1
|
Li H, Wang T, Feng Y, Sun K, Huang G, Cao Y, Xu A. Optimal transplantation strategy using human induced pluripotent stem cell-derived cardiomyocytes for acute myocardial infarction in nonhuman primates. MedComm (Beijing) 2023; 4:e289. [PMID: 37303812 PMCID: PMC10248032 DOI: 10.1002/mco2.289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/27/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) have the potential to be a therapeutic option for myocardium restoration. However, hiPSC-CMs of varying maturation and transplantation routes exhibit different reactivity and therapeutic effects. We previously demonstrated that the saponin+ compound induces more mature hiPSC-CMs. The safety and efficacy of multi-route transplantation of saponin+ compound-induced hiPSC-CMs in a nonhuman primate with myocardial infarction will be investigated for the first time in this study. Our findings indicate that optimized hiPSC-CMs transplanted via intramyocardial and intravenous routes may affect myocardial functions by homing or mitochondrial transfer to the damaged myocardium to play a direct therapeutic role as well as indirect beneficial roles via anti-apoptotic and pro-angiogenesis mechanisms mediated by different paracrine growth factors. Due to significant mural thrombosis, higher mortality, and unilateral renal shrinkage, intracoronary transplantation of hiPSC-CMs requires closer attention to anticoagulation and caution in clinical use. Collectively, our data strongly indicated that intramyocardial transplantation of hiPSC-CMs is the ideal technique for clinical application; multiple cell transfers are recommended to achieve steady and protracted efficacy because intravenous transplantation's potency fluctuates. Thus, our study offers a rationale for choosing a therapeutic cell therapy and the best transplantation strategy for optimally induced hiPSC-CMs.
Collapse
Affiliation(s)
- Hong‐mei Li
- School of Life ScienceBeijing University of Chinese MedicineBeijingP. R. China
- Beizhong Jingyuan Biotechnology (Beijing) LimitedBeijingP. R. China
| | - Ting Wang
- School of Life ScienceBeijing University of Chinese MedicineBeijingP. R. China
| | - Yu‐yin Feng
- School of Life ScienceBeijing University of Chinese MedicineBeijingP. R. China
| | - Ke Sun
- School of Life ScienceBeijing University of Chinese MedicineBeijingP. R. China
| | - Guang‐rui Huang
- School of Life ScienceBeijing University of Chinese MedicineBeijingP. R. China
- Beizhong Jingyuan Biotechnology (Beijing) LimitedBeijingP. R. China
| | - Yu‐lin Cao
- Beizhong Jingyuan Biotechnology (Beijing) LimitedBeijingP. R. China
- Tangyi Holdings (Shenzhen) LimitedShenzhenP. R. China
| | - An‐long Xu
- School of Life ScienceBeijing University of Chinese MedicineBeijingP. R. China
- State Key Laboratory of BiocontrolGuangdong Province Key Laboratory for Pharmaceutical Functional GenesCollege of Life SciencesSun Yat‐Sen UniversityGuangdongP. R. China
| |
Collapse
|
2
|
Targeted Atrial Fibrillation Therapy and Risk Stratification Using Atrial Alternans. J Cardiovasc Dev Dis 2023; 10:jcdd10020036. [PMID: 36826532 PMCID: PMC9959422 DOI: 10.3390/jcdd10020036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Atrial fibrillation (AF) is the most persistent arrhythmia today, with its prevalence increasing exponentially with the rising age of the population. Particularly at elevated heart rates, a functional abnormality known as cardiac alternans can occur prior to the onset of lethal arrhythmias. Cardiac alternans are a beat-to-beat oscillation of electrical activity and the force of cardiac muscle contraction. Extensive evidence has demonstrated that microvolt T-wave alternans can predict ventricular fibrillation vulnerability and the risk of sudden cardiac death. The majority of our knowledge of the mechanisms of alternans stems from studies of ventricular electrophysiology, although recent studies offer promising evidence of the potential of atrial alternans in predicting the risk of AF. Exciting preclinical and clinical studies have demonstrated a link between atrial alternans and the onset of atrial tachyarrhythmias. Here, we provide a comprehensive review of the clinical utility of atrial alternans in identifying the risk and guiding treatment of AF.
