA-100, a clinical blood test commonly used for screening for von Willebrand disease (vWD). The simulations reproduced the key aspects of vWF-mediated thrombosis observed in these experiments, such as the thrombus location, thrombus growth dynamics, and the effect of blocking platelet-vWF interactions. The PFA-100 simulations closely matched the reported occlusion times for normal blood and several hemostatic deficiencies, namely, thrombocytopenia, vWD type 1, and vWD type 3. Overall, this multi-constituent model of thrombosis enables macro-scale 3D simulations of thrombus formation in complex geometries over a wide range of shear rates and accounts for qualitative and quantitative hemostatic deficiencies in patient blood.
Collapse
Affiliation(s)
- Mansur Zhussupbekov
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | | | - Wei-Tao Wu
- Department of Aerospace Science and Technology, Nanjing University of Science and Technology, Nanjing, China
| | - James F Antaki
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York.
| |
Collapse
|
15
|
Méndez Rojano R, Lai A, Zhussupbekov M, Burgreen GW, Cook K, Antaki JF. A fibrin enhanced thrombosis model for medical devices operating at low shear regimes or large surface areas. PLoS Comput Biol 2022; 18:e1010277. [PMID: 36190991 PMCID: PMC9560616 DOI: 10.1371/journal.pcbi.1010277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/13/2022] [Accepted: 09/15/2022] [Indexed: 11/06/2022] Open
Abstract
Over the past decade, much of the development of computational models of device-related thrombosis has focused on platelet activity. While those models have been successful in predicting thrombus formation in medical devices operating at high shear rates (> 5000 s−1), they cannot be directly applied to low-shear devices, such as blood oxygenators and catheters, where emerging information suggest that fibrin formation is the predominant mechanism of clotting and platelet activity plays a secondary role. In the current work, we augment an existing platelet-based model of thrombosis with a partial model of the coagulation cascade that includes contact activation of factor XII and fibrin production. To calibrate the model, we simulate a backward-facing-step flow channel that has been extensively characterized in-vitro. Next, we perform blood perfusion experiments through a microfluidic chamber mimicking a hollow fiber membrane oxygenator and validate the model against these observations. The simulation results closely match the time evolution of the thrombus height and length in the backward-facing-step experiment. Application of the model to the microfluidic hollow fiber bundle chamber capture both gross features such as the increasing clotting trend towards the outlet of the chamber, as well as finer local features such as the structure of fibrin around individual hollow fibers. Our results are in line with recent findings that suggest fibrin production, through contact activation of factor XII, drives the thrombus formation in medical devices operating at low shear rates with large surface area to volume ratios. Patients treated with blood-contacting medical devices suffer from clotting complications. Over the past decades, a great effort has been made to develop computational tools to predict and prevent clot formation in these devices. However, most models have focused on platelet activity and neglected other important parts of the problem such as the coagulation cascade reactions that lead to fibrin formation. In the current work, we incorporate this missing element into a well-established and validated model for platelet activity. We then use this novel approach to predict thrombus formation in two experimental configurations. Our results confirm that to accurately predict the clotting process in devices where surface area to volume ratios are large and flow velocity and shear stresses remain low, coagulation reactions and subsequent fibrin formation must be considered. This new model could have great implications for the design and optimization of medical devices such as blood oxygenators. In the long term, the model could evolve into a functional tool to inform anticoagulation therapies for these patients.
Collapse
Affiliation(s)
- Rodrigo Méndez Rojano
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| | - Angela Lai
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Mansur Zhussupbekov
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| | - Greg W. Burgreen
- Center for Advanced Vehicular Systems, Mississippi State University, Starkville, Mississippi, United States of America
| | - Keith Cook
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - James F. Antaki
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
16
|
Pancaldi F, Kim OV, Weisel JW, Alber M, Xu Z. Computational Biomechanical Modeling of Fibrin Networks and Platelet-Fiber Network Interactions. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022; 22:100369. [PMID: 35386550 PMCID: PMC8979495 DOI: 10.1016/j.cobme.2022.100369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fibrin deformation and interaction of fibrin with other blood components play critical roles in hemostasis and thrombosis. In this review, computational and mathematical biomechanical models of fibrin network deformation and contraction at different spatio-temporal scales as well as challenges in developing and calibrating multiscale models are discussed. There are long standing challenges. For instance, applicability of models to identify and test potential mechanisms of the biomechanical processes mediating interactions between platelets and fiber networks in blood clot stretching and contraction needs to be examined carefully. How the structural and mechanical properties of major blood clot components influences biomechanical responses of the entire clot subjected to external forces, such as blood flow or vessel wall deformations needs to be investigated thoroughly.
