1
|
Streit JO, Chan SHS, Daya S, Christodoulou J. Rational design of 19F NMR labelling sites to probe protein structure and interactions. Nat Commun 2025; 16:4300. [PMID: 40341366 DOI: 10.1038/s41467-025-59105-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/11/2025] [Indexed: 05/10/2025] Open
Abstract
Proteins are investigated in increasingly more complex biological systems, where 19F NMR is proving highly advantageous due to its high gyromagnetic ratio and background-free spectra. Its application has, however, been hindered by limited chemical shift dispersions and an incomprehensive relationship between chemical shifts and protein structure. Here, we exploit the sensitivity of 19F chemical shifts to ring currents by designing labels with direct contact to a native or engineered aromatic ring. Fifty protein variants predicted by AlphaFold and molecular dynamics simulations show 80-90% success rates and direct correlations of their experimental chemical shifts with the magnitude of the engineered ring current. Our method consequently improves the chemical shift dispersion and through simple 1D experiments enables structural analyses of alternative conformational states, including ribosome-bound folding intermediates, and in-cell measurements of protein-protein interactions and thermodynamics. Our strategy thus provides a simple and sensitive tool to extract residue contact restraints from chemical shifts for previously intractable systems.
Collapse
Affiliation(s)
- Julian O Streit
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London, UK.
| | - Sammy H S Chan
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London, UK.
| | - Saifu Daya
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London, UK
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London, UK.
| |
Collapse
|
2
|
Vigers MP, Lobo S, Najafi S, Dubose A, Tsay K, Ganguly P, Longhini AP, Jin Y, Buratto SK, Kosik KS, Shell MS, Shea JE, Han S. Water-directed pinning is key to tau prion formation. Proc Natl Acad Sci U S A 2025; 122:e2421391122. [PMID: 40294272 DOI: 10.1073/pnas.2421391122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/10/2025] [Indexed: 04/30/2025] Open
Abstract
Tau forms fibrillar aggregates that are pathological hallmarks of a family of neurodegenerative diseases known as tauopathies. The synthetic replication of disease-specific fibril structures is a critical gap for developing diagnostic and therapeutic tools. This study debuts a strategy of identifying a critical and minimal folding motif in fibrils characteristic of tauopathies and generating seeding-competent fibrils from the isolated tau peptides. The 19-residue jR2R3 peptide (295 to 313) which spans the R2/R3 splice junction of tau, and includes the P301L mutation, is one such peptide that forms prion-competent fibrils. This tau fragment contains the hydrophobic VQIVYK hexapeptide that is part of the core of all known pathological tau fibril structures and an intramolecular counterstrand that stabilizes the strand-loop-strand (SLS) motif observed in 4R tauopathy fibrils. This study shows that P301L exhibits a duality of effects: it lowers the barrier for the peptide to adopt aggregation-prone conformations and enhances the local structuring of water around the mutation site to facilitate site-directed pinning and dewetting around sites 300-301 to achieve in-register stacking of tau to cross β-sheets. We solved a 3 Å cryo-EM structure of jR2R3-P301L fibrils in which each protofilament layer contains two jR2R3-P301L copies, of which one adopts a SLS fold found in 4R tauopathies and the other wraps around the SLS fold to stabilize it, reminiscent of the three- and fourfold structures observed in 4R tauopathies. These jR2R3-P301L fibrils are competent to template full-length 4R tau in a prion-like manner.
Collapse
Affiliation(s)
- Michael P Vigers
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106
| | - Samuel Lobo
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106
| | - Saeed Najafi
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106
| | - Austin Dubose
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106
| | - Karen Tsay
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106
| | - Pritam Ganguly
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106
- Department of Physics, University of California, Santa Barbara, CA 93106
| | - Andrew P Longhini
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106
| | - Yingying Jin
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106
| | - Steven K Buratto
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106
| | - Kenneth S Kosik
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106
- Department of Physics, University of California, Santa Barbara, CA 93106
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| |
Collapse
|
3
|
Tessmer MH, Stoll S. Protein Modeling with DEER Spectroscopy. Annu Rev Biophys 2025; 54:35-57. [PMID: 39689263 DOI: 10.1146/annurev-biophys-030524-013431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Double electron-electron resonance (DEER) combined with site-directed spin labeling can provide distance distributions between selected protein residues to investigate protein structure and conformational heterogeneity. The utilization of the full quantitative information contained in DEER data requires effective protein and spin label modeling methods. Here, we review the application of DEER data to protein modeling. First, we discuss the significance of spin label modeling for accurate extraction of protein structural information and review the most popular label modeling methods. Next, we review several important aspects of protein modeling with DEER, including site selection, how DEER restraints are applied, common artifacts, and the unique potential of DEER data for modeling structural ensembles and conformational landscapes. Finally, we discuss common applications of protein modeling with DEER data and provide an outlook.
Collapse
Affiliation(s)
- Maxx H Tessmer
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
4
|
Zhang O, Liu ZH, Forman-Kay JD, Head-Gordon T. Deep Learning of Proteins with Local and Global Regions of Disorder. ARXIV 2025:arXiv:2502.11326v2. [PMID: 40034137 PMCID: PMC11875298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Although machine learning has transformed protein structure prediction of folded protein ground states with remarkable accuracy, intrinsically disordered proteins and regions (IDPs/IDRs) are defined by diverse and dynamical structural ensembles that are predicted with low confidence by algorithms such as AlphaFold. We present a new machine learning method, IDPForge (Intrinsically Disordered Protein, FOlded and disordered Region GEnerator), that exploits a transformer protein language diffusion model to create all-atom IDP ensembles and IDR disordered ensembles that maintains the folded domains. IDPForge does not require sequence-specific training, back transformations from coarse-grained representations, nor ensemble reweighting, as in general the created IDP/IDR conformational ensembles show good agreement with solution experimental data, and options for biasing with experimental restraints are provided if desired. We envision that IDPForge with these diverse capabilities will facilitate integrative and structural studies for proteins that contain intrinsic disorder.
Collapse
|
5
|
Cavender CE, Case DA, Chen JCH, Chong LT, Keedy DA, Lindorff-Larsen K, Mobley DL, Ollila OHS, Oostenbrink C, Robustelli P, Voelz VA, Wall ME, Wych DC, Gilson MK. Structure-Based Experimental Datasets for Benchmarking Protein Simulation Force Fields [Article v0.1]. ARXIV 2025:arXiv:2303.11056v2. [PMID: 40196146 PMCID: PMC11975311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
This review article provides an overview of structurally oriented experimental datasets that can be used to benchmark protein force fields, focusing on data generated by nuclear magnetic resonance (NMR) spectroscopy and room temperature (RT) protein crystallography. We discuss what the observables are, what they tell us about structure and dynamics, what makes them useful for assessing force field accuracy, and how they can be connected to molecular dynamics simulations carried out using the force field one wishes to benchmark. We also touch on statistical issues that arise when comparing simulations with experiment. We hope this article will be particularly useful to computational researchers and trainees who develop, benchmark, or use protein force fields for molecular simulations.
Collapse
Affiliation(s)
- Chapin E. Cavender
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - David A. Case
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Julian C.-H. Chen
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA; Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH, USA
| | - Lillian T. Chong
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel A. Keedy
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY, USA; Department of Chemistry and Biochemistry, City College of New York, New York, NY, USA; PhD Programs in Biochemistry, Biology, and Chemistry, CUNY Graduate Center, New York, NY, USA
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - David L. Mobley
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| | - O. H. Samuli Ollila
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland; VTT Technical Research Centre of Finland, Espoo, Finland
| | - Chris Oostenbrink
- Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Paul Robustelli
- Department of Chemistry, Dartmouth College, Hanover, NH, USA
| | - Vincent A. Voelz
- Department of Chemistry, Temple University, Philadelphia, PA, USA
| | - Michael E. Wall
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA; The Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - David C. Wych
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA; The Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Michael K. Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
6
|
Bhattacharya S, He Y, Chen Y, Mohanty A, Grishaev A, Kulkarni P, Salgia R, Orban J. Conformational dynamics and multi-modal interaction of Paxillin with the Focal Adhesion Targeting Domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.01.630265. [PMID: 39803547 PMCID: PMC11722443 DOI: 10.1101/2025.01.01.630265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Paxillin (PXN) and focal adhesion kinase (FAK) are two major components of the focal adhesion complex, a multiprotein structure linking the intracellular cytoskeleton to the cell exterior. PXN interacts directly with the C-terminal targeting domain of FAK (FAT) via its intrinsically disordered N-terminal domain. This interaction is necessary and sufficient for localizing FAK to focal adhesions. Furthermore, PXN serves as a platform for recruiting other proteins that together control the dynamic changes needed for cell migration and survival. Here, we show that the PXN disordered region undergoes large-scale conformational restriction upon binding to FAT, forming a 48-kDa multi-modal complex consisting of four major interconverting states. Although the complex is flexible, each state has unique sets of contacts involving disordered regions that are both highly represented in ensembles and conserved. Moreover, conserved intramolecular contacts from glutamine-rich regions in PXN contribute to high entropy and thus stability of the FAT bound complex. As PXN is a hub protein, the results provide a structural basis for understanding how perturbations that lead to cellular network rewiring, such as ligand binding and phosphorylation, may lead to shifts in the multi-state equilibrium and phenotypic switching.
