1
|
Segers M, Skoruppa E, Schiessel H, Carlon E. Statistical mechanics of multiplectoneme phases in DNA. Phys Rev E 2025; 111:044408. [PMID: 40411083 DOI: 10.1103/physreve.111.044408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/06/2025] [Indexed: 05/26/2025]
Abstract
A stretched DNA molecule that is also under- or overwound undergoes a buckling transition, forming intertwined looped domains called plectonemes. Here we develop a simple theory that extends the two-phase model of stretched supercoiled DNA, allowing for the coexistence of multiple plectonemic domains by including positional and length distribution entropies. Such a multiplectoneme phase is favored in long DNA molecules in which the gain of positional entropy compensates for the cost of nucleating a plectoneme along a stretched DNA segment. Despite its simplicity, the developed theory is shown to be in excellent agreement with Monte Carlo simulations of the twistable wormlike chain model. The theory predicts more plectonemes than experimentally observed, which we attribute to the limited resolution of experimental data. Since plectonemes are detected through fluorescence signals, those shorter than the observable threshold are likely missed.
Collapse
Affiliation(s)
- Midas Segers
- KU Leuven, Soft Matter and Biophysics, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Enrico Skoruppa
- TU Dresden, Cluster of Excellence Physics of Life, 01062 Dresden, Germany
| | - Helmut Schiessel
- TU Dresden, Cluster of Excellence Physics of Life, 01062 Dresden, Germany
- TU Dresden, Institut für Theoretische Physik, 01062 Dresden, Germany
| | - Enrico Carlon
- KU Leuven, Soft Matter and Biophysics, Celestijnenlaan 200D, 3001 Leuven, Belgium
| |
Collapse
|
2
|
Alaoui HS, Quèbre V, Delimi L, Rech J, Debaugny-Diaz R, Labourdette D, Campos M, Cornet F, Walter JC, Bouet JY. In vivo assembly of bacterial partition condensates on circular supercoiled and linear DNA. Mol Microbiol 2025; 123:232-244. [PMID: 39109686 DOI: 10.1111/mmi.15297] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 03/12/2025]
Abstract
In bacteria, faithful DNA segregation of chromosomes and plasmids is mainly mediated by ParABS systems. These systems, consisting of a ParA ATPase, a DNA binding ParB CTPase, and centromere sites parS, orchestrate the separation of newly replicated DNA copies and their intracellular positioning. Accurate segregation relies on the assembly of a high-molecular-weight complex, comprising a few hundreds of ParB dimers nucleated from parS sites. This complex assembles in a multi-step process and exhibits dynamic liquid-droplet properties. Despite various proposed models, the complete mechanism for partition complex assembly remains elusive. This study investigates the impact of DNA supercoiling on ParB DNA binding profiles in vivo, using the ParABS system of the plasmid F. We found that variations in DNA supercoiling does not significantly affect any steps in the assembly of the partition complex. Furthermore, physical modeling, leveraging ChIP-seq data from linear plasmids F, suggests that ParB sliding is restricted to approximately 2 Kbp from parS, highlighting the necessity for additional mechanisms beyond ParB sliding over DNA for concentrating ParB into condensates nucleated at parS. Finally, explicit simulations of a polymer coated with bound ParB suggest a dominant role for ParB-ParB interactions in DNA compaction within ParB condensates.
Collapse
Affiliation(s)
- Hicham Sekkouri Alaoui
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse Paul Sabatier, UPS, Toulouse, France
| | - Valentin Quèbre
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse Paul Sabatier, UPS, Toulouse, France
| | - Linda Delimi
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
| | - Jérôme Rech
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse Paul Sabatier, UPS, Toulouse, France
| | - Roxanne Debaugny-Diaz
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse Paul Sabatier, UPS, Toulouse, France
| | | | - Manuel Campos
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse Paul Sabatier, UPS, Toulouse, France
| | - François Cornet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse Paul Sabatier, UPS, Toulouse, France
| | - Jean-Charles Walter
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
| | - Jean-Yves Bouet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse Paul Sabatier, UPS, Toulouse, France
| |
Collapse
|
3
|
Harju J, Broedersz CP. Physical models of bacterial chromosomes. Mol Microbiol 2025; 123:143-153. [PMID: 38578226 PMCID: PMC11841833 DOI: 10.1111/mmi.15257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024]
Abstract
The interplay between bacterial chromosome organization and functions such as transcription and replication can be studied in increasing detail using novel experimental techniques. Interpreting the resulting quantitative data, however, can be theoretically challenging. In this minireview, we discuss how connecting experimental observations to biophysical theory and modeling can give rise to new insights on bacterial chromosome organization. We consider three flavors of models of increasing complexity: simple polymer models that explore how physical constraints, such as confinement or plectoneme branching, can affect bacterial chromosome organization; bottom-up mechanistic models that connect these constraints to their underlying causes, for instance, chromosome compaction to macromolecular crowding, or supercoiling to transcription; and finally, data-driven methods for inferring interpretable and quantitative models directly from complex experimental data. Using recent examples, we discuss how biophysical models can both deepen our understanding of how bacterial chromosomes are structured and give rise to novel predictions about bacterial chromosome organization.