Collapse
Affiliation(s)
- Francesco Pancaldi
- Department of Mathematics, University of California Riverside, Riverside, CA 92505, USA
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA 92505, USA
| | - Oleg V. Kim
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - John W. Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Mark Alber
- Department of Mathematics, University of California Riverside, Riverside, CA 92505, USA
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA 92505, USA
| | - Zhiliang Xu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, IN 46556, USA
| |
Collapse
|
17
|
Combining mathematical modelling and deep learning to make rapid and explainable predictions of the patient-specific response to anticoagulant therapy under venous flow. Math Biosci 2022; 349:108830. [DOI: 10.1016/j.mbs.2022.108830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/19/2022]
|
18
|
Multiphysics and multiscale modeling of microthrombosis in COVID-19. PLoS Comput Biol 2022; 18:e1009892. [PMID: 35255089 PMCID: PMC8901059 DOI: 10.1371/journal.pcbi.1009892] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/02/2022] [Indexed: 12/21/2022] Open
Abstract
Emerging clinical evidence suggests that thrombosis in the microvasculature of patients with Coronavirus disease 2019 (COVID-19) plays an essential role in dictating the disease progression. Because of the infectious nature of SARS-CoV-2, patients’ fresh blood samples are limited to access for in vitro experimental investigations. Herein, we employ a novel multiscale and multiphysics computational framework to perform predictive modeling of the pathological thrombus formation in the microvasculature using data from patients with COVID-19. This framework seamlessly integrates the key components in the process of blood clotting, including hemodynamics, transport of coagulation factors and coagulation kinetics, blood cell mechanics and adhesive dynamics, and thus allows us to quantify the contributions of many prothrombotic factors reported in the literature, such as stasis, the derangement in blood coagulation factor levels and activities, inflammatory responses of endothelial cells and leukocytes to the microthrombus formation in COVID-19. Our simulation results show that among the coagulation factors considered, antithrombin and factor V play more prominent roles in promoting thrombosis. Our simulations also suggest that recruitment of WBCs to the endothelial cells exacerbates thrombogenesis and contributes to the blockage of the blood flow. Additionally, we show that the recent identification of flowing blood cell clusters could be a result of detachment of WBCs from thrombogenic sites, which may serve as a nidus for new clot formation. These findings point to potential targets that should be further evaluated, and prioritized in the anti-thrombotic treatment of patients with COVID-19. Altogether, our computational framework provides a powerful tool for quantitative understanding of the mechanism of pathological thrombus formation and offers insights into new therapeutic approaches for treating COVID-19 associated thrombosis. Emerging clinical evidence suggests that thrombosis in the microvasculature of patients with Coronavirus disease 2019 (COVID-19) plays an essential role in dictating the disease progression. We employ a novel multiphysics and multiscale computational framework to investigate the underlying mechanism of the pathological formation of microthrombi and circulating cell clusters in COVID-19. We quantify the contributions of many prothrombotic factors reported in the literature, such as stasis, the derangement in blood coagulation factor levels and activities, inflammatory responses of endothelial cells and leukocytes to the microthrombus formation in COVID-19, through which we identify the potential targets that should be further evaluated, and prioritized in the anti-thrombotic treatment of patients with COVID-19.
