1
|
Labrecque M, Brunet-Ratnasingham E, Hamilton LK, Auld D, Montpetit A, Richards B, Durand M, Rousseau S, Finzi A, Kaufmann DE, Tetreault M. Transcriptomic profiling of severe and critical COVID-19 patients reveals alterations in expression, splicing and polyadenylation. Sci Rep 2025; 15:13469. [PMID: 40251257 PMCID: PMC12008264 DOI: 10.1038/s41598-025-95905-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/25/2025] [Indexed: 04/20/2025] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a multi-systemic illness that became a pandemic in March 2020. Although environmental factors and comorbidities can influence disease progression, there is a lack of prognostic markers to predict the severity of COVID-19 illness. Identifying these markers is crucial for improving patient outcomes and appropriately allocating scarce resources. Here, an RNA-sequencing study was conducted on blood samples from unvaccinated, hospitalized patients divided by disease severity; 367 moderate, 173 severe, and 199 critical. Using a bioinformatics approach, we identified differentially expressed genes (DEGs), alternative splicing (AS) and alternative polyadenylation (APA) events that were severity-dependent. In the severe group, we observed a higher expression of kappa immunoglobulins compared to the moderate group. In the critical cohort, a majority of AS events were mutually exclusive exons and APA genes mostly had longer 3'UTRs. Interestingly, multiple genes associated with cytoskeleton, TUBA4A, NRGN, BSG, and CD300A, were differentially expressed, alternatively spliced and polyadenylated in the critical group. Furthermore, several inflammation-related pathways were observed predominantly in critical vs. moderate. We demonstrate that integrating multiple downstream analyses of transcriptomics, from moderate, severe, and critical patients confers a significant advantage in identifying relevant dysregulated genes and pathways.
Collapse
Affiliation(s)
- Marjorie Labrecque
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | | | - Laura K Hamilton
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Daniel Auld
- Department of Human Genetics, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill Genome Centre, McGill University, Montreal, QC, Canada
| | | | - Brent Richards
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada
- Department of Epidemiology, Department of Human Genetics, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | - Madeleine Durand
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Simon Rousseau
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Andrés Finzi
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Daniel E Kaufmann
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Division of Infectious Diseases, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Martine Tetreault
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
2
|
Laine E, Freiberger MI. Toward a comprehensive profiling of alternative splicing proteoform structures, interactions and functions. Curr Opin Struct Biol 2025; 90:102979. [PMID: 39778413 PMCID: PMC7617313 DOI: 10.1016/j.sbi.2024.102979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/26/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
The mRNA splicing machinery has been estimated to generate 100,000 known protein-coding transcripts for 20,000 human genes (Ensembl, Sept. 2024). However, this set is expanding with the massive and rapidly growing data coming from high-throughput technologies, particularly single-cell and long-read sequencing. Yet, the implications of splicing complexity at the protein level remain largely uncharted. In this review, we describe the current advances toward systematically assessing the contribution of alternative splicing to proteome function diversification. We discuss the potential and challenges of using artificial intelligence-based techniques in identifying alternative splicing proteoforms and characterising their structures, interactions, and functions.
Collapse
Affiliation(s)
- Elodie Laine
- Sorbonne Université, CNRS, IBPS, Laboratory of Computational and Quantitative Biology (LCQB), UMR 7238, 75005 Paris, France; Institut universitaire de France (IUF), France.