Collapse
Affiliation(s)
- Supriyo Bhattacharya
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte National Medical Center, CA 91010-3000, USA
- These authors contributed equally
| | - Yanan He
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- These authors contributed equally
| | - Yihong Chen
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- These authors contributed equally
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010-3000, USA
| | - Alexander Grishaev
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- National Institute of Standards and Technology, Gaithersburg, MD, 20850 USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010-3000, USA
- Department of Systems Biology, City of Hope National Medical Center, Duarte, CA 91010-3000, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010-3000, USA
| | - John Orban
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
7
|
Cao F, von Bülow S, Tesei G, Lindorff‐Larsen K. A coarse-grained model for disordered and multi-domain proteins. Protein Sci 2024; 33:e5172. [PMID: 39412378 PMCID: PMC11481261 DOI: 10.1002/pro.5172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/12/2024] [Accepted: 08/23/2024] [Indexed: 10/20/2024]
Abstract
Many proteins contain more than one folded domain, and such modular multi-domain proteins help expand the functional repertoire of proteins. Because of their larger size and often substantial dynamics, it may be difficult to characterize the conformational ensembles of multi-domain proteins by simulations. Here, we present a coarse-grained model for multi-domain proteins that is both fast and provides an accurate description of the global conformational properties in solution. We show that the accuracy of a one-bead-per-residue coarse-grained model depends on how the interaction sites in the folded domains are represented. Specifically, we find excessive domain-domain interactions if the interaction sites are located at the position of the Cα atoms. We also show that if the interaction sites are located at the center of mass of the residue, we obtain good agreement between simulations and experiments across a wide range of proteins. We then optimize our previously described CALVADOS model using this center-of-mass representation, and validate the resulting model using independent data. Finally, we use our revised model to simulate phase separation of both disordered and multi-domain proteins, and to examine how the stability of folded domains may differ between the dilute and dense phases. Our results provide a starting point for understanding interactions between folded and disordered regions in proteins, and how these regions affect the propensity of proteins to self-associate and undergo phase separation.
Collapse
Affiliation(s)
- Fan Cao
- Structural Biology and NMR Laboratory & the Linderstrøm‐Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Sören von Bülow
- Structural Biology and NMR Laboratory & the Linderstrøm‐Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Giulio Tesei
- Structural Biology and NMR Laboratory & the Linderstrøm‐Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Kresten Lindorff‐Larsen
- Structural Biology and NMR Laboratory & the Linderstrøm‐Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
8
|
Belyaeva J, Elgeti M. Exploring protein structural ensembles: Integration of sparse experimental data from electron paramagnetic resonance spectroscopy with molecular modeling methods. eLife 2024; 13:e99770. [PMID: 39283059 PMCID: PMC11405019 DOI: 10.7554/elife.99770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
Under physiological conditions, proteins continuously undergo structural fluctuations on different timescales. Some conformations are only sparsely populated, but still play a key role in protein function. Thus, meaningful structure-function frameworks must include structural ensembles rather than only the most populated protein conformations. To detail protein plasticity, modern structural biology combines complementary experimental and computational approaches. In this review, we survey available computational approaches that integrate sparse experimental data from electron paramagnetic resonance spectroscopy with molecular modeling techniques to derive all-atom structural models of rare protein conformations. We also propose strategies to increase the reliability and improve efficiency using deep learning approaches, thus advancing the field of integrative structural biology.
Collapse
Affiliation(s)
- Julia Belyaeva
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
- Institute for Medical Physics and Biophysics, Leipzig University Medical School, Leipzig, Germany
| | - Matthias Elgeti
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
- Institute for Medical Physics and Biophysics, Leipzig University Medical School, Leipzig, Germany
- Integrative Center for Bioinformatics, Leipzig University, Leipzig, Germany
| |
Collapse
|
9
|
Liu ZH, Tsanai M, Zhang O, Forman-Kay J, Head-Gordon T. Computational Methods to Investigate Intrinsically Disordered Proteins and their Complexes. ARXIV 2024:arXiv:2409.02240v1. [PMID: 39279844 PMCID: PMC11398552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
In 1999 Wright and Dyson highlighted the fact that large sections of the proteome of all organisms are comprised of protein sequences that lack globular folded structures under physiological conditions. Since then the biophysics community has made significant strides in unraveling the intricate structural and dynamic characteristics of intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs). Unlike crystallographic beamlines and their role in streamlining acquisition of structures for folded proteins, an integrated experimental and computational approach aimed at IDPs/IDRs has emerged. In this Perspective we aim to provide a robust overview of current computational tools for IDPs and IDRs, and most recently their complexes and phase separated states, including statistical models, physics-based approaches, and machine learning methods that permit structural ensemble generation and validation against many solution experimental data types.
Collapse
Affiliation(s)
- Zi Hao Liu
- Molecular Medicine Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Maria Tsanai
- Kenneth S. Pitzer Center for Theoretical Chemistry and Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, USA
| | - Oufan Zhang
- Kenneth S. Pitzer Center for Theoretical Chemistry and Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, USA
| | - Julie Forman-Kay
- Molecular Medicine Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Teresa Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry and Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
10
|
Streit JO, Bukvin IV, Chan SHS, Bashir S, Woodburn LF, Włodarski T, Figueiredo AM, Jurkeviciute G, Sidhu HK, Hornby CR, Waudby CA, Cabrita LD, Cassaignau AME, Christodoulou J. The ribosome lowers the entropic penalty of protein folding. Nature 2024; 633:232-239. [PMID: 39112704 PMCID: PMC11374706 DOI: 10.1038/s41586-024-07784-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 07/04/2024] [Indexed: 08/17/2024]
Abstract
Most proteins fold during biosynthesis on the ribosome1, and co-translational folding energetics, pathways and outcomes of many proteins have been found to differ considerably from those in refolding studies2-10. The origin of this folding modulation by the ribosome has remained unknown. Here we have determined atomistic structures of the unfolded state of a model protein on and off the ribosome, which reveal that the ribosome structurally expands the unfolded nascent chain and increases its solvation, resulting in its entropic destabilization relative to the peptide chain in isolation. Quantitative 19F NMR experiments confirm that this destabilization reduces the entropic penalty of folding by up to 30 kcal mol-1 and promotes formation of partially folded intermediates on the ribosome, an observation that extends to other protein domains and is obligate for some proteins to acquire their active conformation. The thermodynamic effects also contribute to the ribosome protecting the nascent chain from mutation-induced unfolding, which suggests a crucial role of the ribosome in supporting protein evolution. By correlating nascent chain structure and dynamics to their folding energetics and post-translational outcomes, our findings establish the physical basis of the distinct thermodynamics of co-translational protein folding.
Collapse
Affiliation(s)
- Julian O Streit
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Ivana V Bukvin
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Sammy H S Chan
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK.
| | - Shahzad Bashir
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Lauren F Woodburn
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Tomasz Włodarski
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Angelo Miguel Figueiredo
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Gabija Jurkeviciute
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Haneesh K Sidhu
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Charity R Hornby
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Christopher A Waudby
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Lisa D Cabrita
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Anaïs M E Cassaignau
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK.
| | - John Christodoulou
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK.
- Department of Biological Sciences, Birkbeck College, London, UK.
| |
Collapse
|
11
|
Thomasen FE, Skaalum T, Kumar A, Srinivasan S, Vanni S, Lindorff-Larsen K. Rescaling protein-protein interactions improves Martini 3 for flexible proteins in solution. Nat Commun 2024; 15:6645. [PMID: 39103332 DOI: 10.1038/s41467-024-50647-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/15/2024] [Indexed: 08/07/2024] Open
Abstract
Multidomain proteins with flexible linkers and disordered regions play important roles in many cellular processes, but characterizing their conformational ensembles is difficult. We have previously shown that the coarse-grained model, Martini 3, produces too compact ensembles in solution, that may in part be remedied by strengthening protein-water interactions. Here, we show that decreasing the strength of protein-protein interactions leads to improved agreement with experimental data on a wide set of systems. We show that the 'symmetry' between rescaling protein-water and protein-protein interactions breaks down when studying interactions with or within membranes; rescaling protein-protein interactions better preserves the binding specificity of proteins with lipid membranes, whereas rescaling protein-water interactions preserves oligomerization of transmembrane helices. We conclude that decreasing the strength of protein-protein interactions improves the accuracy of Martini 3 for IDPs and multidomain proteins, both in solution and in the presence of a lipid membrane.
Collapse
Affiliation(s)
- F Emil Thomasen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200, Copenhagen N, Denmark.
| | - Tórur Skaalum
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Ashutosh Kumar
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss National Center for Competence in Research (NCCR) Bio-inspired Materials, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | | | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
- Swiss National Center for Competence in Research (NCCR) Bio-inspired Materials, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland.
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
12
|
Johnson CN, Sojitra KA, Sohn EJ, Moreno-Romero AK, Baudin A, Xu X, Mittal J, Libich DS. Insights into Molecular Diversity within the FUS/EWS/TAF15 Protein Family: Unraveling Phase Separation of the N-Terminal Low-Complexity Domain from RNA-Binding Protein EWS. J Am Chem Soc 2024; 146:8071-8085. [PMID: 38492239 PMCID: PMC11156192 DOI: 10.1021/jacs.3c12034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
The FET protein family, comprising FUS, EWS, and TAF15, plays crucial roles in mRNA maturation, transcriptional regulation, and DNA damage response. Clinically, they are linked to Ewing family tumors and neurodegenerative diseases such as amyotrophic lateral sclerosis. The fusion protein EWS::FLI1, the causative mutation of Ewing sarcoma, arises from a genomic translocation that fuses a portion of the low-complexity domain (LCD) of EWS (EWSLCD) with the DNA binding domain of the ETS transcription factor FLI1. This fusion protein modifies transcriptional programs and disrupts native EWS functions, such as splicing. The exact role of the intrinsically disordered EWSLCD remains a topic of active investigation, but its ability to phase separate and form biomolecular condensates is believed to be central to EWS::FLI1's oncogenic properties. Here, we used paramagnetic relaxation enhancement NMR, microscopy, and all-atom molecular dynamics (MD) simulations to better understand the self-association and phase separation tendencies of the EWSLCD. Our NMR data and mutational analysis suggest that a higher density and proximity of tyrosine residues amplify the likelihood of condensate formation. MD simulations revealed that the tyrosine-rich termini exhibit compact conformations with unique contact networks and provided critical input on the relationship between contacts formed within a single molecule (intramolecular) and inside the condensed phase (intermolecular). These findings enhance our understanding of FET proteins' condensate-forming capabilities and underline differences between EWS, FUS, and TAF15.