Collapse
|
19
|
Chong MY, Gu B, Armour CH, Dokos S, Ong ZC, Xu XY, Lim E. An integrated fluid-structure interaction and thrombosis model for type B aortic dissection. Biomech Model Mechanobiol 2022; 21:261-275. [PMID: 35079931 PMCID: PMC8807468 DOI: 10.1007/s10237-021-01534-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022]
Abstract
False lumen thrombosis (FLT) in type B aortic dissection has been associated with the progression of dissection and treatment outcome. Existing computational models mostly assume rigid wall behavior which ignores the effect of flap motion on flow and thrombus formation within the FL. In this study, we have combined a fully coupled fluid-structure interaction (FSI) approach with a shear-driven thrombosis model described by a series of convection-diffusion reaction equations. The integrated FSI-thrombosis model has been applied to an idealized dissection geometry to investigate the interaction between vessel wall motion and growing thrombus. Our simulation results show that wall compliance and flap motion can influence the progression of FLT. The main difference between the rigid and FSI models is the continuous development of vortices near the tears caused by drastic flap motion up to 4.45 mm. Flap-induced high shear stress and shear rates around tears help to transport activated platelets further to the neighboring region, thus speeding up thrombus formation during the accelerated phase in the FSI models. Reducing flap mobility by increasing the Young's modulus of the flap slows down the thrombus growth. Compared to the rigid model, the predicted thrombus volume is 25% larger using the FSI-thrombosis model with a relatively mobile flap. Furthermore, our FSI-thrombosis model can capture the gradual effect of thrombus growth on the flow field, leading to flow obstruction in the FL, increased blood viscosity and reduced flap motion. This model is a step closer toward simulating realistic thrombus growth in aortic dissection, by taking into account the effect of intimal flap and vessel wall motion.
Collapse
Affiliation(s)
- Mei Yan Chong
- Department of Biomedical Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Boram Gu
- Department of Chemical Engineering, Imperial College London, London, UK
- School of Chemical Engineering, Chonnam National University, Gwangju, Republic of Korea
| | | | - Socrates Dokos
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Zhi Chao Ong
- Department of Mechanical Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Einly Lim
- Department of Biomedical Engineering, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Ren J, Liu Y, Huang W, Lam RHW. A Narrow Straight Microchannel Array for Analysis of Transiting Speed of Floating Cancer Cells. MICROMACHINES 2022; 13:183. [PMID: 35208307 PMCID: PMC8877651 DOI: 10.3390/mi13020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/25/2022]
Abstract
Investigating floating cells along a narrow microchannel (e.g., a blood vessel) for their transiting speeds and the corresponding roles of cell physical properties can deepen our understanding of circulating tumor cells (CTCs) metastasis via blood vessels. Many existing studies focus on the cell transiting process in blood vessel-like microchannels; further analytical studies are desired to summarize behaviors of the floating cell movement under different conditions. In this work, we perform a theoretical analysis to establish a relation between the transiting speed and key cell physical properties. We also conduct computational fluid dynamics simulation and microfluidic experiments to verify the theoretical model. This work reveals key cell physical properties and the channel configurations determining the transiting speed. The reported model can be applied to other works with various dimensions of microchannels as a more general way to evaluate the cancer cell metastasis ability with microfluidics.
Collapse
Affiliation(s)
- Jifeng Ren
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Yi Liu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China; (Y.L.); (W.H.)
| | - Wei Huang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China; (Y.L.); (W.H.)
| | - Raymond H. W. Lam
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China; (Y.L.); (W.H.)
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| |
Collapse
|
21
|
Deng YX, Chang HY, Li H. Recent Advances in Computational Modeling of Biomechanics and Biorheology of Red Blood Cells in Diabetes. Biomimetics (Basel) 2022; 7:15. [PMID: 35076493 PMCID: PMC8788472 DOI: 10.3390/biomimetics7010015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/01/2022] [Accepted: 01/08/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus, a metabolic disease characterized by chronically elevated blood glucose levels, affects about 29 million Americans and more than 422 million adults all over the world. Particularly, type 2 diabetes mellitus (T2DM) accounts for 90-95% of the cases of vascular disease and its prevalence is increasing due to the rising obesity rates in modern societies. Although multiple factors associated with diabetes, such as reduced red blood cell (RBC) deformability, enhanced RBC aggregation and adhesion to the endothelium, as well as elevated blood viscosity are thought to contribute to the hemodynamic impairment and vascular occlusion, clinical or experimental studies cannot directly quantify the contributions of these factors to the abnormal hematology in T2DM. Recently, computational modeling has been employed to dissect the impacts of the aberrant biomechanics of diabetic RBCs and their adverse effects on microcirculation. In this review, we summarize the recent advances in the developments and applications of computational models in investigating the abnormal properties of diabetic blood from the cellular level to the vascular level. We expect that this review will motivate and steer the development of new models in this area and shift the attention of the community from conventional laboratory studies to combined experimental and computational investigations, aiming to provide new inspirations for the development of advanced tools to improve our understanding of the pathogenesis and pathology of T2DM.