| | - Maria Inés Freiberger
- Sorbonne Université, CNRS, IBPS, Laboratory of Computational and Quantitative Biology (LCQB), UMR 7238, 75005 Paris, France
| |
Collapse
|
3
|
Yue X, Zhu L, Zhang Z. Changes in RNA Splicing: A New Paradigm of Transcriptional Responses to Probiotic Action in the Mammalian Brain. Microorganisms 2025; 13:165. [PMID: 39858933 PMCID: PMC11767420 DOI: 10.3390/microorganisms13010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Elucidating the gene regulatory mechanisms underlying the gut-brain axis is critical for uncovering novel gut-brain interaction pathways and developing therapeutic strategies for gut bacteria-associated neurological disorders. Most studies have primarily investigated how gut bacteria modulate host epigenetics and gene expression; their impact on host alternative splicing, particularly in the brain, remains largely unexplored. Here, we investigated the effects of the gut-associated probiotic Lacidofil® on alternative splicing across 10 regions of the rat brain using published RNA-sequencing data. The Lacidofil® altogether altered 2941 differential splicing events, predominantly, skipped exon (SE) and mutually exclusive exon (MXE) events. Protein-protein interactions and a KEGG analysis of differentially spliced genes (DSGs) revealed consistent enrichment in the spliceosome and vesicle transport complexes, as well as in pathways related to neurodegenerative diseases, synaptic function and plasticity, and substance addiction across brain regions. Using the PsyGeNET platform, we found that DSGs from the locus coeruleus (LConly), medial preoptic area (mPOA), and ventral dentate gyrus (venDG) were enriched in depression-associated or schizophrenia-associated genes. Notably, we highlight the App gene, where Lacidofil® precisely regulated the splicing of two exons causally involved in amyloid β protein-based neurodegenerative diseases. Although the splicing factors exhibited both splicing plasticity and expression plasticity in response to Lacidofil®, the overlap between DSGs and differentially expressed genes (DEGs) in most brain regions was rather low. Our study provides novel mechanistic insight into how gut probiotics might influence brain function through the modulation of RNA splicing.
Collapse
Affiliation(s)
| | | | - Zhigang Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China; (X.Y.); (L.Z.)
| |
Collapse
|
4
|
Gong J, Li T, Li Y, Xiong X, Xu J, Chai X, Ma Y. UID-Dual Transcriptome Sequencing Analysis of the Molecular Interactions between Streptococcus agalactiae ATCC 27956 and Mammary Epithelial Cells. Animals (Basel) 2024; 14:2587. [PMID: 39272372 PMCID: PMC11393856 DOI: 10.3390/ani14172587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Streptococcus agalactiae ATCC 27956 is a highly contagious Gram-positive bacterium that causes mastitis, has a high infectivity for mammary epithelial cells, and becomes challenging to treat. However, the molecular interactions between it and mammary epithelial cells remain poorly understood. This study analyzed differential gene expression in mammary epithelial cells with varying levels of S. agalactiae infection using UID-Dual transcriptome sequencing and bioinformatics tools. This study identified 211 differentially expressed mRNAs (DEmRNAs) and 452 differentially expressed lncRNAs (DElncRNAs) in host cells, primarily enriched in anti-inflammatory responses, immune responses, and cancer-related processes. Additionally, 854 pathogen differentially expressed mRNAs (pDEmRNAs) were identified, mainly enriched in protein metabolism, gene expression, and biosynthesis processes. Mammary epithelial cells activate pathways, such as the ERK1/2 pathway, to produce reactive oxygen species (ROS) to eliminate bacteria. The bacteria disrupt the host's innate immune mechanisms by interfering with the alternative splicing processes of mammary epithelial cells. Specifically, the bacterial genes of tsf, prfB, and infC can interfere with lncRNAs targeting RUNX1 and BCL2L11 in mammary epithelial cells, affecting the alternative splicing of target genes and altering normal molecular regulation.