Collapse
Affiliation(s)
- Courtney N. Johnson
- Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, United States
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, United States
| | - Kandarp A Sojitra
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Erich J. Sohn
- Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, United States
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, United States
| | - Alma K. Moreno-Romero
- Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, United States
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, United States
| | - Antoine Baudin
- Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, United States
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, United States
| | - Xiaoping Xu
- Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, United States
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, United States
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, Texas 77843, United States
| | - David S. Libich
- Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, United States
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, United States
| |
Collapse
|
13
|
Pietrek LM, Stelzl LS, Hummer G. Hierarchical Assembly of Single-Stranded RNA. J Chem Theory Comput 2024; 20:2246-2260. [PMID: 38361440 PMCID: PMC10938505 DOI: 10.1021/acs.jctc.3c01049] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/09/2023] [Accepted: 01/25/2024] [Indexed: 02/17/2024]
Abstract
Single-stranded RNA (ssRNA) plays a major role in the flow of genetic information-most notably, in the form of messenger RNA (mRNA)-and in the regulation of biological processes. The highly dynamic nature of chains of unpaired nucleobases challenges structural characterizations of ssRNA by experiments or molecular dynamics (MD) simulations alike. Here, we use hierarchical chain growth (HCG) to construct ensembles of ssRNA chains. HCG assembles the structures of protein and nucleic acid chains from fragment libraries created by MD simulations. Applied to homo- and heteropolymeric ssRNAs of different lengths, we find that HCG produces structural ensembles that overall are in good agreement with diverse experiments, including nuclear magnetic resonance (NMR), small-angle X-ray scattering (SAXS), and single-molecule Förster resonance energy transfer (FRET). The agreement can be further improved by ensemble refinement using Bayesian inference of ensembles (BioEn). HCG can also be used to assemble RNA structures that combine base-paired and base-unpaired regions, as illustrated for the 5' untranslated region (UTR) of SARS-CoV-2 RNA.
Collapse
Affiliation(s)
- Lisa M. Pietrek
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Lukas S. Stelzl
- Faculty
of Biology, Johannes Gutenberg University
Mainz, Gresemundweg 2, 55128 Mainz, Germany
- KOMET
1, Institute of Physics, Johannes Gutenberg
University Mainz, 55099 Mainz, Germany
- Institute
of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Gerhard Hummer
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
- Institute
for Biophysics, Goethe University, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
14
|
Montepietra D, Tesei G, Martins JM, Kunze MBA, Best RB, Lindorff-Larsen K. FRETpredict: a Python package for FRET efficiency predictions using rotamer libraries. Commun Biol 2024; 7:298. [PMID: 38461354 PMCID: PMC10925062 DOI: 10.1038/s42003-024-05910-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 02/12/2024] [Indexed: 03/11/2024] Open
Abstract
Förster resonance energy transfer (FRET) is a widely-used and versatile technique for the structural characterization of biomolecules. Here, we introduce FRETpredict, an easy-to-use Python software to predict FRET efficiencies from ensembles of protein conformations. FRETpredict uses a rotamer library approach to describe the FRET probes covalently bound to the protein. The software efficiently and flexibly operates on large conformational ensembles such as those generated by molecular dynamics simulations to facilitate the validation or refinement of molecular models and the interpretation of experimental data. We provide access to rotamer libraries for many commonly used dyes and linkers and describe a general methodology to generate new rotamer libraries for FRET probes. We demonstrate the performance and accuracy of the software for different types of systems: a rigid peptide (polyproline 11), an intrinsically disordered protein (ACTR), and three folded proteins (HiSiaP, SBD2, and MalE). FRETpredict is open source (GPLv3) and is available at github.com/KULL-Centre/FRETpredict and as a Python PyPI package at pypi.org/project/FRETpredict .
Collapse
Affiliation(s)
- Daniele Montepietra
- Department of Chemical, Life and Environmental Sustainability Sciences, University of Parma, Parma, 43125, Italy
- Istituto Nanoscienze - CNR-NANO, Center S3, via G. Campi 213/A, 41125, Modena, Italy
| | - Giulio Tesei
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - João M Martins
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Micha B A Kunze
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA.
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, DK-2200, Denmark.
| |
Collapse
|
15
|
Bogetti X, Saxena S. Integrating Electron Paramagnetic Resonance Spectroscopy and Computational Modeling to Measure Protein Structure and Dynamics. Chempluschem 2024; 89:e202300506. [PMID: 37801003 DOI: 10.1002/cplu.202300506] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/07/2023]
Abstract
Electron paramagnetic resonance (EPR) has become a powerful probe of conformational heterogeneity and dynamics of biomolecules. In this Review, we discuss different computational modeling techniques that enrich the interpretation of EPR measurements of dynamics or distance restraints. A variety of spin labels are surveyed to provide a background for the discussion of modeling tools. Molecular dynamics (MD) simulations of models containing spin labels provide dynamical properties of biomolecules and their labels. These simulations can be used to predict EPR spectra, sample stable conformations and sample rotameric preferences of label sidechains. For molecular motions longer than milliseconds, enhanced sampling strategies and de novo prediction software incorporating or validated by EPR measurements are able to efficiently refine or predict protein conformations, respectively. To sample large-amplitude conformational transition, a coarse-grained or an atomistic weighted ensemble (WE) strategy can be guided with EPR insights. Looking forward, we anticipate an integrative strategy for efficient sampling of alternate conformations by de novo predictions, followed by validations by systematic EPR measurements and MD simulations. Continuous pathways between alternate states can be further sampled by WE-MD including all intermediate states.
Collapse
Affiliation(s)
- Xiaowei Bogetti
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| |
Collapse
|
16
|
Johnson CN, Sojitra KA, Sohn EJ, Moreno-Romero AK, Baudin A, Xu X, Mittal J, Libich DS. Insights into Molecular Diversity within the FET Family: Unraveling Phase Separation of the N-Terminal Low Complexity Domain from RNA-Binding Protein EWS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564484. [PMID: 37961424 PMCID: PMC10634919 DOI: 10.1101/2023.10.27.564484] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The FET family proteins, which includes FUS, EWS, and TAF15, are RNA chaperones instrumental in processes such as mRNA maturation, transcriptional regulation, and the DNA damage response. These proteins have clinical significance: chromosomal rearrangements in FET proteins are implicated in Ewing family tumors and related sarcomas. Furthermore, point mutations in FUS and TAF15 are associated with neurodegenerative conditions like amyotrophic lateral sclerosis and frontotemporal lobar dementia. The fusion protein EWS::FLI1, the causative mutation of Ewing sarcoma, arises from a genomic translocation that fuses the low-complexity domain (LCD) of EWS (EWSLCD) with the DNA binding domain of the ETS transcription factor FLI1. This fusion not only alters transcriptional programs but also hinders native EWS functions like splicing. However, the precise function of the intrinsically disordered EWSLCD is still a topic of active investigation. Due to its flexible nature, EWSLCD can form transient interactions with itself and other biomolecules, leading to the formation of biomolecular condensates through phase separation - a mechanism thought to be central to the oncogenicity of EWS::FLI1. In our study, we used paramagnetic relaxation enhancement NMR, analytical ultracentrifugation, light microscopy, and all-atom molecular dynamics (MD) simulations to better understand the self-association and phase separation tendencies of EWSLCD. Our aim was to elucidate the molecular events that underpin EWSLCD-mediated biomolecular condensation. Our NMR data suggest tyrosine residues primarily drive the interactions vital for EWSLCD phase separation. Moreover, a higher density and proximity of tyrosine residues amplify the likelihood of condensate formation. Atomistic MD simulations and hydrodynamic experiments revealed that the tyrosine-rich N and C-termini tend to populate compact conformations, establishing unique contact networks, that are connected by a predominantly extended, tyrosine-depleted, linker region. MD simulations provide critical input on the relationship between contacts formed within a single molecule (intramolecular) and inside the condensed phase (intermolecular), and changes in protein conformations upon condensation. These results offer deeper insights into the condensate-forming abilities of the FET proteins and highlights unique structural and functional nuances between EWS and its counterparts, FUS and TAF15.