Collapse
Affiliation(s)
- Yi-Xiang Deng
- School of Engineering, Brown University, Providence, RI 02912, USA;
| | - Hung-Yu Chang
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA;
| | - He Li
- Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA
| |
Collapse
|
22
|
Ghezelbash F, Liu S, Shirazi-Adl A, Li J. Blood clot behaves as a poro-visco-elastic material. J Mech Behav Biomed Mater 2022; 128:105101. [DOI: 10.1016/j.jmbbm.2022.105101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
|
23
|
Manning KB, Nicoud F, Shea SM. Mathematical and Computational Modeling of Device-Induced Thrombosis. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 20:100349. [PMID: 35071850 PMCID: PMC8769491 DOI: 10.1016/j.cobme.2021.100349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Given the extensive and routine use of cardiovascular devices, a major limiting factor to their success is the thrombotic rate that occurs. This both poses direct risk to the patient and requires counterbalancing with anticoagulation and other treatment strategies, contributing additional risks. Developing a better understanding of the mechanisms of device-induced thrombosis to aid in device design and medical management of patients is critical to advance the ubiquitous use and durability. Thus, mathematical and computational modelling of device-induced thrombosis has received significant attention recently, but challenges remain. Additional areas that need to be explored include microscopic/macroscopic approaches, reconciling physical and numerical timescales, immune/inflammatory responses, experimental validation, and incorporating pathologies and blood conditions. Addressing these areas will provide engineers and clinicians the tools to provide safe and effective cardiovascular devices.
Collapse
Affiliation(s)
- Keefe B. Manning
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Franck Nicoud
- CNRS, IMAG, Université de Montpellier, Montpellier, France
| | - Susan M. Shea
- Division of Critical Care Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
24
|
Abstract
Distinct from dilute, isotropic, and homogeneous reaction systems typically used in laboratory kinetic assays, blood is concentrated, two-phase, flowing, and highly anisotropic when clotting on a surface. This review focuses on spatial gradients that are generated and can dictate thrombus structure and function. Novel experimental and computational tools have recently emerged to explore reaction-transport coupling during clotting. Multiscale simulations help bridge tissue length scales (the coronary arteries) to millimeter scales of a growing clot to the microscopic scale of single-cell signaling and adhesion. Microfluidic devices help create and control pathological velocity profiles, albeit at a low Reynolds number. Since rate processes and force loading are often coupled, this review highlights prevailing convective-diffusive transport physics that modulate cellular and molecular processes during thrombus formation.
Collapse
|
25
|
Teeraratkul C, Mukherjee D. Microstructure aware modeling of biochemical transport in arterial blood clots. J Biomech 2021; 127:110692. [PMID: 34479090 DOI: 10.1016/j.jbiomech.2021.110692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/14/2021] [Accepted: 08/09/2021] [Indexed: 01/29/2023]
Abstract
Flow-mediated transport of biochemical species is central to thrombotic phenomena. Comprehensive three-dimensional modeling of flow-mediated transport around realistic macroscale thrombi poses challenges owing to their arbitrary heterogeneous microstructure. Here, we develop a microstructure aware model for species transport within and around a macroscale thrombus by devising a custom preconditioned fictitious domain formulation for thrombus-hemodynamics interactions, and coupling it with a fictitious domain advection-diffusion formulation for transport. Microstructural heterogeneities are accounted through a hybrid discrete particle-continuum approach for the thrombus interior. We present systematic numerical investigations on unsteady arterial flow within and around a three-dimensional macroscale thrombus; demonstrate the formation of coherent flow structures around the thrombus which organize advective transport; illustrate the role of the permeation processes at the thrombus boundary and subsequent intra-thrombus transport; and characterize species transport from bulk flow to the thrombus boundary and vice versa.
Collapse
Affiliation(s)
- Chayut Teeraratkul
- Paul M Rady Department of Mechanical Engineering, University of Colorado Boulder, United States of America.
| | - Debanjan Mukherjee
- Paul M Rady Department of Mechanical Engineering, University of Colorado Boulder, United States of America.