Collapse
Affiliation(s)
- Jishang Gong
- College of Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- Institute of Biological Technology, Nanchang Normal University, Nanchang 330030, China
| | - Taotao Li
- College of Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
| | - Yuanfei Li
- Institute of Biological Technology, Nanchang Normal University, Nanchang 330030, China
| | - Xinwei Xiong
- Institute of Biological Technology, Nanchang Normal University, Nanchang 330030, China
| | - Jiguo Xu
- Institute of Biological Technology, Nanchang Normal University, Nanchang 330030, China
| | - Xuewen Chai
- Institute of Biological Technology, Nanchang Normal University, Nanchang 330030, China
| | - Youji Ma
- College of Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
| |
Collapse
|
5
|
Bauer M, Schöbel CM, Wickenhauser C, Seliger B, Jasinski-Bergner S. Deciphering the role of alternative splicing in neoplastic diseases for immune-oncological therapies. Front Immunol 2024; 15:1386993. [PMID: 38736877 PMCID: PMC11082354 DOI: 10.3389/fimmu.2024.1386993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024] Open
Abstract
Alternative splicing (AS) is an important molecular biological mechanism regulated by complex mechanisms involving a plethora of cis and trans-acting elements. Furthermore, AS is tissue specific and altered in various pathologies, including infectious, inflammatory, and neoplastic diseases. Recently developed immuno-oncological therapies include monoclonal antibodies (mAbs) and chimeric antigen receptor (CAR) T cells targeting, among others, immune checkpoint (ICP) molecules. Despite therapeutic successes have been demonstrated, only a limited number of patients showed long-term benefit from these therapies with tumor entity-related differential response rates were observed. Interestingly, splice variants of common immunotherapeutic targets generated by AS are able to completely escape and/or reduce the efficacy of mAb- and/or CAR-based tumor immunotherapies. Therefore, the analyses of splicing patterns of targeted molecules in tumor specimens prior to therapy might help correct stratification, thereby increasing therapy success by antibody panel selection and antibody dosages. In addition, the expression of certain splicing factors has been linked with the patients' outcome, thereby highlighting their putative prognostic potential. Outstanding questions are addressed to translate the findings into clinical application. This review article provides an overview of the role of AS in (tumor) diseases, its molecular mechanisms, clinical relevance, and therapy response.
Collapse
Affiliation(s)
- Marcus Bauer
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Chiara-Maria Schöbel
- Institute for Translational Immunology, Brandenburg Medical School (MHB), Theodor Fontane, Brandenburg an der Havel, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Barbara Seliger
- Institute for Translational Immunology, Brandenburg Medical School (MHB), Theodor Fontane, Brandenburg an der Havel, Germany
- Department of Good Manufacturing Practice (GMP) Development & Advanced Therapy Medicinal Products (ATMP) Design, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Institute for Medical Immunology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Simon Jasinski-Bergner
- Institute for Translational Immunology, Brandenburg Medical School (MHB), Theodor Fontane, Brandenburg an der Havel, Germany
| |
Collapse
|
6
|
Zhao B, Deng J, Ma M, Li N, Zhou J, Li X, Luan T. Environmentally relevant concentrations of 2,3,7,8-TCDD induced inhibition of multicellular alternative splicing and transcriptional dysregulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170892. [PMID: 38346650 DOI: 10.1016/j.scitotenv.2024.170892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Alternative splicing (AS), found in approximately 95 % of human genes, significantly amplifies protein diversity and is implicated in disease pathogenesis when dysregulated. However, the precise involvement of AS in the toxic mechanisms induced by TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) remains incompletely elucidated. This study conducted a thorough global AS analysis in six human cell lines following TCDD exposure. Our findings revealed that environmentally relevant concentration (0.1 nM) of TCDD significantly suppressed AS events in all cell types, notably inhibiting diverse splicing events and reducing transcript diversity, potentially attributed to modifications in the splicing patterns of the inhibitory factor family, particularly hnRNP. And we identified 151 genes with substantial AS alterations shared among these cell types, particularly enriched in immune and metabolic pathways. Moreover, TCDD induced cell-specific changes in splicing patterns and transcript levels, with increased sensitivity notably in THP-1 monocyte, potentially linked to aberrant expression of pivotal genes within the spliceosome pathway (DDX5, EFTUD2, PUF60, RBM25, SRSF1, and CRNKL1). This study extends our understanding of disrupted alternative splicing and its relation to the multisystem toxicity of TCDD. It sheds light on how environmental toxins affect post-transcriptional regulatory processes, offering a fresh perspective for toxicology and disease etiology investigations.
