1
|
Miyamae JA, Benoit J, Ruf I, Sibiya Z, Bhullar BAS. Synapsids and sensitivity: Broad survey of tetrapod trigeminal canal morphology supports an evolutionary trend of increasing facial tactile specialization in the mammal lineage. Anat Rec (Hoboken) 2024. [PMID: 39582159 DOI: 10.1002/ar.25604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 10/18/2024] [Accepted: 10/26/2024] [Indexed: 11/26/2024]
Abstract
The trigeminus nerve (cranial nerve V) is a large and significant conduit of sensory information from the face to the brain, with its three branches extending over the head to innervate a wide variety of integumentary sensory receptors, primarily tactile. The paths of the maxillary (V2) and mandibular (V3) divisions of the trigeminus frequently transit through dedicated canals within the bones of the upper and lower jaws, thus allowing this neuroanatomy to be captured in the fossil record and be available to interpretations of sensory ability in extinct taxa. Here, we use microCT and synchrotron scans from 38 extant and fossil species spanning a wide phylogenetic sample across tetrapods to investigate whether maxillary and mandibular canal morphology can be informative of sensory biology in the synapsid lineage. We found that in comparison to an amphibian and sauropsid outgroup, synapsids demonstrate a distinctive evolutionary pattern of change from canals that are highly ramified near the rostral tip of the jaws to canals with increasingly simplified morphology. This pattern is especially evident in the maxillary canal, which came to feature a shortened infraorbital canal terminating in a single large infraorbital foramen that serves as the outlet for branches of V2 that then enter the soft tissues of the face. A comparison with modern analogues supports the hypothesis that this morphological change correlates to an evolutionary history of synapsid-specific innovations in facial touch. We interpret the highly ramified transitional form found in early nonmammalian synapsids as indicative of enhanced tactile sensitivity of the rostrum via direct or proximal contact, similar to tactile specialists such as probing shorebirds and alligators that possess similar proliferative ramifications of the maxillary and mandibular canals. The transition toward a simplified derived form that emerged among Mid-Triassic prozostrodont cynodonts and is retained among modern mammals is a unique configuration correlated with an equally unique and novel tactile sensory apparatus: mobile mystacial whiskers. Our survey of maxillary and mandibular canals across a phylogenetic and ecological variety of tetrapods highlights the morphological diversity of these structures, but also the need to establish robust form-function relationships for future interpretations of osteological correlates for sensory biology.
Collapse
Affiliation(s)
- Juri A Miyamae
- Robotics, University of Michigan, Ann Arbor, Michigan, USA
| | - Julien Benoit
- Evolutionary Studies Institute, University of Witwatersrand, Johannesburg, South Africa
| | - Irina Ruf
- Abteilung Messelforschung und Mammalogie, Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Frankfurt am Main, Germany
- Institut für Geowissenschaften, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
- Research Center of Paleontology and Stratigraphy, Jilin University, Changchun, Jilin, China
| | - Zoleka Sibiya
- Evolutionary Studies Institute, University of Witwatersrand, Johannesburg, South Africa
- Council for Geoscience, Silverton, Pretoria, South Africa
| | - Bhart-Anjan S Bhullar
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
- Yale Peabody Museum, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
2
|
de Sampaio MOB, Montiani-Ferreira F, Mello FR, Martins CB, de Souza ALG, Bortolini M, Klaumann PR, Moore BA. Supplemental vibrissal extensions as an alternative to improve the tactile sensitivity of blind dogs - a preliminary approach investigation. Vet Res Commun 2024; 48:1907-1914. [PMID: 38427268 DOI: 10.1007/s11259-024-10342-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVE This preliminary study suggests a way to artificially extend vibrissae of blind dogs to assist ambulation and avoiding facial contact with obstacles. PROCEDURES Fourteen irreversibly blind dogs had 5-6 mystacial vibrissae on each side of the face supplementally extended by attaching carefully chosen adult pig hairs to them and were subjected to a maze test before and after the procedure. In three of these dogs the test was repeated one more time after all the extensions had fallen off. Collision counts and course times with and without extensions were analyzed and compared. A p-value > 0.05 was considered significant. RESULTS Median number of collisions was significantly higher post-extensions (5 IQR 2.25) and after extensions had fallen off (4 IQR 7.50) compared to pre-extensions (1 IQR 1), p = 0.021. Median times were significantly higher pre-extension (25.6 IQR 8.98) and after the extensions had fallen off, compared to the post-extension performance (22.8 IQR 8.55), p = 0.04. CONCLUSION Vibrissae play an important role in the tactile perception of blind dogs, and our preliminary results suggest that extending this sensory organ possibly improves obstacle location and their quality of life.