| |
Collapse
|
26
|
Grande Gutiérrez N, Sinno T, Diamond SL. A 1D-3D Hybrid Model of Patient-Specific Coronary Hemodynamics. Cardiovasc Eng Technol 2021; 13:331-342. [PMID: 34591275 DOI: 10.1007/s13239-021-00580-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Coronary flow is affected by evolving events such as atherosclerotic plaque formation, rupture, and thrombosis, resulting in myocardial ischemia and infarction. Highly resolved 3D hemodynamic data at the stenosis is essential to model shear-sensitive thrombotic events in coronary artery disease. METHODS We developed a hybrid 1D-3D simulation framework to compute patient-specific coronary hemodynamics efficiently. A 1D model of the coronary flow is coupled to an image-based 3D model of the region of interest. This framework affords the advantages of reduced-order modeling, decreasing the global computational cost, without sacrificing the accuracy of the quantities of interest. RESULTS We validated our 1D-3D model against full 3D coronary simulations in healthy and diseased conditions. Our results showed good agreement between the 3D and the 1D-3D models while reducing the computational cost by 40-fold compared to the 3D simulation. The 1D-3D model predicted left/right coronary flow distribution within 3% and provided an accurate estimation of fractional flow reserve and wall shear stress distribution at the stenosis comparable to the 3D simulation. CONCLUSION Savings in computational cost may be significant in situations with changing geometry, such as growing thrombosis. Also, this approach would allow quantifying the time-dependent effect of thrombotic growth and occlusion on the global coronary circulation.
Collapse
Affiliation(s)
- Noelia Grande Gutiérrez
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, USA
| | - Talid Sinno
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, USA
| | - Scott L Diamond
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, USA. .,Department of Bioengineering, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
27
|
Grande Gutiérrez N, Alber M, Kahn AM, Burns JC, Mathew M, McCrindle BW, Marsden AL. Computational modeling of blood component transport related to coronary artery thrombosis in Kawasaki disease. PLoS Comput Biol 2021; 17:e1009331. [PMID: 34491991 PMCID: PMC8448376 DOI: 10.1371/journal.pcbi.1009331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 09/17/2021] [Accepted: 08/07/2021] [Indexed: 11/25/2022] Open
Abstract
Coronary artery thrombosis is the major risk associated with Kawasaki disease (KD). Long-term management of KD patients with persistent aneurysms requires a thrombotic risk assessment and clinical decisions regarding the administration of anticoagulation therapy. Computational fluid dynamics has demonstrated that abnormal KD coronary artery hemodynamics can be associated with thrombosis. However, the underlying mechanisms of clot formation are not yet fully understood. Here we present a new model incorporating data from patient-specific simulated velocity fields to track platelet activation and accumulation. We use a system of Reaction-Advection-Diffusion equations solved with a stabilized finite element method to describe the evolution of non-activated platelets and activated platelet concentrations [AP], local concentrations of adenosine diphosphate (ADP) and poly-phosphate (PolyP). The activation of platelets is modeled as a function of shear-rate exposure and local concentration of agonists. We compared the distribution of activated platelets in a healthy coronary case and six cases with coronary artery aneurysms caused by KD, including three with confirmed thrombosis. Results show spatial correlation between regions of higher concentration of activated platelets and the reported location of the clot, suggesting predictive capabilities of this model towards identifying regions at high risk for thrombosis. Also, the concentration levels of ADP and PolyP in cases with confirmed thrombosis are higher than the reported critical values associated with platelet aggregation (ADP) and activation of the intrinsic coagulation pathway (PolyP). These findings suggest the potential initiation of a coagulation pathway even in the absence of an extrinsic factor. Finally, computational simulations show that in regions of flow stagnation, biochemical activation, as a result of local agonist concentration, is dominant. Identifying the leading factors to a pro-coagulant environment in each case—mechanical or biochemical—could help define improved strategies for thrombosis prevention tailored for each patient. Computational studies aiming to model thrombosis often rely on an arterial wall injury. Collagen and other extracellular matrix components are exposed to the bloodstream, which facilitates platelet adhesion to the wall and subsequent clot formation. However, these models are not adequate to explain thrombosis in other settings where even in the absence of a focal lesion, clots may still form under certain flow conditions. Coronary artery aneurysm thrombosis following KD is an example of the need to understand the mechanisms of thrombus initiation in the absence of an extrinsic factor. This study provides a new framework to investigate thrombus initiation in KD from a patient-specific perspective, which integrates fluid mechanics and biochemistry and which could help quantify the pro-coagulant environment induced by the aneurysm and become a predictive tool. The work presented here has broad relevance to other clinical situations where flow stagnation and transport are driving factors in thrombus formation.
