1
|
Flores-Valle A, Vishniakou I, Seelig JD. Dynamics of glia and neurons regulate homeostatic rest, sleep and feeding behavior in Drosophila. Nat Neurosci 2025:10.1038/s41593-025-01942-1. [PMID: 40259071 DOI: 10.1038/s41593-025-01942-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/19/2025] [Indexed: 04/23/2025]
Abstract
Homeostatic processes, including sleep, are critical for brain function. Here we identify astrocyte-like glia (or astrocytes, AL) and ensheathing glia (EG), the two major classes of glia that arborize inside the brain, as brain-wide, locally acting homeostats for the short, naturally occurring rest and sleep bouts of Drosophila, and show that a subset of neurons in the fan-shaped body encodes feeding homeostasis. We show that the metabolic gas carbon dioxide, changes in pH and behavioral activity all induce long-lasting calcium responses in EG and AL, and that calcium levels in both glia types show circadian modulation. The homeostatic dynamics of these glia can be modeled based on behavior. Additionally, local optogenetic activation of AL or EG is sufficient to induce rest. Together, these results suggest that glial calcium levels are homeostatic controllers of metabolic activity, thus establishing a link between metabolism, rest and sleep.
Collapse
Affiliation(s)
- Andres Flores-Valle
- Max Planck Institute for Neurobiology of Behavior - caesar (MPINB), Bonn, Germany.
| | - Ivan Vishniakou
- Max Planck Institute for Neurobiology of Behavior - caesar (MPINB), Bonn, Germany
| | - Johannes D Seelig
- Max Planck Institute for Neurobiology of Behavior - caesar (MPINB), Bonn, Germany.
| |
Collapse
|
2
|
Dai X, Le JQ, Ma D, Rosbash M. Four SpsP neurons are an integrating sleep regulation hub in Drosophila. SCIENCE ADVANCES 2024; 10:eads0652. [PMID: 39576867 PMCID: PMC11584021 DOI: 10.1126/sciadv.ads0652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024]
Abstract
Sleep is essential and highly conserved, yet its regulatory mechanisms remain largely unknown. To identify sleep drive neurons, we imaged Drosophila brains with calcium-modulated photoactivatable ratiometric integrator (CaMPARI). The results indicate that the activity of the protocerebral bridge (PB) correlates with sleep drive. We further identified a key three-layer PB circuit, EPG-SpsP-PEcG, in which the four SpsP neurons in the PB respond to ellipsoid body (EB) signals from EPG neurons and send signals back to the EB through PEcG neurons. This circuit is strengthened by sleep deprivation, indicating a plasticity response to sleep drive. SpsP neurons also receive inputs from the sensorimotor brain region, suggesting that they may encode sleep drive by integrating sensorimotor and navigation cues. Together, our experiments show that the four SpsP neurons and their sleep regulatory circuit play an important and dynamic role in sleep regulation.
Collapse
Affiliation(s)
- Xihuimin Dai
- Howard Hughes Medical Institute, Brandeis University, Waltham MA 02454, USA
| | - Jasmine Quynh Le
- Howard Hughes Medical Institute, Brandeis University, Waltham MA 02454, USA
| | - Dingbang Ma
- Howard Hughes Medical Institute, Brandeis University, Waltham MA 02454, USA
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Michael Rosbash
- Howard Hughes Medical Institute, Brandeis University, Waltham MA 02454, USA
| |
Collapse
|
3
|
Chaturvedi R, Emery P. Fly into tranquility: GABA's role in Drosophila sleep. CURRENT OPINION IN INSECT SCIENCE 2024; 64:101219. [PMID: 38848811 PMCID: PMC11290982 DOI: 10.1016/j.cois.2024.101219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
Sleep is conserved across the animal kingdom, and Drosophila melanogaster is a prime model to understand its intricate circadian and homeostatic control. GABA (gamma-aminobutyric acid), the brain's main inhibitory neurotransmitter, plays a central role in sleep. This review delves into GABA's complex mechanisms of actions within Drosophila's sleep-regulating neural networks. We discuss how GABA promotes sleep, both by inhibiting circadian arousal neurons and by being a key neurotransmitter in sleep homeostatic circuits. GABA's impact on sleep is modulated by glia through astrocytic GABA recapture and metabolism. Interestingly, GABA can be coexpressed with other neurotransmitters in sleep-regulating neurons, which likely contributes to context-based sleep plasticity.
Collapse
Affiliation(s)
- Ratna Chaturvedi
- Department of Neurobiology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Patrick Emery
- Department of Neurobiology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
4
|
Li X, Yang Y, Bai X, Wang X, Tan H, Chen Y, Zhu Y, Liu Q, Wu MN, Li Y. A brain-derived insulin signal encodes protein satiety for nutrient-specific feeding inhibition. Cell Rep 2024; 43:114282. [PMID: 38795342 PMCID: PMC11220824 DOI: 10.1016/j.celrep.2024.114282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 04/08/2024] [Accepted: 05/10/2024] [Indexed: 05/27/2024] Open
Abstract
The suppressive effect of insulin on food intake has been documented for decades. However, whether insulin signals can encode a certain type of nutrients to regulate nutrient-specific feeding behavior remains elusive. Here, we show that in female Drosophila, a pair of dopaminergic neurons, tritocerebrum 1-dopaminergic neurons (T1-DANs), are directly activated by a protein-intake-induced insulin signal from insulin-producing cells (IPCs). Intriguingly, opto-activating IPCs elicits feeding inhibition for both protein and sugar, while silencing T1-DANs blocks this inhibition only for protein food. Elevating insulin signaling in T1-DANs or opto-activating these neurons is sufficient to mimic protein satiety. Furthermore, this signal is conveyed to local neurons of the protocerebral bridge (PB-LNs) and specifically suppresses protein intake. Therefore, our findings reveal that a brain-derived insulin signal encodes protein satiety and suppresses feeding behavior in a nutrient-specific manner, shedding light on the functional specificity of brain insulin signals in regulating behaviors.