Collapse
Affiliation(s)
- Janni Harju
- Department of Physics and AstronomyVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Chase P. Broedersz
- Department of Physics and AstronomyVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Department of Physics, Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScienceLudwig‐Maximilian‐University MunichMunichGermany
| |
Collapse
|
4
|
Martin-Gonzalez A, Tišma M, Analikwu B, Barth A, Janissen R, Antar H, Kemps G, Gruber S, Dekker C. DNA supercoiling enhances DNA condensation by ParB proteins. Nucleic Acids Res 2024; 52:13255-13268. [PMID: 39441069 PMCID: PMC11602141 DOI: 10.1093/nar/gkae936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/27/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
The ParABS system plays a critical role in bacterial chromosome segregation. The key component of this system, ParB, loads and spreads along DNA to form a local protein-DNA condensate known as a partition complex. As bacterial chromosomes are heavily supercoiled due to the continuous action of RNA polymerases, topoisomerases and nucleoid-associated proteins, it is important to study the impact of DNA supercoiling on the ParB-DNA partition complex formation. Here, we use an in-vitro single-molecule assay to visualize ParB on supercoiled DNA. Unlike most DNA-binding proteins, individual ParB proteins are found to not pin plectonemes on supercoiled DNA, but freely diffuse along supercoiled DNA. We find that DNA supercoiling enhances ParB-DNA condensation, which initiates at lower ParB concentrations than on DNA that is torsionally relaxed. ParB proteins induce a DNA-protein condensate that strikingly absorbs all supercoiling writhe. Our findings provide mechanistic insights that have important implications for our understanding of bacterial chromosome organization and segregation.
Collapse
Affiliation(s)
- Alejandro Martin-Gonzalez
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Massweg 9, 2629HZ Delft, Netherlands
| | - Miloš Tišma
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Massweg 9, 2629HZ Delft, Netherlands
| | - Brian T Analikwu
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Massweg 9, 2629HZ Delft, Netherlands
| | - Anders Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Massweg 9, 2629HZ Delft, Netherlands
| | - Richard Janissen
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Massweg 9, 2629HZ Delft, Netherlands
- BITZ Transformation Lab, Deggendorf Institute of Technology, 94363 Oberschneiding, Germany
| | - Hammam Antar
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL); CH-1015 Lausanne, Switzerland
| | - Gianluca Kemps
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Massweg 9, 2629HZ Delft, Netherlands
| | - Stephan Gruber
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL); CH-1015 Lausanne, Switzerland
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Massweg 9, 2629HZ Delft, Netherlands
| |
Collapse
|
5
|
Tišma M, Kaljević J, Gruber S, Le TBK, Dekker C. Connecting the dots: key insights on ParB for chromosome segregation from single-molecule studies. FEMS Microbiol Rev 2024; 48:fuad067. [PMID: 38142222 PMCID: PMC10786196 DOI: 10.1093/femsre/fuad067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 12/25/2023] Open
Abstract
Bacterial cells require DNA segregation machinery to properly distribute a genome to both daughter cells upon division. The most common system involved in chromosome and plasmid segregation in bacteria is the ParABS system. A core protein of this system - partition protein B (ParB) - regulates chromosome organization and chromosome segregation during the bacterial cell cycle. Over the past decades, research has greatly advanced our knowledge of the ParABS system. However, many intricate details of the mechanism of ParB proteins were only recently uncovered using in vitro single-molecule techniques. These approaches allowed the exploration of ParB proteins in precisely controlled environments, free from the complexities of the cellular milieu. This review covers the early developments of this field but emphasizes recent advances in our knowledge of the mechanistic understanding of ParB proteins as revealed by in vitro single-molecule methods. Furthermore, we provide an outlook on future endeavors in investigating ParB, ParB-like proteins, and their interaction partners.