Collapse
Affiliation(s)
- Noelia Grande Gutiérrez
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
| | - Mark Alber
- Department of Mathematics and Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, Riverside, California, United States of America
| | - Andrew M. Kahn
- Department of Medicine, University of California, San Diego, San Diego, California, United States of America
| | - Jane C. Burns
- Department of Pediatrics, University of California, San Diego, San Diego, California, United States of America
| | - Mathew Mathew
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Brian W. McCrindle
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Alison L. Marsden
- Department of Pediatrics, Bioengineering and Institute for Computational and Mathematical Engineering, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
28
|
Du J, Aspray E, Fogelson A. Computational investigation of platelet thrombus mechanics and stability in stenotic channels. J Biomech 2021; 122:110398. [PMID: 33933859 DOI: 10.1016/j.jbiomech.2021.110398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
The stability of a platelet thrombus under flow is believed to depend strongly on the local hemodynamics and on the thrombus' porosity, permeability, and elasticity. A two-phase continuum model is used to investigate the biomechanics of thrombus stability in stenotic channels. It treats the thrombus as a porous, viscoelastic material moving differently than the background fluid. The dynamic clot-flow interaction is modeled through a frictional drag term. The model explicitly tracks the formation and breaking of interplatelet molecular bonds, which directly determine the viscoelastic property of the thrombus and govern its ability to resist fluid drag. We characterize the stability/fragility of thrombi for various flow speeds, porosities, bond concentrations, and bond types.
Collapse
Affiliation(s)
- Jian Du
- Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32940, United States
| | - Elise Aspray
- Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32940, United States
| | - Aaron Fogelson
- Departments of Mathematics and Biomedical Engineering, University of Utah, Salt Lake City, UT 84102, United States.
| |
Collapse
|
29
|
Zhussupbekov M, Wu WT, Jamiolkowski MA, Massoudi M, Antaki JF. Influence of shear rate and surface chemistry on thrombus formation in micro-crevice. J Biomech 2021; 121:110397. [PMID: 33845357 DOI: 10.1016/j.jbiomech.2021.110397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 02/02/2023]
Abstract
Thromboembolic complications remain a central issue in management of patients on mechanical circulatory support. Despite the best practices employed in design and manufacturing of modern ventricular assist devices, complexity and modular nature of these systems often introduces internal steps and crevices in the flow path which can serve as nidus for thrombus formation. Thrombotic potential is influenced by multiple factors including the characteristics of the flow and surface chemistry of the biomaterial. This study explored these elements in the setting of blood flow over a micro-crevice using a multi-constituent numerical model of thrombosis. The simulations reproduced the platelet deposition patterns observed experimentally and elucidated the role of flow, shear rate, and surface chemistry in shaping the deposition. The results offer insights for design and operation of blood-contacting devices.
Collapse
Affiliation(s)
- Mansur Zhussupbekov
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Wei-Tao Wu
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Megan A Jamiolkowski
- U.S. Food and Drug Administration (FDA), Center for Devices and Radiological Health (CDRH), Office of Science and Engineering Laboratories (OSEL), Silver Spring, Maryland, USA
| | - Mehrdad Massoudi
- U.S. Department of Energy, National Energy Technology Laboratory (NETL), Pittsburgh, PA, USA
| | - James F Antaki
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
30
|
Yin M, Zheng X, Humphrey JD, Em Karniadakis G. Non-invasive Inference of Thrombus Material Properties with Physics-Informed Neural Networks. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2021; 375:113603. [PMID: 33414569 PMCID: PMC7785048 DOI: 10.1016/j.cma.2020.113603] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We employ physics-informed neural networks (PINNs) to infer properties of biological materials using synthetic data. In particular, we successfully apply PINNs on inferring permeability and viscoelastic modulus from thrombus deformation data, which can be described by the fourth-order Cahn-Hilliard and Navier-Stokes Equations. In PINNs, the partial differential equations are encoded into a loss function, where partial derivatives can be obtained through automatic differentiation (AD). In addition to tackling the challenge of calculating the fourth-order derivative in the Cahn-Hilliard equation with AD, we introduce an auxiliary network along with the main neural network to approximate the second-derivative of the energy potential term. Our model can simultaneously predict unknown material parameters and velocity, pressure, and deformation gradient fields by merely training with partial information among all data, i.e., phase field and pressure measurements, while remaining highly flexible in sampling within the spatio-temporal domain for data acquisition. We validate our model by numerical solutions from the spectral/hp element method (SEM) and demonstrate its robustness by training it with noisy measurements. Our results show that PINNs can infer the material properties from noisy synthetic data, and thus they have great potential for inferring these properties from experimental multi-modality and multi-fidelity data.