Collapse
Affiliation(s)
- Courtney N Johnson
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, United States
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, United States
| | - Kandarp A Sojitra
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Erich J Sohn
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, United States
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, United States
| | - Alma K Moreno-Romero
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, United States
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, United States
| | - Antoine Baudin
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, United States
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, United States
| | - Xiaoping Xu
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, United States
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, United States
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, Texas 77843, United States
| | - David S Libich
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, United States
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, United States
| |
Collapse
|
17
|
Bogetti X, Bogetti A, Casto J, Rule G, Chong L, Saxena S. Direct observation of negative cooperativity in a detoxification enzyme at the atomic level by Electron Paramagnetic Resonance spectroscopy and simulation. Protein Sci 2023; 32:e4770. [PMID: 37632831 PMCID: PMC10503414 DOI: 10.1002/pro.4770] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/14/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
The catalytic activity of human glutathione S-transferase A1-1 (hGSTA1-1), a homodimeric detoxification enzyme, is dependent on the conformational dynamics of a key C-terminal helix α9 in each monomer. However, the structural details of how the two monomers interact upon binding of substrates is not well understood and the structure of the ligand-free state of the hGSTA1-1 homodimer has not been resolved. Here, we used a combination of electron paramagnetic resonance (EPR) distance measurements and weighted ensemble (WE) simulations to characterize the conformational ensemble of the ligand-free state at the atomic level. EPR measurements reveal a broad distance distribution between a pair of Cu(II) labels in the ligand-free state that gradually shifts and narrows as a function of increasing ligand concentration. These shifts suggest changes in the relative positioning of the two α9 helices upon ligand binding. WE simulations generated unbiased pathways for the seconds-timescale transition between alternate states of the enzyme, leading to the generation of atomically detailed structures of the ligand-free state. Notably, the simulations provide direct observations of negative cooperativity between the monomers of hGSTA1-1, which involve the mutually exclusive docking of α9 in each monomer as a lid over the active site. We identify key interactions between residues that lead to this negative cooperativity. Negative cooperativity may be essential for interaction of hGSTA1-1 with a wide variety of toxic substrates and their subsequent neutralization. More broadly, this work demonstrates the power of integrating EPR distances with WE rare-events sampling strategy to gain mechanistic information on protein function at the atomic level.
Collapse
Affiliation(s)
- Xiaowei Bogetti
- Department of ChemistryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Anthony Bogetti
- Department of ChemistryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Joshua Casto
- Department of ChemistryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Gordon Rule
- Department of Biological SciencesCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Lillian Chong
- Department of ChemistryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Sunil Saxena
- Department of ChemistryUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
18
|
Tsangaris TE, Smyth S, Gomes GNW, Liu ZH, Milchberg M, Bah A, Wasney GA, Forman-Kay JD, Gradinaru CC. Delineating Structural Propensities of the 4E-BP2 Protein via Integrative Modeling and Clustering. J Phys Chem B 2023; 127:7472-7486. [PMID: 37595014 PMCID: PMC10858721 DOI: 10.1021/acs.jpcb.3c04052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
The intrinsically disordered 4E-BP2 protein regulates mRNA cap-dependent translation through interaction with the predominantly folded eukaryotic initiation factor 4E (eIF4E). Phosphorylation of 4E-BP2 dramatically reduces the level of eIF4E binding, in part by stabilizing a binding-incompatible folded domain. Here, we used a Rosetta-based sampling algorithm optimized for IDRs to generate initial ensembles for two phospho forms of 4E-BP2, non- and 5-fold phosphorylated (NP and 5P, respectively), with the 5P folded domain flanked by N- and C-terminal IDRs (N-IDR and C-IDR, respectively). We then applied an integrative Bayesian approach to obtain NP and 5P conformational ensembles that agree with experimental data from nuclear magnetic resonance, small-angle X-ray scattering, and single-molecule Förster resonance energy transfer (smFRET). For the NP state, inter-residue distance scaling and 2D maps revealed the role of charge segregation and pi interactions in driving contacts between distal regions of the chain (∼70 residues apart). The 5P ensemble shows prominent contacts of the N-IDR region with the two phosphosites in the folded domain, pT37 and pT46, and, to a lesser extent, delocalized interactions with the C-IDR region. Agglomerative hierarchical clustering led to partitioning of each of the two ensembles into four clusters with different global dimensions and contact maps. This helped delineate an NP cluster that, based on our smFRET data, is compatible with the eIF4E-bound state. 5P clusters were differentiated by interactions of C-IDR with the folded domain and of the N-IDR with the two phosphosites in the folded domain. Our study provides both a better visualization of fundamental structural poses of 4E-BP2 and a set of falsifiable insights on intrachain interactions that bias folding and binding of this protein.
Collapse
Affiliation(s)
- Thomas E Tsangaris
- Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Spencer Smyth
- Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Gregory-Neal W Gomes
- Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Zi Hao Liu
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Moses Milchberg
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Alaji Bah
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Gregory A Wasney
- Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Julie D Forman-Kay
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Claudiu C Gradinaru
- Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
19
|
Sannikova NE, Kolokolov MI, Khlynova TA, Chubarov AS, Polienko YF, Fedin MV, Krumkacheva OA. Revealing light-induced structural shifts in G-quadruplex-porphyrin complexes: a pulsed dipolar EPR study. Phys Chem Chem Phys 2023; 25:22455-22466. [PMID: 37581249 DOI: 10.1039/d3cp01775c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The binding of G-quadruplex structures (G4s) with photosensitizers is of considerable importance in medicinal chemistry and drug discovery due to their promising potential in photodynamic therapy applications. G4s can experience structural changes as a result of ligand interactions and light exposure. Understanding these modifications is essential to uncover the fundamental biological roles of the complexes and optimize their therapeutic potential. The structural diversity of G4s makes it challenging to study their complexes with ligands, necessitating the use of various complementary methods to fully understand these interactions. In this study, we introduce, for the first time, the application of laser-induced dipolar EPR as a method to characterize G-quadruplex DNA complexes containing photosensitizers and to investigate light-induced structural modifications in these systems. To demonstrate the feasibility of this approach, we studied complexes of the human telomeric G-quadruplex (HTel-22) with cationic 5,10,15,20-tetrakis(1-methyl-4-pyridinio) porphyrin tetra(p-toluenesulfonate) (TMPyP4). In addition to showcasing a new methodology, we also aimed to provide insights into the mechanisms underlying photoinduced HTel-22/TMPyP4 structural changes, thereby aiding in the advancement of approaches targeting G4s in photodynamic therapy. EPR revealed G-quadruplex unfolding and dimer formation upon light exposure. Our findings demonstrate the potential of EPR spectroscopy for examining G4 complexes with photosensitizers and contribute to a better understanding of G4s' interactions with ligands under light.
Collapse
Affiliation(s)
- Natalya E Sannikova
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia.
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Mikhail I Kolokolov
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia.
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Tamara A Khlynova
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia.
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Alexey S Chubarov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Yuliya F Polienko
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Matvey V Fedin
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia.
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Olesya A Krumkacheva
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia.
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| |
Collapse
|
20
|
Tessmer MH, Stoll S. A novel approach to modeling side chain ensembles of the bifunctional spin label RX. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542139. [PMID: 37292623 PMCID: PMC10245940 DOI: 10.1101/2023.05.24.542139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We introduce a novel approach to modeling side chain ensembles of bifunctional spin labels. This approach utilizes rotamer libraries to generate side chain conformational ensembles. Because the bifunctional label is constrained by two attachment sites, the label is split into two monofunctional rotamers which are first attached to their respective sites, then rejoined by a local optimization in dihedral space. We validate this method against a set of previously published experimental data using the bifunctional spin label, RX. This method is relatively fast and can readily be used for both experimental analysis and protein modeling, providing significant advantages over modeling bifunctional labels with molecular dynamics simulations. Use of bifunctional labels for site directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy dramatically reduces label mobility, which can significantly improve resolution of small changes in protein backbone structure and dynamics. Coupling the use of bifunctional labels with side chain modeling methods allows for improved quantitative application of experimental SDSL EPR data to protein modeling.
Collapse
Affiliation(s)
- Maxx H. Tessmer
- Department of Chemistry, University of Washington, Seattle, WA 98103, United States
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, WA 98103, United States
| |
Collapse
|
21
|
Zhang O, Haghighatlari M, Li J, Liu ZH, Namini A, Teixeira JMC, Forman-Kay JD, Head-Gordon T. Learning to evolve structural ensembles of unfolded and disordered proteins using experimental solution data. J Chem Phys 2023; 158:174113. [PMID: 37144719 PMCID: PMC10163956 DOI: 10.1063/5.0141474] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/11/2023] [Indexed: 05/06/2023] Open
Abstract
The structural characterization of proteins with a disorder requires a computational approach backed by experiments to model their diverse and dynamic structural ensembles. The selection of conformational ensembles consistent with solution experiments of disordered proteins highly depends on the initial pool of conformers, with currently available tools limited by conformational sampling. We have developed a Generative Recurrent Neural Network (GRNN) that uses supervised learning to bias the probability distributions of torsions to take advantage of experimental data types such as nuclear magnetic resonance J-couplings, nuclear Overhauser effects, and paramagnetic resonance enhancements. We show that updating the generative model parameters according to the reward feedback on the basis of the agreement between experimental data and probabilistic selection of torsions from learned distributions provides an alternative to existing approaches that simply reweight conformers of a static structural pool for disordered proteins. Instead, the biased GRNN, DynamICE, learns to physically change the conformations of the underlying pool of the disordered protein to those that better agree with experiments.