Collapse
Affiliation(s)
- Bilin Zhao
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiewei Deng
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Mei Ma
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Na Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Junlin Zhou
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinyan Li
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China.
| | - Tiangang Luan
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
7
|
Shamnas v M, Singh A, Kumar A, Mishra GP, Sinha SK. Exitrons: offering new roles to retained introns-the novel regulators of protein diversity and utility. AOB PLANTS 2024; 16:plae014. [PMID: 38566894 PMCID: PMC10985678 DOI: 10.1093/aobpla/plae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Exitrons are exonic introns. This subclass of intron retention alternative splicing does not contain a Pre-Terminating stop Codon. Therefore, when retained, they are always a part of a protein. Intron retention is a frequent phenomenon predominantly found in plants, which results in either the degradation of the transcripts or can serve as a stable intermediate to be processed upon induction by specific signals or the cell status. Interestingly, exitrons have coding ability and may confer additional attributes to the proteins that retain them. Therefore, exitron-containing and exitron-spliced isoforms will be a driving force for creating protein diversity in the proteome of an organism. This review establishes a basic understanding of exitron, discussing its genesis, key features, identification methods and functions. We also try to depict its other potential roles. The present review also aims to provide a fundamental background to those who found such exitronic sequences in their gene(s) and to speculate the future course of studies.
Collapse
Affiliation(s)
- Muhammed Shamnas v
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Akanksha Singh
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
- Department of Botany and Plant Pathology, Lilly Hall of Life Sciences, Purdue University, West Lafayette 47906, Indiana, USA
| | - Anuj Kumar
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Gyan Prakash Mishra
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
| | - Subodh Kumar Sinha
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| |
Collapse
|
8
|
Kjer-Hansen P, Weatheritt RJ. The function of alternative splicing in the proteome: rewiring protein interactomes to put old functions into new contexts. Nat Struct Mol Biol 2023; 30:1844-1856. [PMID: 38036695 DOI: 10.1038/s41594-023-01155-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023]
Abstract
Alternative splicing affects more than 95% of multi-exon genes in the human genome. These changes affect the proteome in a myriad of ways. Here, we review our understanding of the breadth of these changes from their effect on protein structure to their influence on interactions. These changes encompass effects on nucleic acid binding in the nucleus to protein-carbohydrate interactions in the extracellular milieu, altering interactions involving all major classes of biological molecules. Protein isoforms have profound influences on cellular and tissue physiology, for example, by shaping neuronal connections, enhancing insulin secretion by pancreatic beta cells and allowing for alternative viral defense strategies in stem cells. More broadly, alternative splicing enables repurposing proteins from one context to another and thereby contributes to both the evolution of new traits as well as the creation of disease-specific interactomes that drive pathological phenotypes. In this Review, we highlight this universal character of alternative splicing as a central regulator of protein function with implications for almost every biological process.
Collapse
Affiliation(s)
- Peter Kjer-Hansen
- EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
- St. Vincent Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia.
| | - Robert J Weatheritt
- EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
9
|
Goldtzvik Y, Sen N, Lam SD, Orengo C. Protein diversification through post-translational modifications, alternative splicing, and gene duplication. Curr Opin Struct Biol 2023; 81:102640. [PMID: 37354790 DOI: 10.1016/j.sbi.2023.102640] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/05/2023] [Accepted: 05/24/2023] [Indexed: 06/26/2023]
Abstract
Proteins provide the basis for cellular function. Having multiple versions of the same protein within a single organism provides a way of regulating its activity or developing novel functions. Post-translational modifications of proteins, by means of adding/removing chemical groups to amino acids, allow for a well-regulated and controlled way of generating functionally distinct protein species. Alternative splicing is another method with which organisms possibly generate new isoforms. Additionally, gene duplication events throughout evolution generate multiple paralogs of the same genes, resulting in multiple versions of the same protein within an organism. In this review, we discuss recent advancements in the study of these three methods of protein diversification and provide illustrative examples of how they affect protein structure and function.