Collapse
Affiliation(s)
- Minglang Yin
- Center for Biomedical Engineering, Brown University, Providence, RI 02912
- School of Engineering, Brown University, Providence, RI 02912
| | - Xiaoning Zheng
- Division of Applied Mathematics, Brown University, Providence, RI 02912
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520
| | - George Em Karniadakis
- Division of Applied Mathematics, Brown University, Providence, RI 02912
- Corresponding author:
| |
Collapse
|
31
|
Yazdani A, Deng Y, Li H, Javadi E, Li Z, Jamali S, Lin C, Humphrey JD, Mantzoros CS, Em Karniadakis G. Integrating blood cell mechanics, platelet adhesive dynamics and coagulation cascade for modelling thrombus formation in normal and diabetic blood. J R Soc Interface 2021; 18:20200834. [PMID: 33530862 PMCID: PMC8086870 DOI: 10.1098/rsif.2020.0834] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/12/2021] [Indexed: 11/12/2022] Open
Abstract
Normal haemostasis is an important physiological mechanism that prevents excessive bleeding during trauma, whereas the pathological thrombosis especially in diabetics leads to increased incidence of heart attacks and strokes as well as peripheral vascular events. In this work, we propose a new multiscale framework that integrates seamlessly four key components of blood clotting, namely transport of coagulation factors, coagulation kinetics, blood cell mechanics and platelet adhesive dynamics, to model the development of thrombi under physiological and pathological conditions. We implement this framework to simulate platelet adhesion due to the exposure of tissue factor in a three-dimensional microchannel. Our results show that our model can simulate thrombin-mediated platelet activation in the flowing blood, resulting in platelet adhesion to the injury site of the channel wall. Furthermore, we simulate platelet adhesion in diabetic blood, and our results show that both the pathological alterations in the biomechanics of blood cells and changes in the amount of coagulation factors contribute to the excessive platelet adhesion and aggregation in diabetic blood. Taken together, this new framework can be used to probe synergistic mechanisms of thrombus formation under physiological and pathological conditions, and open new directions in modelling complex biological problems that involve several multiscale processes.
Collapse
Affiliation(s)
- Alireza Yazdani
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
| | - Yixiang Deng
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - He Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
| | - Elahe Javadi
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Zhen Li
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634, USA
| | - Safa Jamali
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Chensen Lin
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Christos S. Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
32
|
Teeraratkul C, Irwin Z, Shadden SC, Mukherjee D. Computational investigation of blood flow and flow-mediated transport in arterial thrombus neighborhood. Biomech Model Mechanobiol 2021; 20:701-715. [PMID: 33438148 DOI: 10.1007/s10237-020-01411-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022]
Abstract
A pathologically formed blood clot or thrombus is central to major cardiovascular diseases like heart attack and stroke. Detailed quantitative evaluation of flow and flow-mediated transport processes in the thrombus neighborhood within large artery hemodynamics is crucial for understanding disease progression and assessing treatment efficacy. This, however, remains a challenging task owing to the complexity of pulsatile viscous flow interactions with arbitrary shape and heterogeneous microstructure of realistic thrombi. Here, we address this challenge by conducting a systematic parametric simulation-based study on characterizing unsteady hemodynamics and flow-mediated transport in the neighborhood of an arterial thrombus. We use a hybrid particle-continuum-based finite element approach to handle arbitrary thrombus shape and microstructural variations. Results from a cohort of 50 different unsteady flow scenarios are presented, including unsteady vortical structures, pressure gradient across the thrombus boundary, finite time Lyapunov exponents, and dynamic coherent structures that organize advective transport. We clearly illustrate the combined influence of three key parameters-thrombus shape, microstructure, and extent of wall disease-in terms of: (a) determining hemodynamic features in the thrombus neighborhood and (b) governing the balance between advection, permeation, and diffusion to regulate transport processes in the thrombus neighborhood.
Collapse
Affiliation(s)
- Chayut Teeraratkul
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, United States of America
| | - Zachariah Irwin
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, United States of America
| | - Shawn C Shadden
- Department of Mechanical Engineering, University of California, Berkeley, United States of America
| | - Debanjan Mukherjee
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, United States of America.
| |
Collapse
|