Collapse
Affiliation(s)
- Oufan Zhang
- Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Mojtaba Haghighatlari
- Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Jie Li
- Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | - Ashley Namini
- Molecular Medicine Program, Hospital for Sick Children, Toronto, Ontario M5S 1A8, Canada
| | | | | | | |
Collapse
|
22
|
Smrt ST, Escobar CA, Dey S, Cross TA, Zhou HX. An Arg/Ala-rich helix in the N-terminal region of M. tuberculosis FtsQ is a potential membrane anchor of the Z-ring. Commun Biol 2023; 6:311. [PMID: 36959324 PMCID: PMC10036325 DOI: 10.1038/s42003-023-04686-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/09/2023] [Indexed: 03/25/2023] Open
Abstract
Mtb infects a quarter of the worldwide population. Most drugs for treating tuberculosis target cell growth and division. With rising drug resistance, it becomes ever more urgent to better understand Mtb cell division. This process begins with the formation of the Z-ring via polymerization of FtsZ and anchoring of the Z-ring to the inner membrane. Here we show that the transmembrane protein FtsQ is a potential membrane anchor of the Mtb Z-ring. In the otherwise disordered cytoplasmic region of FtsQ, a 29-residue, Arg/Ala-rich α-helix is formed that interacts with upstream acidic residues in solution and with acidic lipids at the membrane surface. This helix also binds to the GTPase domain of FtsZ, with implications for drug binding and Z-ring formation.
Collapse
Affiliation(s)
- Sean T Smrt
- National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Cristian A Escobar
- National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA
| | - Souvik Dey
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Timothy A Cross
- National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA.
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA.
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA.
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, 60607, USA.
- Department of Physics, University of Illinois Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
23
|
MacAinsh M, Zhou H. Partial mimicry of the microtubule binding of tau by its membrane binding. Protein Sci 2023; 32:e4581. [PMID: 36710643 PMCID: PMC9926470 DOI: 10.1002/pro.4581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/10/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
Tau, as typical of intrinsically disordered proteins (IDPs), binds to multiple targets including microtubules and acidic membranes. The latter two surfaces are both highly negatively charged, raising the prospect of mimicry in their binding by tau. The tau-microtubule complex was recently determined by cryo-electron microscopy. Here, we used molecular dynamics simulations to characterize the dynamic binding of tau K19 to an acidic membrane. This IDP can be divided into three repeats, each containing an amphipathic helix. The three amphipathic helices, along with flanking residues, tether the protein to the membrane interface. The separation between and membrane positioning of the amphipathic helices in the simulations are validated by published EPR data. The membrane contact probabilities of individual residues in tau show both similarities to and distinctions from native contacts with microtubules. In particular, a Lys that is conserved among the repeats forms similar interactions with membranes and with microtubules, as does a conserved Val. This partial mimicry facilitates both the membrane anchoring of microtubules by tau and the transfer of tau from membranes to microtubules.
Collapse
Affiliation(s)
- Matthew MacAinsh
- Department of ChemistryUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Huan‐Xiang Zhou
- Department of ChemistryUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Department of PhysicsUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
24
|
Tessmer MH, Stoll S. chiLife: An open-source Python package for in silico spin labeling and integrative protein modeling. PLoS Comput Biol 2023; 19:e1010834. [PMID: 37000838 PMCID: PMC10096462 DOI: 10.1371/journal.pcbi.1010834] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/12/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
Here we introduce chiLife, a Python package for site-directed spin label (SDSL) modeling for electron paramagnetic resonance (EPR) spectroscopy, in particular double electron-electron resonance (DEER). It is based on in silico attachment of rotamer ensemble representations of spin labels to protein structures. chiLife enables the development of custom protein analysis and modeling pipelines using SDSL EPR experimental data. It allows the user to add custom spin labels, scoring functions and spin label modeling methods. chiLife is designed with integration into third-party software in mind, to take advantage of the diverse and rapidly expanding set of molecular modeling tools available with a Python interface. This article describes the main design principles of chiLife and presents a series of examples.
Collapse
Affiliation(s)
- Maxx H. Tessmer
- Department of Chemistry, University of Washington, Seattle, Washington United States of America
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, Washington United States of America
| |
Collapse
|
25
|
Mittal S, Dutta S, Shukla D. Reconciling membrane protein simulations with experimental DEER spectroscopy data. Phys Chem Chem Phys 2023; 25:6253-6262. [PMID: 36757376 DOI: 10.1039/d2cp02890e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Spectroscopy experiments are crucial to study membrane proteins for which traditional structure determination methods still prove challenging. Double electron-electron resonance (DEER) spectroscopy experiments provide protein residue-pair distance distributions that are indicative of their conformational heterogeneity. Atomistic molecular dynamics (MD) simulations are another tool that have been proven to be vital to study the structural dynamics of membrane proteins such as to identify inward-open, occluded, and outward-open conformations of transporter membrane proteins, among other partially open or closed states of the protein. Yet, studies have reported that there is no direct consensus between the distributional data from DEER experiments and MD simulations, which has challenged validation of structures obtained from long-timescale simulations and using simulations to design experiments. Current coping strategies for comparisons rely on heuristics, such as mapping the nearest matching peaks between two ensembles or biased simulations. Here we examine the differences in residue-pair distance distributions arising due to the choice of membranes around the protein and covalent modification of a pair of residues to nitroxide spin labels in DEER experiments. Through comparing MD simulations of two proteins, PepTSo and LeuT-both of which have been characterized using DEER experiments previously-we show that the proteins' dynamics are similar despite the choice of the detergent micelle as a membrane mimetic in DEER experiments. On the other hand, covalently modified residues show slight local differences in their dynamics and a huge divergence when the oxygen atom pair distances between spin labeled residues are measured rather than protein backbone distances. Given the computational expense associated with pairwise MTSSL labeled MD simulations, we examine the use of biased simulations to explore the conformational dynamics of the spin labels only to reveal that such simulations alter the underlying protein dynamics. Our study identifies the main cause for the mismatch between DEER experiments and MD simulations and will accelerate the development of potential mitigation strategies to improve the match.
Collapse
Affiliation(s)
- Shriyaa Mittal
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Soumajit Dutta
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Diwakar Shukla
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
26
|
Structural ensembles of disordered proteins from hierarchical chain growth and simulation. Curr Opin Struct Biol 2023; 78:102501. [PMID: 36463772 DOI: 10.1016/j.sbi.2022.102501] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 12/03/2022]
Abstract
Disordered proteins and nucleic acids play key roles in cellular function and disease. Here, we review recent advances in the computational exploration of the conformational dynamics of flexible biomolecules. While atomistic molecular dynamics (MD) simulation has seen a lot of improvement in recent years, large-scale computing resources and careful validation are required to simulate full-length disordered biopolymers in solution. As a computationally efficient alternative, hierarchical chain growth (HCG) combines pre-sampled chain fragments in a statistically reproducible manner into ensembles of full-length atomically detailed biomolecular structures. Experimental data can be integrated during and after chain assembly. Applications to the neurodegeneration-linked proteins α-synuclein, tau, and TDP-43, including as condensate, illustrate the use of HCG. We conclude by highlighting the emerging connections to AI-based structural modeling including AlphaFold2.
Collapse
|
27
|
Montepietra D, Tesei G, Martins JM, Kunze MBA, Best RB, Lindorff-Larsen K. FRETpredict: A Python package for FRET efficiency predictions using rotamer libraries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525885. [PMID: 36789411 PMCID: PMC9928041 DOI: 10.1101/2023.01.27.525885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Here, we introduce FRETpredict, a Python software program to predict FRET efficiencies from ensembles of protein conformations. FRETpredict uses an established Rotamer Library Approach to describe the FRET probes covalently bound to the protein. The software efficiently operates on large conformational ensembles such as those generated by molecular dynamics simulations to facilitate the validation or refinement of molecular models and the interpretation of experimental data. We demonstrate the performance and accuracy of the software for different types of systems: a relatively structured peptide (polyproline 11), an intrinsically disordered protein (ACTR), and three folded proteins (HiSiaP, SBD2, and MalE). We also describe a general approach to generate new rotamer libraries for FRET probes of interest. FRETpredict is open source (GPLv3) and is available at github.com/KULL-Centre/FRETpredict and as a Python PyPI package at pypi.org/project/FRETpredict.
Collapse
Affiliation(s)
- Daniele Montepietra
- Department of Physics, Computer Science and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A 41125 Modena, Italy
- Istituto Nanoscienze – CNR-NANO, Center S3, via G. Campi 213/A, 41125 Modena, Italy
| | - Giulio Tesei
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - João M. Martins
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Micha B. A. Kunze
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Robert B. Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
He X, Man VH, Gao J, Wang J. Investigation of the Structure of Full-Length Tau Proteins with Coarse-Grained and All-Atom Molecular Dynamics Simulations. ACS Chem Neurosci 2023; 14:209-217. [PMID: 36563129 PMCID: PMC10236889 DOI: 10.1021/acschemneuro.2c00381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tau proteins not only have many important biological functions but also are associated with several neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease (AD). However, it is still a challenge to identify the atomic structure of full-length tau proteins due to their lengthy and disordered characteristics and the factor that there are no crystal structures of full-length tau proteins available. We performed multi- and large-scale molecular dynamics simulations of the full-length tau monomer (the 2N4R isoform and 441 residues) in aqueous solution under biological conditions with coarse-grained and all-atom force fields. The obtained atomic structures produced radii of gyration and chemical shifts that are in excellent agreement with those of experiment. The generated monomer structure ensemble would be very useful for further studying the oligomerization mechanism and discovering tau oligomerization inhibitors, which are important events in AD drug development.
