1
|
Barnett B, Andersen LM, Fleming SM, Dijkstra N. Identifying content-invariant neural signatures of perceptual vividness. PNAS NEXUS 2024; 3:pgae061. [PMID: 38415219 PMCID: PMC10898512 DOI: 10.1093/pnasnexus/pgae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/31/2024] [Indexed: 02/29/2024]
Abstract
Some conscious experiences are more vivid than others. Although perceptual vividness is a key component of human consciousness, how variation in this magnitude property is registered by the human brain is unknown. A striking feature of neural codes for magnitude in other psychological domains, such as number or reward, is that the magnitude property is represented independently of its sensory features. To test whether perceptual vividness also covaries with neural codes that are invariant to sensory content, we reanalyzed existing magnetoencephalography and functional MRI data from two distinct studies which quantified perceptual vividness via subjective ratings of awareness and visibility. Using representational similarity and decoding analyses, we find evidence for content-invariant neural signatures of perceptual vividness distributed across visual, parietal, and frontal cortices. Our findings indicate that the neural correlates of subjective vividness may share similar properties to magnitude codes in other cognitive domains.
Collapse
Affiliation(s)
- Benjy Barnett
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK
- Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Lau M Andersen
- Aarhus Institute of Advanced Studies, 8000 Aarhus C, Denmark
- Center of Functionally Integrative Neuroscience, 8000 Aarhus C, Denmark
- Department for Linguistics, Cognitive Science and Semiotics, Aarhus University, 8000 Aarhus C, Denmark
| | - Stephen M Fleming
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK
- Department of Experimental Psychology, University College London, London WC1H 0AP, UK
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London WC1B 5EH, UK
| | - Nadine Dijkstra
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK
| |
Collapse
|
2
|
Wang C, Yan H, Huang W, Sheng W, Wang Y, Fan YS, Liu T, Zou T, Li R, Chen H. Neural encoding with unsupervised spiking convolutional neural network. Commun Biol 2023; 6:880. [PMID: 37640808 PMCID: PMC10462614 DOI: 10.1038/s42003-023-05257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Abstract
Accurately predicting the brain responses to various stimuli poses a significant challenge in neuroscience. Despite recent breakthroughs in neural encoding using convolutional neural networks (CNNs) in fMRI studies, there remain critical gaps between the computational rules of traditional artificial neurons and real biological neurons. To address this issue, a spiking CNN (SCNN)-based framework is presented in this study to achieve neural encoding in a more biologically plausible manner. The framework utilizes unsupervised SCNN to extract visual features of image stimuli and employs a receptive field-based regression algorithm to predict fMRI responses from the SCNN features. Experimental results on handwritten characters, handwritten digits and natural images demonstrate that the proposed approach can achieve remarkably good encoding performance and can be utilized for "brain reading" tasks such as image reconstruction and identification. This work suggests that SNN can serve as a promising tool for neural encoding.
Collapse
Affiliation(s)
- Chong Wang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
- MOE Key Lab for Neuroinformation; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Hongmei Yan
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
- MOE Key Lab for Neuroinformation; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Wei Huang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
- MOE Key Lab for Neuroinformation; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Wei Sheng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
- MOE Key Lab for Neuroinformation; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yuting Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
- MOE Key Lab for Neuroinformation; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yun-Shuang Fan
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
- MOE Key Lab for Neuroinformation; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Tao Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ting Zou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Rong Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
- MOE Key Lab for Neuroinformation; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Huafu Chen
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China.
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
- MOE Key Lab for Neuroinformation; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
3
|
St-Yves G, Allen EJ, Wu Y, Kay K, Naselaris T. Brain-optimized deep neural network models of human visual areas learn non-hierarchical representations. Nat Commun 2023; 14:3329. [PMID: 37286563 DOI: 10.1038/s41467-023-38674-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/05/2023] [Indexed: 06/09/2023] Open
Abstract
Deep neural networks (DNNs) optimized for visual tasks learn representations that align layer depth with the hierarchy of visual areas in the primate brain. One interpretation of this finding is that hierarchical representations are necessary to accurately predict brain activity in the primate visual system. To test this interpretation, we optimized DNNs to directly predict brain activity measured with fMRI in human visual areas V1-V4. We trained a single-branch DNN to predict activity in all four visual areas jointly, and a multi-branch DNN to predict each visual area independently. Although it was possible for the multi-branch DNN to learn hierarchical representations, only the single-branch DNN did so. This result shows that hierarchical representations are not necessary to accurately predict human brain activity in V1-V4, and that DNNs that encode brain-like visual representations may differ widely in their architecture, ranging from strict serial hierarchies to multiple independent branches.