Collapse
Affiliation(s)
| | - Fabiano Montiani-Ferreira
- Veterinary Medicine Department, Federal University of Parana, Rua Dos Funcionarios, 1540, Curitiba, PR, 80035-050, Brazil.
| | - Franz Riegler Mello
- Veterinary Medicine Department, Federal University of Parana, Rua Dos Funcionarios, 1540, Curitiba, PR, 80035-050, Brazil
| | - Camila Bolmann Martins
- Veterinary Medicine Department, Federal University of Parana, Rua Dos Funcionarios, 1540, Curitiba, PR, 80035-050, Brazil
| | | | - Mariza Bortolini
- Veterinary Medicine Department, Federal University of Parana, Rua Dos Funcionarios, 1540, Curitiba, PR, 80035-050, Brazil
| | - Paulo Roberto Klaumann
- Clinivet Hospital Veterinário, R. Holanda, 894, Boa Vista, Curitiba, PR, 82540-040, Brazil
| | - Bret A Moore
- College of Veterinary Medicine, Department of Small Animal Clinical Sciences, University of Florida, 2015 SW 16Th Ave, Gainesville, FL, 32608, USA
| |
Collapse
|
3
|
Haidarliu S, Nelinger G, Gantar L, Ahissar E, Saraf-Sinik I. Functional anatomy of mystacial active sensing in rats. Anat Rec (Hoboken) 2024; 307:442-456. [PMID: 37644754 DOI: 10.1002/ar.25305] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023]
Abstract
Rats' whisking motion and objects' palpation produce tactile signals sensed by mechanoreceptors at the vibrissal follicles. Rats adjust their whisking patterns to target information type, flow, and resolution, adapting to their behavioral needs and the changing environment. This coordination requires control over the activity of the mystacial pad's intrinsic and extrinsic muscles. Studies have relied on muscle recording and stimulation techniques to describe the roles of individual muscles. However, these methods lack the resolution to isolate the mystacial pad's small and compactly arranged muscles. Thus, we propose functional anatomy as a complementary approach for studying the individual and coordinated effects of the mystacial pad muscles on vibrissae movements. Our functional analysis addresses the kinematic measurements of whisking motion patterns recorded in freely exploring rats. Combined with anatomical descriptions of muscles and fascia elements of the mystacial pad in situ, we found: (1) the contributions of individual mystacial pad muscles to the different whisking motion patterns; (2) active touch by microvibrissae, and its underlying mechanism; and (3) dynamic position changes of the vibrissae pivot point, as determined by the movements of the corium and subcapsular fibrous mat. Finally, we hypothesize that each of the rat mystacial pad muscles is specialized for a particular function in a way that matches the architecture of the fascial structures. Consistent with biotensegrity principles, the muscles and fascia form a network of structural support and continuous tension that determine the arrangement and motion of the embedded individual follicles.