Collapse
Affiliation(s)
- Xibing He
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Viet Hoang Man
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jie Gao
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
29
|
Dey S, MacAinsh M, Zhou HX. Sequence-Dependent Backbone Dynamics of Intrinsically Disordered Proteins. J Chem Theory Comput 2022; 18:6310-6323. [PMID: 36084347 PMCID: PMC9561007 DOI: 10.1021/acs.jctc.2c00328] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
For intrinsically disordered proteins (IDPs), a pressing question is how sequence codes for function. Dynamics serves as a crucial link, reminiscent of the role of structure in sequence-function relations of structured proteins. To define general rules governing sequence-dependent backbone dynamics, we carried out long molecular dynamics simulations of eight IDPs. Blocks of residues exhibiting large amplitudes in slow dynamics are rigidified by local inter-residue interactions or secondary structures. A long region or an entire IDP can be slowed down by long-range contacts or secondary-structure packing. On the other hand, glycines promote fast dynamics and either demarcate rigid blocks or facilitate multiple modes of local and long-range inter-residue interactions. The sequence-dependent backbone dynamics endows IDPs with versatile response to binding partners, with some blocks recalcitrant while others readily adapting to intermolecular interactions.
Collapse
Affiliation(s)
- Souvik Dey
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Matthew MacAinsh
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
30
|
Ritsch I, Lehmann E, Emmanouilidis L, Yulikov M, Allain F, Jeschke G. Phase Separation of Heterogeneous Nuclear Ribonucleoprotein A1 upon Specific RNA-Binding Observed by Magnetic Resonance. Angew Chem Int Ed Engl 2022; 61:e202204311. [PMID: 35866309 PMCID: PMC9804974 DOI: 10.1002/anie.202204311] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Indexed: 01/09/2023]
Abstract
Interaction of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) with specific single-stranded RNA and its relation to liquid-liquid phase separation (LLPS) were studied in vitro by magnetic resonance based on site-directed spin labelling. An ensemble model of dispersed hnRNP A1 in the absence of RNA was derived from distance distributions between spin labelled sites and small angle X-ray scattering. This model revealed a compact state of the low-complexity domain and its interaction with the RNA recognition motifs. Paramagnetic relaxation enhancement NMR spectroscopy confirmed this interaction. Addition of RNA to dispersed hnRNP A1 induced liquid-droplet formation. Such LLPS depended on RNA concentration and sequence, with continuous wave EPR spectroscopy showing an influence of RNA point mutations on local protein dynamics. We propose that an interplay of sequence-specific RNA binding and LLPS contributes to regulation of specific RNA segregation during stress response.
Collapse
Affiliation(s)
- Irina Ritsch
- Laboratory of Physical ChemistryDepartment of Chemistry and Applied BioscienceETH ZurichVladimir-Prelog-Weg 28093ZürichSwitzerland
| | - Elisabeth Lehmann
- Institute of BiochemistryDepartment of BiologyETH ZurichHönggerbergring 648093ZürichSwitzerland
| | - Leonidas Emmanouilidis
- Institute of BiochemistryDepartment of BiologyETH ZurichHönggerbergring 648093ZürichSwitzerland
| | - Maxim Yulikov
- Laboratory of Physical ChemistryDepartment of Chemistry and Applied BioscienceETH ZurichVladimir-Prelog-Weg 28093ZürichSwitzerland
| | - Frédéric Allain
- Institute of BiochemistryDepartment of BiologyETH ZurichHönggerbergring 648093ZürichSwitzerland
| | - Gunnar Jeschke
- Laboratory of Physical ChemistryDepartment of Chemistry and Applied BioscienceETH ZurichVladimir-Prelog-Weg 28093ZürichSwitzerland
| |
Collapse
|
31
|
Ritsch I, Lehmann E, Emmanouilidis L, Yulikov M, Allain F, Jeschke G. Phase Separation of Heterogeneous Nuclear Ribonucleoprotein A1 upon Specific RNA‐Binding Observed by Magnetic Resonance. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Irina Ritsch
- ETH Zürich: Eidgenossische Technische Hochschule Zurich Chemistry and Applied Biosciences Valdimir-Prelog-Weg 2 8093 Zurich SWITZERLAND
| | - Elisabeth Lehmann
- ETH Zürich: Eidgenossische Technische Hochschule Zurich Biologie Hönggerbergring 64 8093 Zurich SWITZERLAND
| | - Leonidas Emmanouilidis
- ETH Zürich: Eidgenossische Technische Hochschule Zurich Biologie Hönggerbergring 64 8093 Zurich SWITZERLAND
| | - Maxim Yulikov
- ETH Zürich: Eidgenossische Technische Hochschule Zurich Chemistry and Applied Biosciences 8093 Zurich SWITZERLAND
| | - Frédéric Allain
- ETH Zürich: Eidgenossische Technische Hochschule Zurich Biologie Hönggerbergring 64 8093 Zurich SWITZERLAND
| | - Gunnar Jeschke
- ETH Zürich: Eidgenossische Technische Hochschule Zurich Chemistry and Applied Biosciences Vlaldimir-Prelog-Weg 2ETH Hönggerberg 8093 Zürich SWITZERLAND
| |
Collapse
|
32
|
Gomes GNW, Namini A, Gradinaru CC. Integrative Conformational Ensembles of Sic1 Using Different Initial Pools and Optimization Methods. Front Mol Biosci 2022; 9:910956. [PMID: 35923464 PMCID: PMC9342850 DOI: 10.3389/fmolb.2022.910956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/21/2022] [Indexed: 01/02/2023] Open
Abstract
Intrinsically disordered proteins play key roles in regulatory protein interactions, but their detailed structural characterization remains challenging. Here we calculate and compare conformational ensembles for the disordered protein Sic1 from yeast, starting from initial ensembles that were generated either by statistical sampling of the conformational landscape, or by molecular dynamics simulations. Two popular, yet contrasting optimization methods were used, ENSEMBLE and Bayesian Maximum Entropy, to achieve agreement with experimental data from nuclear magnetic resonance, small-angle X-ray scattering and single-molecule Förster resonance energy transfer. The comparative analysis of the optimized ensembles, including secondary structure propensity, inter-residue contact maps, and the distributions of hydrogen bond and pi interactions, revealed the importance of the physics-based generation of initial ensembles. The analysis also provides insights into designing new experiments that report on the least restrained features among the optimized ensembles. Overall, differences between ensembles optimized from different priors were greater than when using the same prior with different optimization methods. Generating increasingly accurate, reliable and experimentally validated ensembles for disordered proteins is an important step towards a mechanistic understanding of their biological function and involvement in various diseases.
Collapse
Affiliation(s)
- Gregory-Neal W. Gomes
- Department of Physics, University of Toronto, Toronto, ON, Canada
- *Correspondence: Gregory-Neal W. Gomes, ; Claudiu C. Gradinaru,
| | - Ashley Namini
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Claudiu C. Gradinaru
- Department of Physics, University of Toronto, Toronto, ON, Canada
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
- *Correspondence: Gregory-Neal W. Gomes, ; Claudiu C. Gradinaru,
| |
Collapse
|
33
|
Caldwell TA, Vickery ON, Colburn JD, Stansfeld PJ, Columbus L. Conformational dynamics of the membrane enzyme LspA upon antibiotic and substrate binding. Biophys J 2022; 121:2078-2083. [PMID: 35505611 PMCID: PMC9247476 DOI: 10.1016/j.bpj.2022.04.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/30/2022] [Accepted: 04/28/2022] [Indexed: 11/02/2022] Open
Abstract
Lipoprotein signal peptidase (LspA) is an aspartyl protease that cleaves the transmembrane helix signal peptide of lipoproteins as part of the lipoprotein-processing pathway. Members of this pathway are excellent targets for the development of antibiotic therapeutics because they are essential in Gram-negative bacteria, are important for virulence in Gram-positive bacteria, and may not develop antibiotic resistance. Here, we report the conformational dynamics of LspA in the apo state and bound to the antibiotic globomycin determined using molecular dynamics simulations and electron paramagnetic resonance. The periplasmic helix fluctuates on the nanosecond timescale and samples unique conformations in the different states. In the apo state, the dominant conformation is the most closed and occludes the charged active site from the lipid bilayer. With antibiotic bound there are multiple binding modes with the dominant conformation of the periplasmic helix in a more open conformation. The different conformations observed in both bound and apo states indicate a flexible and adaptable active site, which explains how LspA accommodates and processes such a variety of substrates.
Collapse
Affiliation(s)
- Tracy A Caldwell
- University of Virginia, Department of Chemistry, Charlottesville, Virginia
| | - Owen N Vickery
- University of Warwick, School of Life Sciences & Department of Chemistry, Coventry, UK
| | - Jonathan D Colburn
- University of Warwick, School of Life Sciences & Department of Chemistry, Coventry, UK
| | - Phillip J Stansfeld
- University of Warwick, School of Life Sciences & Department of Chemistry, Coventry, UK.
| | - Linda Columbus
- University of Virginia, Department of Chemistry, Charlottesville, Virginia.
| |
Collapse
|
34
|
Jussupow A, Lopez A, Baumgart M, Mader SL, Sattler M, Kaila VRI. Extended conformational states dominate the Hsp90 chaperone dynamics. J Biol Chem 2022; 298:102101. [PMID: 35667441 PMCID: PMC9251789 DOI: 10.1016/j.jbc.2022.102101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
The heat shock protein 90 (Hsp90) is a molecular chaperone central to client protein folding and maturation in eukaryotic cells. During its chaperone cycle, Hsp90 undergoes ATPase-coupled large-scale conformational changes between open and closed states, where the N-terminal and middle domains of the protein form a compact dimerized conformation. However, the molecular principles of the switching motion between the open and closed states remain poorly understood. Here we show by integrating atomistic and coarse-grained molecular simulations with small-angle X-ray scattering experiments and NMR spectroscopy data that Hsp90 exhibits rich conformational dynamics modulated by the charged linker, which connects the N-terminal with the middle domain of the protein. We show that the dissociation of these domains is crucial for the conformational flexibility of the open state, with the separation distance controlled by a β-sheet motif next to the linker region. Taken together, our results suggest that the conformational ensemble of Hsp90 comprises highly extended states, which could be functionally crucial for client processing.