Collapse
|
3
|
Li Y, Wan R, Liu J, Liu W, Ma L, Zhang H. In silico mechanisms of arsenic trioxide-induced cardiotoxicity. Front Physiol 2022; 13:1004605. [PMID: 36589437 PMCID: PMC9798418 DOI: 10.3389/fphys.2022.1004605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
It has been found that arsenic trioxide (ATO) is effective in treating acute promyelocytic leukemia (APL). However, long QT syndrome was reported in patients receiving therapy using ATO, which even led to sudden cardiac death. The underlying mechanisms of ATO-induced cardiotoxicity have been investigated in some biological experiments, showing that ATO affects human ether-à-go-go-related gene (hERG) channels, coding rapid delayed rectifier potassium current (I Kr ), as well as L-type calcium (I CaL ) channels. Nevertheless, the mechanism by which these channel reconstitutions induced the arrhythmia in ventricular tissue remains unsolved. In this study, a mathematical model was developed to simulate the effect of ATO on ventricular electrical excitation at cellular and tissue levels by considering ATO's effects on I Kr and I CaL . The ATO-dose-dependent pore block model was incorporated into the I Kr model, and the enhanced degree of ATO to I CaL was based on experimental data. Simulation results indicated that ATO extended the action potential duration of three types of ventricular myocytes (VMs), including endocardial cells (ENDO), midmyocardial cells (MCELL), and epicardial cells (EPI), and exacerbated the heterogeneity among them. ATO could also induce alternans in all three kinds of VMs. In a cable model of the intramural ventricular strand, the effects of ATO are reflected in a prolonged QT interval of simulated pseudo-ECG and a wide vulnerable window, thus increasing the possibility of spiral wave formation in ventricular tissue. In addition to showing that ATO prolonged QT, we revealed that the heterogeneity caused by ATO is also an essential hazard factor. Based on this, a pharmacological intervention of ATO toxicity by resveratrol was undertaken. This study provides a further understanding of ATO-induced cardiotoxicity, which may help to improve the treatment for APL patients.
Collapse
Affiliation(s)
- Yacong Li
- Beijing Academy of Artificial Intelligence, Beijing, China
| | - Runlan Wan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jun Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China,*Correspondence: Jun Liu, ; Weichao Liu, ; Henggui Zhang,
| | - Weichao Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China,*Correspondence: Jun Liu, ; Weichao Liu, ; Henggui Zhang,
| | - Lei Ma
- Beijing Academy of Artificial Intelligence, Beijing, China,National Biomedical Imaging Center, Peking University, Beijing, China
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom,*Correspondence: Jun Liu, ; Weichao Liu, ; Henggui Zhang,
| |
Collapse
|
4
|
Martinez-Hernandez E, Kanaporis G, Blatter LA. Mechanism of carvedilol induced action potential and calcium alternans. Channels (Austin) 2022; 16:97-112. [PMID: 35501948 PMCID: PMC9067505 DOI: 10.1080/19336950.2022.2055521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Carvedilol is a nonspecific β-blocker clinically used for the treatment of cardiovascular diseases but has also been shown to have profound effects on excitation-contraction coupling and Ca signaling at the cellular level. We investigate the mechanism by which carvedilol facilitates Ca transient (CaT) and action potential duration (APD) alternans in rabbit atrial myocytes. Carvedilol lowered the frequency threshold for pacing-induced CaT alternans and facilitated alternans in a concentration-dependent manner. Carvedilol prolonged the sarcoplasmic reticulum (SR) Ca release refractoriness by significantly increasing the time constant τ of recovery of SR Ca release; however, no changes in L-type calcium current recovery from inactivation or SR Ca load were found after carvedilol treatment. Carvedilol enhanced the degree of APD alternans nearly two-fold. Carvedilol slowed the APD restitution kinetics and steepened the APD restitution curve at the pacing frequency (2 Hz) where alternans were elicited. No effect on the CaT or APD alternans ratios was observed in experiments with a different β-blocker (metoprolol), excluding the possibility that the carvedilol effect on CaT and APD alternans was determined by its β-blocking properties. These data suggest that carvedilol contributes to the generation of CaT and APD alternans in atrial myocytes by modulating the restitution of CaT and APD.
Collapse
Affiliation(s)
| | - Giedrius Kanaporis
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, Illinois, USA
| | - Lothar A. Blatter
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, Illinois, USA,CONTACT Lothar A. Blatter Department of Physiology & Biophysics, Rush University Medical Center, 1750 W. Harrison Street, Chicago, IL60612, USA
| |
Collapse
|
5
|
Li G, Yang J, Zhang D, Wang X, Han J, Guo X. Research Progress of Myocardial Fibrosis and Atrial Fibrillation. Front Cardiovasc Med 2022; 9:889706. [PMID: 35958428 PMCID: PMC9357935 DOI: 10.3389/fcvm.2022.889706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022] Open
Abstract
With the aging population and the increasing incidence of basic illnesses such as hypertension and diabetes (DM), the incidence of atrial fibrillation (AF) has increased significantly. AF is the most common arrhythmia in clinical practice, which can cause heart failure (HF) and ischemic stroke (IS), increasing disability and mortality. Current studies point out that myocardial fibrosis (MF) is one of the most critical substrates for the occurrence and maintenance of AF. Although myocardial biopsy is the gold standard for evaluating MF, it is rarely used in clinical practice because it is an invasive procedure. In addition, serological indicators and imaging methods have also been used to evaluate MF. Nevertheless, the accuracy of serological markers in evaluating MF is controversial. This review focuses on the pathogenesis of MF, serological evaluation, imaging evaluation, and anti-fibrosis treatment to discuss the existing problems and provide new ideas for MF and AF evaluation and treatment.
Collapse
Affiliation(s)
- Guangling Li
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jing Yang
- Department of Pathology, Gansu Provincial Hospital, Lanzhou, China
| | - Demei Zhang
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xiaomei Wang
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jingjing Han
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xueya Guo
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- *Correspondence: Xueya Guo,
| |
Collapse
|