Collapse
Affiliation(s)
- Sebastian Haidarliu
- Department of Brain Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Guy Nelinger
- Department of Brain Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Luka Gantar
- Department of Brain Sciences, The Weizmann Institute of Science, Rehovot, Israel
- Division of Neuroscience, University of Manchester, Manchester, UK
| | - Ehud Ahissar
- Department of Brain Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Inbar Saraf-Sinik
- Department of Brain Sciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
Zhang C, Wu M, Li M, Che L, Tan Z, Guo D, Kang Z, Cao S, Zhang S, Sui Y, Sun J, Wang L, Liu J. A nanonewton-scale biomimetic mechanosensor. MICROSYSTEMS & NANOENGINEERING 2023; 9:87. [PMID: 37440869 PMCID: PMC10333214 DOI: 10.1038/s41378-023-00560-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 07/15/2023]
Abstract
Biomimetic mechanosensors have profound implications for various areas, including health care, prosthetics, human‒machine interfaces, and robotics. As one of the most important parameters, the sensitivity of mechanosensors is intrinsically determined by the detection resolution to mechanical force. In this manuscript, we expand the force detection resolution of current biomimetic mechanosensors from the micronewton to nanonewton scale. We develop a nanocrack-based electronic whisker-type mechanosensor that has a detection resolution of 72.2 nN. We achieve the perception of subtle mechanical stimuli, such as tiny objects and airflow, and the recognition of surface morphology down to a 30 nm height, which is the finest resolution ever reported in biomimetic mechanosensors. More importantly, we explore the use of this mechanosensor in wearable devices for sensing gravity field orientation with respect to the body, which has not been previously achieved by these types of sensors. We develop a wearable smart system for sensing the body's posture and movements, which can be used for remote monitoring of falls in elderly people. In summary, the proposed device offers great advantages for not only improving sensing ability but also expanding functions and thus can be used in many fields not currently served by mechanosensors.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, 116024 Dalian, Liaoning China
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024 Dalian, Liaoning China
| | - Mengxi Wu
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, 116024 Dalian, Liaoning China
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024 Dalian, Liaoning China
| | - Ming Li
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, 116024 Dalian, China
| | - Lixuan Che
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, 116024 Dalian, China
| | - Zhiguang Tan
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, 116024 Dalian, Liaoning China
| | - Di Guo
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, 116024 Dalian, China
| | - Zhan Kang
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, 116024 Dalian, China
| | - Shuye Cao
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, 116024 Dalian, Liaoning China
| | - Siqi Zhang
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, 116024 Dalian, Liaoning China
| | - Yu Sui
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, 116024 Dalian, Liaoning China
| | - Jining Sun
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, 116024 Dalian, Liaoning China
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024 Dalian, Liaoning China
| | - Liding Wang
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, 116024 Dalian, Liaoning China
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024 Dalian, Liaoning China
| | - Junshan Liu
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, 116024 Dalian, Liaoning China
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024 Dalian, Liaoning China
| |
Collapse
|
5
|
On the intrinsic curvature of animal whiskers. PLoS One 2023; 18:e0269210. [PMID: 36607960 PMCID: PMC9821693 DOI: 10.1371/journal.pone.0269210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023] Open
Abstract
Facial vibrissae (whiskers) are thin, tapered, flexible, hair-like structures that are an important source of tactile sensory information for many species of mammals. In contrast to insect antennae, whiskers have no sensors along their lengths. Instead, when a whisker touches an object, the resulting deformation is transmitted to mechanoreceptors in a follicle at the whisker base. Previous work has shown that the mechanical signals transmitted along the whisker will depend strongly on the whisker's geometric parameters, specifically on its taper (how diameter varies with arc length) and on the way in which the whisker curves, often called "intrinsic curvature." Although previous studies have largely agreed on how to define taper, multiple methods have been used to quantify intrinsic curvature. The present work compares and contrasts different mathematical approaches towards quantifying this important parameter. We begin by reviewing and clarifying the definition of "intrinsic curvature," and then show results of fitting whisker shapes with several different functions, including polynomial, fractional exponent, elliptical, and Cesàro. Comparisons are performed across ten species of whiskered animals, ranging from rodents to pinnipeds. We conclude with a discussion of the advantages and disadvantages of using the various models for different modeling situations. The fractional exponent model offers an approach towards developing a species-specific parameter to characterize whisker shapes within a species. Constructing models of how the whisker curves is important for the creation of mechanical models of tactile sensory acquisition behaviors, for studies of comparative evolution, morphology, and anatomy, and for designing artificial systems that can begin to emulate the whisker-based tactile sensing of animals.