Collapse
Affiliation(s)
- Alexander Jussupow
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Abraham Lopez
- Center of Integrated Protein Science, Department Chemie, Technische Universität München Lichtenbergstr. 4, 85747 Garching (Germany); Institute of Structural Biology, Helmholtz Zentrum Mu¨nchen, Ingolstädter Landstrasse 1, Neuherberg 85764, Germany
| | - Mona Baumgart
- Center of Integrated Protein Science, Department Chemie, Technische Universität München Lichtenbergstr. 4, 85747 Garching (Germany)
| | - Sophie L Mader
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Michael Sattler
- Center of Integrated Protein Science, Department Chemie, Technische Universität München Lichtenbergstr. 4, 85747 Garching (Germany); Institute of Structural Biology, Helmholtz Zentrum Mu¨nchen, Ingolstädter Landstrasse 1, Neuherberg 85764, Germany
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
35
|
Jeschke G, Esteban-Hofer L. Integrative ensemble modeling of proteins and their complexes with distance distribution restraints. Methods Enzymol 2022; 666:145-169. [PMID: 35465919 DOI: 10.1016/bs.mie.2022.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Many proteins and protein complexes exhibit regions that are intrinsically disordered. Whereas an arsenal of techniques exists to characterize structured proteins or protein regions, characterization of the vast conformational space occupied by intrinsically disordered regions remains a challenging task due the ensemble-averaging nature of many techniques that provide mean value restraints. More representative information can be gained in the form of distribution restraints, such as EPR-derived distance distributions. Previously we developed the ensemble modeling tool MMM, where we partition the macromolecule into structured and unstructured domains and utilize an integrative structural approach with a focus on EPR-derived distance restraints. Here we present the successor program of MMM: MMMx. All the modeling functionality was ported to MMMx and is now accessed by a uniform script format, allowing to combine the different modules at will to modeling pipelines. During the conception of MMMx many of the tools were improved or updated. We discuss the general functionality of MMMx and its modules, and illustrate some of the modeling tools by application examples.
Collapse
Affiliation(s)
- Gunnar Jeschke
- ETH Zürich, Department of Chemistry and Applied Biosciences, Zürich, Switzerland.
| | - Laura Esteban-Hofer
- ETH Zürich, Department of Chemistry and Applied Biosciences, Zürich, Switzerland
| |
Collapse
|
36
|
Thomasen FE, Pesce F, Roesgaard MA, Tesei G, Lindorff-Larsen K. Improving Martini 3 for Disordered and Multidomain Proteins. J Chem Theory Comput 2022; 18:2033-2041. [PMID: 35377637 DOI: 10.1021/acs.jctc.1c01042] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Coarse-grained molecular dynamics simulations are a useful tool to determine conformational ensembles of proteins. Here, we show that the coarse-grained force field Martini 3 underestimates the global dimensions of intrinsically disordered proteins (IDPs) and multidomain proteins when compared with small-angle X-ray scattering (SAXS) data and that increasing the strength of protein-water interactions favors more expanded conformations. We find that increasing the strength of interactions between protein and water by ca. 10% results in improved agreement with the SAXS data for IDPs and multidomain proteins. We also show that this correction results in a more accurate description of self-association of IDPs and folded proteins and better agreement with paramagnetic relaxation enhancement data for most IDPs. While simulations with this revised force field still show deviations to experiments for some systems, our results suggest that it is overall a substantial improvement for coarse-grained simulations of soluble proteins.
Collapse
Affiliation(s)
- F Emil Thomasen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Francesco Pesce
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Mette Ahrensback Roesgaard
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Giulio Tesei
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
37
|
Stelzl L, Pietrek LM, Holla A, Oroz J, Sikora M, Köfinger J, Schuler B, Zweckstetter M, Hummer G. Global Structure of the Intrinsically Disordered Protein Tau Emerges from Its Local Structure. JACS AU 2022; 2:673-686. [PMID: 35373198 PMCID: PMC8970000 DOI: 10.1021/jacsau.1c00536] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 05/13/2023]
Abstract
The paradigmatic disordered protein tau plays an important role in neuronal function and neurodegenerative diseases. To disentangle the factors controlling the balance between functional and disease-associated conformational states, we build a structural ensemble of the tau K18 fragment containing the four pseudorepeat domains involved in both microtubule binding and amyloid fibril formation. We assemble 129-residue-long tau K18 chains with atomic detail from an extensive fragment library constructed with molecular dynamics simulations. We introduce a reweighted hierarchical chain growth (RHCG) algorithm that integrates experimental data reporting on the local structure into the assembly process in a systematic manner. By combining Bayesian ensemble refinement with importance sampling, we obtain well-defined ensembles and overcome the problem of exponentially varying weights in the integrative modeling of long-chain polymeric molecules. The resulting tau K18 ensembles capture nuclear magnetic resonance (NMR) chemical shift and J-coupling measurements. Without further fitting, we achieve very good agreement with measurements of NMR residual dipolar couplings. The good agreement with experimental measures of global structure such as single-molecule Förster resonance energy transfer (FRET) efficiencies is improved further by ensemble refinement. By comparing wild-type and mutant ensembles, we show that pathogenic single-point P301L, P301S, and P301T mutations shift the population from the turn-like conformations of the functional microtubule-bound state to the extended conformations of disease-associated tau fibrils. RHCG thus provides us with an atomically detailed view of the population equilibrium between functional and aggregation-prone states of tau K18, and demonstrates that global structural characteristics of this intrinsically disordered protein emerge from its local structure.
Collapse
Affiliation(s)
- Lukas
S. Stelzl
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
- Faculty
of Biology, Johannes Gutenberg University
Mainz, Gresemundweg 2, 55128 Mainz, Germany
- KOMET 1, Institute of Physics, Johannes
Gutenberg University Mainz, 55099 Mainz, Germany
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Lisa M. Pietrek
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Andrea Holla
- Department
of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Javier Oroz
- German
Center for Neurodegenerative Diseases (DZNE), von-Siebold-Str. 3a, 37075 Göttingen, Germany
- Rocasolano
Institute for Physical Chemistry, CSIC, Serrano 119, 28006 Madrid, Spain
| | - Mateusz Sikora
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
- Faculty
of Physics, University of Vienna, Kolingasse 14-16, 1090 Vienna, Austria
| | - Jürgen Köfinger
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Benjamin Schuler
- Department
of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
- Department
of Physics, University of Zurich, 8057 Zurich, Switzerland
| | - Markus Zweckstetter
- German
Center for Neurodegenerative Diseases (DZNE), von-Siebold-Str. 3a, 37075 Göttingen, Germany
- Department
for NMR-based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| | - Gerhard Hummer
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
- Institute
for Biophysics, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
38
|
Conformational ensembles of intrinsically disordered proteins and flexible multidomain proteins. Biochem Soc Trans 2022; 50:541-554. [PMID: 35129612 DOI: 10.1042/bst20210499] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/29/2022]
Abstract
Intrinsically disordered proteins (IDPs) and multidomain proteins with flexible linkers show a high level of structural heterogeneity and are best described by ensembles consisting of multiple conformations with associated thermodynamic weights. Determining conformational ensembles usually involves the integration of biophysical experiments and computational models. In this review, we discuss current approaches to determine conformational ensembles of IDPs and multidomain proteins, including the choice of biophysical experiments, computational models used to sample protein conformations, models to calculate experimental observables from protein structure, and methods to refine ensembles against experimental data. We also provide examples of recent applications of integrative conformational ensemble determination to study IDPs and multidomain proteins and suggest future directions for research in the field.
Collapse
|
39
|
Schiemann O, Heubach CA, Abdullin D, Ackermann K, Azarkh M, Bagryanskaya EG, Drescher M, Endeward B, Freed JH, Galazzo L, Goldfarb D, Hett T, Esteban Hofer L, Fábregas Ibáñez L, Hustedt EJ, Kucher S, Kuprov I, Lovett JE, Meyer A, Ruthstein S, Saxena S, Stoll S, Timmel CR, Di Valentin M, Mchaourab HS, Prisner TF, Bode BE, Bordignon E, Bennati M, Jeschke G. Benchmark Test and Guidelines for DEER/PELDOR Experiments on Nitroxide-Labeled Biomolecules. J Am Chem Soc 2021; 143:17875-17890. [PMID: 34664948 PMCID: PMC11253894 DOI: 10.1021/jacs.1c07371] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Distance distribution information obtained by pulsed dipolar EPR spectroscopy provides an important contribution to many studies in structural biology. Increasingly, such information is used in integrative structural modeling, where it delivers unique restraints on the width of conformational ensembles. In order to ensure reliability of the structural models and of biological conclusions, we herein define quality standards for sample preparation and characterization, for measurements of distributed dipole-dipole couplings between paramagnetic labels, for conversion of the primary time-domain data into distance distributions, for interpreting these distributions, and for reporting results. These guidelines are substantiated by a multi-laboratory benchmark study and by analysis of data sets with known distance distribution ground truth. The study and the guidelines focus on proteins labeled with nitroxides and on double electron-electron resonance (DEER aka PELDOR) measurements and provide suggestions on how to proceed analogously in other cases.