Collapse
Affiliation(s)
- Yonathan Goldtzvik
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Neeladri Sen
- Department of Structural and Molecular Biology, University College London, London, United Kingdom. https://twitter.com/@NeeladriSen
| | - Su Datt Lam
- Department of Structural and Molecular Biology, University College London, London, United Kingdom; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Christine Orengo
- Department of Structural and Molecular Biology, University College London, London, United Kingdom.
| |
Collapse
|
10
|
Haque N, Will A, Cook AG, Hogg JR. A network of DZF proteins controls alternative splicing regulation and fidelity. Nucleic Acids Res 2023; 51:6411-6429. [PMID: 37144502 PMCID: PMC10325889 DOI: 10.1093/nar/gkad351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 04/12/2023] [Accepted: 05/03/2023] [Indexed: 05/06/2023] Open
Abstract
Proteins containing DZF (domain associated with zinc fingers) modules play important roles throughout gene expression, from transcription to translation. Derived from nucleotidyltransferases but lacking catalytic residues, DZF domains serve as heterodimerization surfaces between DZF protein pairs. Three DZF proteins are widely expressed in mammalian tissues, ILF2, ILF3 and ZFR, which form mutually exclusive ILF2-ILF3 and ILF2-ZFR heterodimers. Using eCLIP-Seq, we find that ZFR binds across broad intronic regions to regulate the alternative splicing of cassette and mutually exclusive exons. ZFR preferentially binds dsRNA in vitro and is enriched on introns containing conserved dsRNA elements in cells. Many splicing events are similarly altered upon depletion of any of the three DZF proteins; however, we also identify independent and opposing roles for ZFR and ILF3 in alternative splicing regulation. Along with widespread involvement in cassette exon splicing, the DZF proteins control the fidelity and regulation of over a dozen highly validated mutually exclusive splicing events. Our findings indicate that the DZF proteins form a complex regulatory network that leverages dsRNA binding by ILF3 and ZFR to modulate splicing regulation and fidelity.
Collapse
Affiliation(s)
- Nazmul Haque
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD20892, USA
| | - Alexander Will
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Atlanta G Cook
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - J Robert Hogg
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD20892, USA
| |
Collapse
|
11
|
García-España A, Philips MR. Origin and Evolution of RAS Membrane Targeting. Oncogene 2023; 42:1741-1750. [PMID: 37031342 PMCID: PMC10413328 DOI: 10.1038/s41388-023-02672-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 04/10/2023]
Abstract
KRAS, HRAS and NRAS proto-oncogenes belong to a family of 40 highly homologous genes, which in turn are a subset of a superfamily of >160 genes encoding small GTPases. RAS proteins consist of a globular G-domain (aa1-166) and a 22-23 aa unstructured hypervariable region (HVR) that mediates membrane targeting. The evolutionary origins of the RAS isoforms, their HVRs and alternative splicing of the KRAS locus has not been explored. We found that KRAS is basal to the RAS proto-oncogene family and its duplication generated HRAS in the common ancestor of vertebrates. In a second round of duplication HRAS generated NRAS and KRAS generated an additional RAS gene we have designated KRASBL, absent in mammals and birds. KRAS4A arose through a duplication and insertion of the 4th exon of NRAS into the 3rd intron of KRAS. We found evolutionary conservation of a short polybasic region (PBR1) in HRAS, NRAS and KRAS4A, a second polybasic region (PBR2) in KRAS4A, two neutralized basic residues (NB) and a serine in KRAS4B and KRASBL, and a modification of the CaaX motif in vertebrates with farnesyl rather than geranylgeranyl polyisoprene lipids, suggesting that a less hydrophobic membrane anchor is critical to RAS protein function. The persistence of four RAS isoforms through >400 million years of evolution argues strongly for differential function.