Collapse
Affiliation(s)
- Ghislain St-Yves
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Emily J Allen
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yihan Wu
- Graduate Program in Cognitive Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Kendrick Kay
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Radiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Thomas Naselaris
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
4
|
Doerig A, Sommers RP, Seeliger K, Richards B, Ismael J, Lindsay GW, Kording KP, Konkle T, van Gerven MAJ, Kriegeskorte N, Kietzmann TC. The neuroconnectionist research programme. Nat Rev Neurosci 2023:10.1038/s41583-023-00705-w. [PMID: 37253949 DOI: 10.1038/s41583-023-00705-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 06/01/2023]
Abstract
Artificial neural networks (ANNs) inspired by biology are beginning to be widely used to model behavioural and neural data, an approach we call 'neuroconnectionism'. ANNs have been not only lauded as the current best models of information processing in the brain but also criticized for failing to account for basic cognitive functions. In this Perspective article, we propose that arguing about the successes and failures of a restricted set of current ANNs is the wrong approach to assess the promise of neuroconnectionism for brain science. Instead, we take inspiration from the philosophy of science, and in particular from Lakatos, who showed that the core of a scientific research programme is often not directly falsifiable but should be assessed by its capacity to generate novel insights. Following this view, we present neuroconnectionism as a general research programme centred around ANNs as a computational language for expressing falsifiable theories about brain computation. We describe the core of the programme, the underlying computational framework and its tools for testing specific neuroscientific hypotheses and deriving novel understanding. Taking a longitudinal view, we review past and present neuroconnectionist projects and their responses to challenges and argue that the research programme is highly progressive, generating new and otherwise unreachable insights into the workings of the brain.
Collapse
Affiliation(s)
- Adrien Doerig
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany.
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| | - Rowan P Sommers
- Department of Neurobiology of Language, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Katja Seeliger
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Blake Richards
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- School of Computer Science, McGill University, Montréal, QC, Canada
- Mila, Montréal, QC, Canada
- Montréal Neurological Institute, Montréal, QC, Canada
- Learning in Machines and Brains Program, CIFAR, Toronto, ON, Canada
| | | | | | - Konrad P Kording
- Learning in Machines and Brains Program, CIFAR, Toronto, ON, Canada
- Bioengineering, Neuroscience, University of Pennsylvania, Pennsylvania, PA, USA
| | | | | | | | - Tim C Kietzmann
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
5
|
Gifford AT, Dwivedi K, Roig G, Cichy RM. A large and rich EEG dataset for modeling human visual object recognition. Neuroimage 2022; 264:119754. [PMID: 36400378 PMCID: PMC9771828 DOI: 10.1016/j.neuroimage.2022.119754] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/14/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022] Open
Abstract
The human brain achieves visual object recognition through multiple stages of linear and nonlinear transformations operating at a millisecond scale. To predict and explain these rapid transformations, computational neuroscientists employ machine learning modeling techniques. However, state-of-the-art models require massive amounts of data to properly train, and to the present day there is a lack of vast brain datasets which extensively sample the temporal dynamics of visual object recognition. Here we collected a large and rich dataset of high temporal resolution EEG responses to images of objects on a natural background. This dataset includes 10 participants, each with 82,160 trials spanning 16,740 image conditions. Through computational modeling we established the quality of this dataset in five ways. First, we trained linearizing encoding models that successfully synthesized the EEG responses to arbitrary images. Second, we correctly identified the recorded EEG data image conditions in a zero-shot fashion, using EEG synthesized responses to hundreds of thousands of candidate image conditions. Third, we show that both the high number of conditions as well as the trial repetitions of the EEG dataset contribute to the trained models' prediction accuracy. Fourth, we built encoding models whose predictions well generalize to novel participants. Fifth, we demonstrate full end-to-end training of randomly initialized DNNs that output EEG responses for arbitrary input images. We release this dataset as a tool to foster research in visual neuroscience and computer vision.