Collapse
|
6
|
Yu Z, Guo Y, Su J, Huang Q, Fukuda T, Cao C, Shi Q. Bioinspired, Multifunctional, Active Whisker Sensors for Tactile Sensing of Mobile Robots. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3191172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhiqiang Yu
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering and Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing Institute of Technology, Beijing, China
| | - Yue Guo
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering and Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing Institute of Technology, Beijing, China
| | - Jiaji Su
- Laboratory for Soft Machines and Electronics, Department of Mechanical & Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Qiang Huang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering and Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing Institute of Technology, Beijing, China
| | - Toshio Fukuda
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering and Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing Institute of Technology, Beijing, China
| | - Changyong Cao
- Laboratory for Soft Machines and Electronics, Department of Mechanical & Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Qing Shi
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering and Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
7
|
Bush NE, Solla SA, Hartmann MJZ. Continuous, multidimensional coding of 3D complex tactile stimuli by primary sensory neurons of the vibrissal system. Proc Natl Acad Sci U S A 2021; 118:e2020194118. [PMID: 34353902 PMCID: PMC8364131 DOI: 10.1073/pnas.2020194118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Across all sensory modalities, first-stage sensory neurons are an information bottleneck: they must convey all information available for an animal to perceive and act in its environment. Our understanding of coding properties of primary sensory neurons in the auditory and visual systems has been aided by the use of increasingly complex, naturalistic stimulus sets. By comparison, encoding properties of primary somatosensory afferents are poorly understood. Here, we use the rodent whisker system to examine how tactile information is represented in primary sensory neurons of the trigeminal ganglion (Vg). Vg neurons have long been thought to segregate into functional classes associated with separate streams of information processing. However, this view is based on Vg responses to restricted stimulus sets which potentially underreport the coding capabilities of these neurons. In contrast, the current study records Vg responses to complex three-dimensional (3D) stimulation while quantifying the complete 3D whisker shape and mechanics, thereby beginning to reveal their full representational capabilities. The results show that individual Vg neurons simultaneously represent multiple mechanical features of a stimulus, do not preferentially encode principal components of the stimuli, and represent continuous and tiled variations of all available mechanical information. These results directly contrast with proposed codes in which subpopulations of Vg neurons encode select stimulus features. Instead, individual Vg neurons likely overcome the information bottleneck by encoding large regions of a complex sensory space. This proposed tiled and multidimensional representation at the Vg directly constrains the computations performed by more central neurons of the vibrissotrigeminal pathway.
Collapse
Affiliation(s)
- Nicholas E Bush
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL 60208
| | - Sara A Solla
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
- Department of Physiology, Northwestern University, Chicago, IL 60611
| | - Mitra J Z Hartmann
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208;
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208
| |
Collapse
|
8
|
Ebbesen CL, Froemke RC. Body language signals for rodent social communication. Curr Opin Neurobiol 2021; 68:91-106. [PMID: 33582455 PMCID: PMC8243782 DOI: 10.1016/j.conb.2021.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/09/2021] [Accepted: 01/25/2021] [Indexed: 12/15/2022]
Abstract
Integration of social cues to initiate adaptive emotional and behavioral responses is a fundamental aspect of animal and human behavior. In humans, social communication includes prominent nonverbal components, such as social touch, gestures and facial expressions. Comparative studies investigating the neural basis of social communication in rodents has historically been centered on olfactory signals and vocalizations, with relatively less focus on non-verbal social cues. Here, we outline two exciting research directions: First, we will review recent observations pointing to a role of social facial expressions in rodents. Second, we will review observations that point to a role of 'non-canonical' rodent body language: body posture signals beyond stereotyped displays in aggressive and sexual behavior. In both sections, we will outline how social neuroscience can build on recent advances in machine learning, robotics and micro-engineering to push these research directions forward towards a holistic systems neurobiology of rodent body language.
Collapse
Affiliation(s)
- Christian L Ebbesen
- Skirball Institute of Biomolecular Medicine, Neuroscience Institute, Departments of Otolaryngology, Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, USA; Center for Neural Science, New York University, New York, NY, 10003, USA.
| | - Robert C Froemke
- Skirball Institute of Biomolecular Medicine, Neuroscience Institute, Departments of Otolaryngology, Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, USA; Center for Neural Science, New York University, New York, NY, 10003, USA; Howard Hughes Medical Institute Faculty Scholar, USA.
| |
Collapse
|