Collapse
Affiliation(s)
| | - Mark R Philips
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
12
|
García-España A, Philips MR. Origin and evolution of RAS oncoprotein membrane targeting. RESEARCH SQUARE 2023:rs.3.rs-2485219. [PMID: 36711820 PMCID: PMC9882654 DOI: 10.21203/rs.3.rs-2485219/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
KRAS, HRAS and NRAS oncogenes belong to a family of 40 highly homologous genes, which in turn are a subset of a superfamily of >160 genes encoding small GTPases. RAS oncoproteins consist of a globular G-domain (aa1-166) and a 22-23aa unstructured hypervariable region (HVR) that mediates membrane targeting. The evolutionarily origins of the RAS isoforms, their HVRs and alternative splicing of the KRAS locus has not been explored. We found that KRAS is basal to the oncogene family and its duplication generated HRAS in the common ancestor of vertebrates. In a second round of duplication HRAS generated NRAS and KRAS generated an additional RAS gene we have designated KRASBL, absent in mammals and birds. KRAS4A arose through a duplication and insertion of the 4th exon of NRAS into the 3rd intron of KRAS. We found evolutionarily conservation of a short polybasic region (PBR1) in HRAS, NRAS and KRAS4A, a second polybasic region (PBR2) in KRAS4A, two neutralized basic residues (NB) and a serine in KRAS4B and KRASBL, and a modification of the CaaX motif in vertebrates with farnesyl rather than geranylgeranyl polyisoprene lipids, suggesting that a less hydrophobic membrane anchor is critical to RAS oncoprotein function. The persistence of four RAS isoforms through >400 MY of evolution argues strongly for differential function.
Collapse
Affiliation(s)
| | - Mark R Philips
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
13
|
Martinez-Gomez L, Cerdán-Vélez D, Abascal F, Tress ML. Origins and Evolution of Human Tandem Duplicated Exon Substitution Events. Genome Biol Evol 2022; 14:6809199. [PMID: 36346145 PMCID: PMC9741552 DOI: 10.1093/gbe/evac162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/10/2022] Open
Abstract
The mutually exclusive splicing of tandem duplicated exons produces protein isoforms that are identical save for a homologous region that allows for the fine tuning of protein function. Tandem duplicated exon substitution events are rare, yet highly important alternative splicing events. Most events are ancient, their isoforms are highly expressed, and they have significantly more pathogenic mutations than other splice events. Here, we analyzed the physicochemical properties and functional roles of the homologous polypeptide regions produced by the 236 tandem duplicated exon substitutions annotated in the human gene set. We find that the most important structural and functional residues in these homologous regions are maintained, and that most changes are conservative rather than drastic. Three quarters of the isoforms produced from tandem duplicated exon substitution events are tissue-specific, particularly in nervous and cardiac tissues, and tandem duplicated exon substitution events are enriched in functional terms related to structures in the brain and skeletal muscle. We find considerable evidence for the convergent evolution of tandem duplicated exon substitution events in vertebrates, arthropods, and nematodes. Twelve human gene families have orthologues with tandem duplicated exon substitution events in both Drosophila melanogaster and Caenorhabditis elegans. Six of these gene families are ion transporters, suggesting that tandem exon duplication in genes that control the flow of ions into the cell has an adaptive benefit. The ancient origins, the strong indications of tissue-specific functions, and the evidence of convergent evolution suggest that these events may have played important roles in the evolution of animal tissues and organs.