Collapse
Affiliation(s)
- Miloš Tišma
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology; Van der Maasweg 9, Delft, the Netherlands
| | - Jovana Kaljević
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney Lane, NR4 7UH Norwich, United Kingdom
| | - Stephan Gruber
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne, UNIL-Sorge, Biophore, CH-1015 Lausanne, Switzerland
| | - Tung B K Le
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney Lane, NR4 7UH Norwich, United Kingdom
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology; Van der Maasweg 9, Delft, the Netherlands
| |
Collapse
|
6
|
Junier I, Ghobadpour E, Espeli O, Everaers R. DNA supercoiling in bacteria: state of play and challenges from a viewpoint of physics based modeling. Front Microbiol 2023; 14:1192831. [PMID: 37965550 PMCID: PMC10642903 DOI: 10.3389/fmicb.2023.1192831] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/25/2023] [Indexed: 11/16/2023] Open
Abstract
DNA supercoiling is central to many fundamental processes of living organisms. Its average level along the chromosome and over time reflects the dynamic equilibrium of opposite activities of topoisomerases, which are required to relax mechanical stresses that are inevitably produced during DNA replication and gene transcription. Supercoiling affects all scales of the spatio-temporal organization of bacterial DNA, from the base pair to the large scale chromosome conformation. Highlighted in vitro and in vivo in the 1960s and 1970s, respectively, the first physical models were proposed concomitantly in order to predict the deformation properties of the double helix. About fifteen years later, polymer physics models demonstrated on larger scales the plectonemic nature and the tree-like organization of supercoiled DNA. Since then, many works have tried to establish a better understanding of the multiple structuring and physiological properties of bacterial DNA in thermodynamic equilibrium and far from equilibrium. The purpose of this essay is to address upcoming challenges by thoroughly exploring the relevance, predictive capacity, and limitations of current physical models, with a specific focus on structural properties beyond the scale of the double helix. We discuss more particularly the problem of DNA conformations, the interplay between DNA supercoiling with gene transcription and DNA replication, its role on nucleoid formation and, finally, the problem of scaling up models. Our primary objective is to foster increased collaboration between physicists and biologists. To achieve this, we have reduced the respective jargon to a minimum and we provide some explanatory background material for the two communities.
Collapse
Affiliation(s)
- Ivan Junier
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Université Grenoble Alpes, Grenoble, France
| | - Elham Ghobadpour
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Université Grenoble Alpes, Grenoble, France
- École Normale Supérieure (ENS) de Lyon, CNRS, Laboratoire de Physique and Centre Blaise Pascal de l'ENS de Lyon, Lyon, France
| | - Olivier Espeli
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Ralf Everaers
- École Normale Supérieure (ENS) de Lyon, CNRS, Laboratoire de Physique and Centre Blaise Pascal de l'ENS de Lyon, Lyon, France
| |
Collapse
|
7
|
Connolley L, Schnabel L, Thanbichler M, Murray SM. Partition complex structure can arise from sliding and bridging of ParB dimers. Nat Commun 2023; 14:4567. [PMID: 37516778 PMCID: PMC10387095 DOI: 10.1038/s41467-023-40320-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/20/2023] [Indexed: 07/31/2023] Open
Abstract
In many bacteria, chromosome segregation requires the association of ParB to the parS-containing centromeric region to form the partition complex. However, the structure and formation of this complex have been unclear. Recently, studies have revealed that CTP binding enables ParB dimers to slide along DNA and condense the centromeric region through the formation of DNA bridges. Using semi-flexible polymer simulations, we demonstrate that these properties can explain partition complex formation. Transient ParB bridges organize DNA into globular states or hairpins and helical structures, depending on bridge lifetime, while separate simulations show that ParB sliding reproduces the multi-peaked binding profile observed in Caulobacter crescentus. Combining sliding and bridging into a unified model, we find that short-lived ParB bridges do not impede sliding and can reproduce both the binding profile and condensation of the nucleoprotein complex. Overall, our model elucidates the mechanism of partition complex formation and predicts its fine structure.
Collapse
Affiliation(s)
- Lara Connolley
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology, 35043, Marburg, Germany
| | - Lucas Schnabel
- Department of Biology, University of Marburg, 35043, Marburg, Germany
| | - Martin Thanbichler
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology, 35043, Marburg, Germany
- Department of Biology, University of Marburg, 35043, Marburg, Germany
| | - Seán M Murray
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology, 35043, Marburg, Germany.
| |
Collapse
|