Collapse
Affiliation(s)
- Olav Schiemann
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany
| | - Caspar A Heubach
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany
| | - Dinar Abdullin
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany
| | - Katrin Ackermann
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews North Haugh, St Andrews KY16 9ST, U.K
| | - Mykhailo Azarkh
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Elena G Bagryanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Lavrentieva aven 9, 630090 Novosibirsk, Russia
| | - Malte Drescher
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Burkhard Endeward
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt am Main, Germany
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, and ACERT, National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University, Ithaca, New York 14853-1301, United States
| | - Laura Galazzo
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tobias Hett
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany
| | - Laura Esteban Hofer
- Department of Chemistry and Applied Biosciences, ETH Hönggerberg, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Luis Fábregas Ibáñez
- Department of Chemistry and Applied Biosciences, ETH Hönggerberg, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Eric J Hustedt
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Svetlana Kucher
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Ilya Kuprov
- School of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 1BJ, U.K
| | - Janet Eleanor Lovett
- SUPA School of Physics and Astronomy and BSRC, University of St Andrews, North Haugh, St Andrews KY16 9SS, U.K
| | - Andreas Meyer
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Sharon Ruthstein
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Christiane R Timmel
- Department of Chemistry, Centre for Advanced Electron Spin Resonance, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K
| | - Marilena Di Valentin
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Thomas F Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt am Main, Germany
| | - Bela Ernest Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews North Haugh, St Andrews KY16 9ST, U.K
| | - Enrica Bordignon
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Marina Bennati
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences, ETH Hönggerberg, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
40
|
Tesei G, Schulze TK, Crehuet R, Lindorff-Larsen K. Accurate model of liquid-liquid phase behavior of intrinsically disordered proteins from optimization of single-chain properties. Proc Natl Acad Sci U S A 2021; 118:2111696118. [PMID: 34716273 DOI: 10.1101/2021.06.23.449550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/15/2021] [Indexed: 05/25/2023] Open
Abstract
Many intrinsically disordered proteins (IDPs) may undergo liquid-liquid phase separation (LLPS) and participate in the formation of membraneless organelles in the cell, thereby contributing to the regulation and compartmentalization of intracellular biochemical reactions. The phase behavior of IDPs is sequence dependent, and its investigation through molecular simulations requires protein models that combine computational efficiency with an accurate description of intramolecular and intermolecular interactions. We developed a general coarse-grained model of IDPs, with residue-level detail, based on an extensive set of experimental data on single-chain properties. Ensemble-averaged experimental observables are predicted from molecular simulations, and a data-driven parameter-learning procedure is used to identify the residue-specific model parameters that minimize the discrepancy between predictions and experiments. The model accurately reproduces the experimentally observed conformational propensities of a set of IDPs. Through two-body as well as large-scale molecular simulations, we show that the optimization of the intramolecular interactions results in improved predictions of protein self-association and LLPS.
Collapse
Affiliation(s)
- Giulio Tesei
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| | - Thea K Schulze
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Ramon Crehuet
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
- CSIC-Institute for Advanced Chemistry of Catalonia (IQAC), E-08034 Barcelona, Spain
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| |
Collapse
|
41
|
Klose D, Holla A, Gmeiner C, Nettels D, Ritsch I, Bross N, Yulikov M, Allain FHT, Schuler B, Jeschke G. Resolving distance variations by single-molecule FRET and EPR spectroscopy using rotamer libraries. Biophys J 2021; 120:4842-4858. [PMID: 34536387 PMCID: PMC8595751 DOI: 10.1016/j.bpj.2021.09.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/09/2021] [Accepted: 09/13/2021] [Indexed: 01/14/2023] Open
Abstract
Förster resonance energy transfer (FRET) and electron paramagnetic resonance (EPR) spectroscopy are complementary techniques for quantifying distances in the nanometer range. Both approaches are commonly employed for probing the conformations and conformational changes of biological macromolecules based on site-directed fluorescent or paramagnetic labeling. FRET can be applied in solution at ambient temperature and thus provides direct access to dynamics, especially if used at the single-molecule level, whereas EPR requires immobilization or work at cryogenic temperatures but provides data that can be more reliably used to extract distance distributions. However, a combined analysis of the complementary data from the two techniques has been complicated by the lack of a common modeling framework. Here, we demonstrate a systematic analysis approach based on rotamer libraries for both FRET and EPR labels to predict distance distributions between two labels from a structural model. Dynamics of the fluorophores within these distance distributions are taken into account by diffusional averaging, which improves the agreement with experiment. Benchmarking this methodology with a series of surface-exposed pairs of sites in a structured protein domain reveals that the lowest resolved distance differences can be as small as ∼0.25 nm for both techniques, with quantitative agreement between experimental and simulated transfer efficiencies within a range of ±0.045. Rotamer library analysis thus establishes a coherent way of treating experimental data from EPR and FRET and provides a basis for integrative structural modeling, including studies of conformational distributions and dynamics of biological macromolecules using both techniques.
Collapse
Affiliation(s)
- Daniel Klose
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| | - Andrea Holla
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Christoph Gmeiner
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Daniel Nettels
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Irina Ritsch
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Nadja Bross
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Maxim Yulikov
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland; Department of Physics, University of Zurich, Zurich, Switzerland.
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
42
|
Tesei G, Schulze TK, Crehuet R, Lindorff-Larsen K. Accurate model of liquid-liquid phase behavior of intrinsically disordered proteins from optimization of single-chain properties. Proc Natl Acad Sci U S A 2021; 118:e2111696118. [PMID: 34716273 PMCID: PMC8612223 DOI: 10.1073/pnas.2111696118] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/15/2021] [Indexed: 11/18/2022] Open
Abstract
Many intrinsically disordered proteins (IDPs) may undergo liquid-liquid phase separation (LLPS) and participate in the formation of membraneless organelles in the cell, thereby contributing to the regulation and compartmentalization of intracellular biochemical reactions. The phase behavior of IDPs is sequence dependent, and its investigation through molecular simulations requires protein models that combine computational efficiency with an accurate description of intramolecular and intermolecular interactions. We developed a general coarse-grained model of IDPs, with residue-level detail, based on an extensive set of experimental data on single-chain properties. Ensemble-averaged experimental observables are predicted from molecular simulations, and a data-driven parameter-learning procedure is used to identify the residue-specific model parameters that minimize the discrepancy between predictions and experiments. The model accurately reproduces the experimentally observed conformational propensities of a set of IDPs. Through two-body as well as large-scale molecular simulations, we show that the optimization of the intramolecular interactions results in improved predictions of protein self-association and LLPS.
Collapse
Affiliation(s)
- Giulio Tesei
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| | - Thea K Schulze
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Ramon Crehuet
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
- CSIC-Institute for Advanced Chemistry of Catalonia (IQAC), E-08034 Barcelona, Spain
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| |
Collapse
|
43
|
Ahmed MC, Skaanning LK, Jussupow A, Newcombe EA, Kragelund BB, Camilloni C, Langkilde AE, Lindorff-Larsen K. Refinement of α-Synuclein Ensembles Against SAXS Data: Comparison of Force Fields and Methods. Front Mol Biosci 2021; 8:654333. [PMID: 33968988 PMCID: PMC8100456 DOI: 10.3389/fmolb.2021.654333] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/12/2021] [Indexed: 12/22/2022] Open
Abstract
The inherent flexibility of intrinsically disordered proteins (IDPs) makes it difficult to interpret experimental data using structural models. On the other hand, molecular dynamics simulations of IDPs often suffer from force-field inaccuracies, and long simulation times or enhanced sampling methods are needed to obtain converged ensembles. Here, we apply metainference and Bayesian/Maximum Entropy reweighting approaches to integrate prior knowledge of the system with experimental data, while also dealing with various sources of errors and the inherent conformational heterogeneity of IDPs. We have measured new SAXS data on the protein α-synuclein, and integrate this with simulations performed using different force fields. We find that if the force field gives rise to ensembles that are much more compact than what is implied by the SAXS data it is difficult to recover a reasonable ensemble. On the other hand, we show that when the simulated ensemble is reasonable, we can obtain an ensemble that is consistent with the SAXS data, but also with NMR diffusion and paramagnetic relaxation enhancement data.
Collapse
Affiliation(s)
- Mustapha Carab Ahmed
- Structural Biology and NMR Laboratory, Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Line K Skaanning
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Jussupow
- Department of Chemistry, Institute for Advanced Study, Technical University of Munich, Munich, Germany
| | - Estella A Newcombe
- Structural Biology and NMR Laboratory, Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark.,Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Carlo Camilloni
- Department of Chemistry, Institute for Advanced Study, Technical University of Munich, Munich, Germany.,Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Annette E Langkilde
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
44
|
Kozak F, Kurzbach D. How to assess the structural dynamics of transcription factors by integrating sparse NMR and EPR constraints with molecular dynamics simulations. Comput Struct Biotechnol J 2021; 19:2097-2105. [PMID: 33995905 PMCID: PMC8085671 DOI: 10.1016/j.csbj.2021.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
We review recent advances in modeling structural ensembles of transcription factors from nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopic data, integrated with molecular dynamics (MD) simulations. We focus on approaches that confirm computed conformational ensembles by sparse constraints obtained from magnetic resonance. This combination enables the deduction of functional and structural protein models even if nuclear Overhauser effects (NOEs) are too scarce for conventional structure determination. We highlight recent insights into the folding-upon-DNA binding transitions of intrinsically disordered transcription factors that could be assessed using such integrative approaches.
Collapse
Affiliation(s)
- Fanny Kozak
- University Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Waehringer Str. 38, 1090 Vienna, Austria
| | - Dennis Kurzbach
- University Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Waehringer Str. 38, 1090 Vienna, Austria
| |
Collapse
|