Collapse
Affiliation(s)
- Laura Martinez-Gomez
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), C. Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| | - Daniel Cerdán-Vélez
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), C. Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| | - Federico Abascal
- Somatic Evolution Group, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | | |
Collapse
|
14
|
Clinical variant interpretation and biologically relevant reference transcripts. NPJ Genom Med 2022; 7:59. [PMID: 36257961 PMCID: PMC9579139 DOI: 10.1038/s41525-022-00329-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/29/2022] [Indexed: 12/03/2022] Open
Abstract
Clinical variant interpretation is highly dependent on the choice of reference transcript. Although the longest transcript has traditionally been chosen as the reference, APPRIS principal and MANE Select transcripts, biologically supported reference sequences, are now available. In this study, we show that MANE Select and APPRIS principal transcripts are the best reference transcripts for clinical variation. APPRIS principal and MANE Select transcripts capture almost all ClinVar pathogenic variants, and they are particularly powerful over the 94% of coding genes in which they agree. We find that a vanishingly small number of ClinVar pathogenic variants affect alternative protein products. Alternative isoforms that are likely to be clinically relevant can be predicted using TRIFID scores, the highest scoring alternative transcripts are almost 700 times more likely to house pathogenic variants. We believe that APPRIS, MANE and TRIFID are essential tools for clinical variant interpretation.
Collapse
|
15
|
Wright CJ, Smith CWJ, Jiggins CD. Alternative splicing as a source of phenotypic diversity. Nat Rev Genet 2022; 23:697-710. [PMID: 35821097 DOI: 10.1038/s41576-022-00514-4] [Citation(s) in RCA: 190] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 12/27/2022]
Abstract
A major goal of evolutionary genetics is to understand the genetic processes that give rise to phenotypic diversity in multicellular organisms. Alternative splicing generates multiple transcripts from a single gene, enriching the diversity of proteins and phenotypic traits. It is well established that alternative splicing contributes to key innovations over long evolutionary timescales, such as brain development in bilaterians. However, recent developments in long-read sequencing and the generation of high-quality genome assemblies for diverse organisms has facilitated comparisons of splicing profiles between closely related species, providing insights into how alternative splicing evolves over shorter timescales. Although most splicing variants are probably non-functional, alternative splicing is nonetheless emerging as a dynamic, evolutionarily labile process that can facilitate adaptation and contribute to species divergence.
Collapse
Affiliation(s)
- Charlotte J Wright
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK. .,Department of Zoology, University of Cambridge, Cambridge, UK.
| | | | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
16
|
Martinez Gomez L, Pozo F, Walsh TA, Abascal F, Tress ML. The clinical importance of tandem exon duplication-derived substitutions. Nucleic Acids Res 2021; 49:8232-8246. [PMID: 34302486 PMCID: PMC8373072 DOI: 10.1093/nar/gkab623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/21/2021] [Indexed: 01/04/2023] Open
Abstract
Most coding genes in the human genome are annotated with multiple alternative transcripts. However, clear evidence for the functional relevance of the protein isoforms produced by these alternative transcripts is often hard to find. Alternative isoforms generated from tandem exon duplication-derived substitutions are an exception. These splice events are rare, but have important functional consequences. Here, we have catalogued the 236 tandem exon duplication-derived substitutions annotated in the GENCODE human reference set. We find that more than 90% of the events have a last common ancestor in teleost fish, so are at least 425 million years old, and twenty-one can be traced back to the Bilateria clade. Alternative isoforms generated from tandem exon duplication-derived substitutions also have significantly more clinical impact than other alternative isoforms. Tandem exon duplication-derived substitutions have >25 times as many pathogenic and likely pathogenic mutations as other alternative events. Tandem exon duplication-derived substitutions appear to have vital functional roles in the cell and may have played a prominent part in metazoan evolution.
Collapse
Affiliation(s)
- Laura Martinez Gomez
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), C. Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| | - Fernando Pozo
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), C. Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| | - Thomas A Walsh
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), C. Melchor Fernandez Almagro, 3, 28029 Madrid, Spain.,Eukaryotic Annotation Team, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA. UK
| | - Federico Abascal
- Somatic Evolution Group, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Michael L Tress
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), C. Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| |
Collapse
|