Collapse
Affiliation(s)
- Alessandro T Gifford
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.
| | - Kshitij Dwivedi
- Department of Computer Science, Goethe Universität, Frankfurt am Main, Germany
| | - Gemma Roig
- Department of Computer Science, Goethe Universität, Frankfurt am Main, Germany
| | - Radoslaw M Cichy
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
6
|
Le L, Ambrogioni L, Seeliger K, Güçlütürk Y, van Gerven M, Güçlü U. Brain2Pix: Fully convolutional naturalistic video frame reconstruction from brain activity. Front Neurosci 2022; 16:940972. [PMID: 36452333 PMCID: PMC9703977 DOI: 10.3389/fnins.2022.940972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/09/2022] [Indexed: 09/10/2024] Open
Abstract
Reconstructing complex and dynamic visual perception from brain activity remains a major challenge in machine learning applications to neuroscience. Here, we present a new method for reconstructing naturalistic images and videos from very large single-participant functional magnetic resonance imaging data that leverages the recent success of image-to-image transformation networks. This is achieved by exploiting spatial information obtained from retinotopic mappings across the visual system. More specifically, we first determine what position each voxel in a particular region of interest would represent in the visual field based on its corresponding receptive field location. Then, the 2D image representation of the brain activity on the visual field is passed to a fully convolutional image-to-image network trained to recover the original stimuli using VGG feature loss with an adversarial regularizer. In our experiments, we show that our method offers a significant improvement over existing video reconstruction techniques.
Collapse
Affiliation(s)
- Lynn Le
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Luca Ambrogioni
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Katja Seeliger
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Yağmur Güçlütürk
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Marcel van Gerven
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Umut Güçlü
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
7
|
High-Level Visual Encoding Model Framework with Hierarchical Ventral Stream-Optimized Neural Networks. Brain Sci 2022; 12:brainsci12081101. [PMID: 36009164 PMCID: PMC9406060 DOI: 10.3390/brainsci12081101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/26/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022] Open
Abstract
Visual encoding models based on deep neural networks (DNN) show good performance in predicting brain activity in low-level visual areas. However, due to the amount of neural data limitation, DNN-based visual encoding models are difficult to fit for high-level visual areas, resulting in insufficient encoding performance. The ventral stream suggests that higher visual areas receive information from lower visual areas, which is not fully reflected in the current encoding models. In the present study, we propose a novel visual encoding model framework which uses the hierarchy of representations in the ventral stream to improve the model’s performance in high-level visual areas. Under the framework, we propose two categories of hierarchical encoding models from the voxel and the feature perspectives to realize the hierarchical representations. From the voxel perspective, we first constructed an encoding model for the low-level visual area (V1 or V2) and extracted the voxel space predicted by the model. Then we use the extracted voxel space of the low-level visual area to predict the voxel space of the high-level visual area (V4 or LO) via constructing a voxel-to-voxel model. From the feature perspective, the feature space of the first model is extracted to predict the voxel space of the high-level visual area. The experimental results show that two categories of hierarchical encoding models effectively improve the encoding performance in V4 and LO. In addition, the proportion of the best-encoded voxels for different models in V4 and LO show that our proposed models have obvious advantages in prediction accuracy. We find that the hierarchy of representations in the ventral stream has a positive effect on improving the performance of the existing model in high-level visual areas.
Collapse
|
8
|
Allen EJ, St-Yves G, Wu Y, Breedlove JL, Prince JS, Dowdle LT, Nau M, Caron B, Pestilli F, Charest I, Hutchinson JB, Naselaris T, Kay K. A massive 7T fMRI dataset to bridge cognitive neuroscience and artificial intelligence. Nat Neurosci 2022; 25:116-126. [PMID: 34916659 DOI: 10.1038/s41593-021-00962-x] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/12/2021] [Indexed: 11/09/2022]
Abstract
Extensive sampling of neural activity during rich cognitive phenomena is critical for robust understanding of brain function. Here we present the Natural Scenes Dataset (NSD), in which high-resolution functional magnetic resonance imaging responses to tens of thousands of richly annotated natural scenes were measured while participants performed a continuous recognition task. To optimize data quality, we developed and applied novel estimation and denoising techniques. Simple visual inspections of the NSD data reveal clear representational transformations along the ventral visual pathway. Further exemplifying the inferential power of the dataset, we used NSD to build and train deep neural network models that predict brain activity more accurately than state-of-the-art models from computer vision. NSD also includes substantial resting-state and diffusion data, enabling network neuroscience perspectives to constrain and enhance models of perception and memory. Given its unprecedented scale, quality and breadth, NSD opens new avenues of inquiry in cognitive neuroscience and artificial intelligence.