Collapse
Affiliation(s)
- Xiaoyu Li
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yang
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaobing Bai
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish Center for Education and Research, Beijing 100190, China
| | - Xiaotong Wang
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Houqi Tan
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanbo Chen
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Zhu
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish Center for Education and Research, Beijing 100190, China
| | - Qili Liu
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mark N Wu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yan Li
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish Center for Education and Research, Beijing 100190, China.
| |
Collapse
|
5
|
Ho MCW, Tabuchi M, Xie X, Brown MP, Luu S, Wang S, Kolodkin AL, Liu S, Wu MN. Sleep need-dependent changes in functional connectivity facilitate transmission of homeostatic sleep drive. Curr Biol 2022; 32:4957-4966.e5. [PMID: 36240772 PMCID: PMC9691613 DOI: 10.1016/j.cub.2022.09.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/28/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
How the homeostatic drive for sleep accumulates over time and is released remains poorly understood. In Drosophila, we previously identified the R5 ellipsoid body (EB) neurons as putative sleep drive neurons1 and recently described a mechanism by which astrocytes signal to these cells to convey sleep need.2 Here, we examine the mechanisms acting downstream of the R5 neurons to promote sleep. EM connectome data demonstrate that R5 neurons project to EPG neurons.3 Broad thermogenetic activation of EPG neurons promotes sleep, whereas inhibiting these cells reduces homeostatic sleep rebound. Perforated patch-clamp recordings reveal that EPG neurons exhibit elevated spontaneous firing following sleep deprivation, which likely depends on an increase in extrinsic excitatory inputs. Our data suggest that cholinergic R5 neurons participate in the homeostatic regulation of sleep, and epistasis experiments indicate that the R5 neurons act upstream of EPG neurons to promote sleep. Finally, we show that the physical and functional connectivity between the R5 and EPG neurons increases with greater sleep need. Importantly, dual patch-clamp recordings demonstrate that activating R5 neurons induces cholinergic-dependent excitatory postsynaptic responses in EPG neurons. Moreover, sleep loss triggers an increase in the amplitude of these responses, as well as in the proportion of EPG neurons that respond. Together, our data support a model whereby sleep drive strengthens the functional connectivity between R5 and EPG neurons, triggering sleep when a sufficient number of EPG neurons are activated. This process could enable the proper timing of the accumulation and release of sleep drive.
Collapse
Affiliation(s)
- Margaret C W Ho
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xiaojun Xie
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Matthew P Brown
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Skylar Luu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Serena Wang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alex L Kolodkin
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sha Liu
- VIB Center for Brain & Disease Research and Department of Neurosciences, KU Leuven, Leuven 3000, Belgium
| | - Mark N Wu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
6
|
Dissel S, Klose MK, van Swinderen B, Cao L, Ford M, Periandri EM, Jones JD, Li Z, Shaw PJ. Sleep-promoting neurons remodel their response properties to calibrate sleep drive with environmental demands. PLoS Biol 2022; 20:e3001797. [PMID: 36173939 PMCID: PMC9521806 DOI: 10.1371/journal.pbio.3001797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 08/16/2022] [Indexed: 01/29/2023] Open
Abstract
Falling asleep at the wrong time can place an individual at risk of immediate physical harm. However, not sleeping degrades cognition and adaptive behavior. To understand how animals match sleep need with environmental demands, we used live-brain imaging to examine the physiological response properties of the dorsal fan-shaped body (dFB) following interventions that modify sleep (sleep deprivation, starvation, time-restricted feeding, memory consolidation) in Drosophila. We report that dFB neurons change their physiological response-properties to dopamine (DA) and allatostatin-A (AstA) in response to different types of waking. That is, dFB neurons are not simply passive components of a hard-wired circuit. Rather, the dFB neurons intrinsically regulate their response to the activity from upstream circuits. Finally, we show that the dFB appears to contain a memory trace of prior exposure to metabolic challenges induced by starvation or time-restricted feeding. Together, these data highlight that the sleep homeostat is plastic and suggests an underlying mechanism.
Collapse
Affiliation(s)
- Stephane Dissel
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
- * E-mail: (SD); (PJS)
| | - Markus K. Klose
- University of Pittsburgh School of Medicine, Department of Pharmacology & Chemical Biology, Pittsburgh, Pennsylvania, United States of America
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, St Lucia, Australia
| | - Lijuan Cao
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Melanie Ford
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Erica M. Periandri
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Joseph D. Jones
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Zhaoyi Li
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Paul J. Shaw
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: (SD); (PJS)
| |
Collapse
|