Collapse
Affiliation(s)
- Emily J Allen
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, Minneapolis, MN, USA
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Ghislain St-Yves
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Yihan Wu
- Graduate Program in Cognitive Science, University of Minnesota, Minneapolis, MN, USA
| | - Jesse L Breedlove
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Jacob S Prince
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Psychology, Harvard University, Cambridge, MA, USA
| | - Logan T Dowdle
- Department of Neuroscience, Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
- Department of Neurosurgery, Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Matthias Nau
- National Institute of Mental Health (NIMH), Bethesda MD, USA
| | - Brad Caron
- Program in Neuroscience, Indiana University, Bloomington IN, USA
- Program in Vision Science, Indiana University, Bloomington IN, USA
| | - Franco Pestilli
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
- Center for Perceptual Systems, University of Texas at Austin, Austin, TX, USA
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Ian Charest
- Center for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
- cerebrUM, Département de Psychologie, Université de Montréal, Montréal QC, Canada
| | | | - Thomas Naselaris
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Kendrick Kay
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
9
|
A deeper look at vision and memory. Nat Neurosci 2021; 25:8-10. [PMID: 34916660 DOI: 10.1038/s41593-021-00966-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Ratan Murty NA, Bashivan P, Abate A, DiCarlo JJ, Kanwisher N. Computational models of category-selective brain regions enable high-throughput tests of selectivity. Nat Commun 2021; 12:5540. [PMID: 34545079 PMCID: PMC8452636 DOI: 10.1038/s41467-021-25409-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 08/04/2021] [Indexed: 02/08/2023] Open
Abstract
Cortical regions apparently selective to faces, places, and bodies have provided important evidence for domain-specific theories of human cognition, development, and evolution. But claims of category selectivity are not quantitatively precise and remain vulnerable to empirical refutation. Here we develop artificial neural network-based encoding models that accurately predict the response to novel images in the fusiform face area, parahippocampal place area, and extrastriate body area, outperforming descriptive models and experts. We use these models to subject claims of category selectivity to strong tests, by screening for and synthesizing images predicted to produce high responses. We find that these high-response-predicted images are all unambiguous members of the hypothesized preferred category for each region. These results provide accurate, image-computable encoding models of each category-selective region, strengthen evidence for domain specificity in the brain, and point the way for future research characterizing the functional organization of the brain with unprecedented computational precision.
Collapse
Affiliation(s)
- N Apurva Ratan Murty
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- The Center for Brains, Minds and Machines, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Pouya Bashivan
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Alex Abate
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - James J DiCarlo
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Center for Brains, Minds and Machines, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nancy Kanwisher
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Center for Brains, Minds and Machines, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
11
|
Dwivedi K, Bonner MF, Cichy RM, Roig G. Unveiling functions of the visual cortex using task-specific deep neural networks. PLoS Comput Biol 2021; 17:e1009267. [PMID: 34388161 PMCID: PMC8407579 DOI: 10.1371/journal.pcbi.1009267] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/31/2021] [Accepted: 07/11/2021] [Indexed: 11/20/2022] Open
Abstract
The human visual cortex enables visual perception through a cascade of hierarchical computations in cortical regions with distinct functionalities. Here, we introduce an AI-driven approach to discover the functional mapping of the visual cortex. We related human brain responses to scene images measured with functional MRI (fMRI) systematically to a diverse set of deep neural networks (DNNs) optimized to perform different scene perception tasks. We found a structured mapping between DNN tasks and brain regions along the ventral and dorsal visual streams. Low-level visual tasks mapped onto early brain regions, 3-dimensional scene perception tasks mapped onto the dorsal stream, and semantic tasks mapped onto the ventral stream. This mapping was of high fidelity, with more than 60% of the explainable variance in nine key regions being explained. Together, our results provide a novel functional mapping of the human visual cortex and demonstrate the power of the computational approach.
Collapse
Affiliation(s)
- Kshitij Dwivedi
- Department of Education and Psychology, Freie Universität Berlin, Germany
- Department of Computer Science, Goethe University, Frankfurt am Main, Germany
| | - Michael F. Bonner
- Department of Cognitive Science, Johns Hopkins University, Baltimore, Maryland, United States of America
| | | | - Gemma Roig
- Department of Computer Science, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|