1
|
Ochoa-Martínez P, López-Monteon A, López-Domínguez J, Manning-Cela RG, Ramos-Ligonio A. Expression Analysis of Thirteen Genes in Response to Nifurtimox and Benznidazole in Mexican Isolates of Trypanosoma cruzi by Digital PCR. Acta Parasitol 2025; 70:15. [PMID: 39775310 DOI: 10.1007/s11686-024-00986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/07/2024] [Indexed: 01/11/2025]
Abstract
Despite being the most relevant and critical option for managing Chagas disease, pharmacological therapy is currently limited by the availability of only two drugs, benznidazole and nifurtimox. Their effectiveness is further restricted in the chronic phase of the infection, as they induce severe side effects and require prolonged treatment. Additionally, the use of these drugs can lead to the emergence of substantial resistance problems, compounded by the potential natural resistance of some parasite isolates. This study analyzes the expression of 13 genes by digital PCR in four Mexican T. cruzi isolates treated with NFX and BZN. Each isolate exhibited a unique combination of enzyme expression in response to the oxidative stress induced by the antichagasic agents. Notably, we observed the overexpression of cruzipain (CZP), L-threonine dehydrogenase (TDH), and detoxification-related enzymes such as Glutathionyl spermidine synthetase (GST) and Superoxide dismutase-A (SOD). These findings highlight the need for further studies to elucidate the molecular mechanisms underlying this resistance, which pose both unexpected challenges for Chagas disease therapy and a biological barrier to the action of these drugs. These findings highlight the need for further studies to understand how these resistance mechanisms contribute to treatment failure and constitute a biological barrier to drug action.
Collapse
Affiliation(s)
- Paulina Ochoa-Martínez
- Doctorado en Ciencias Biomédicas, Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Veracruz, Mexico
- Edificio D, Facultad de Ciencias Químicas, LADISER Inmunología y Biología Molecular, Universidad Veracruzana, Orizaba, Veracruz, México
| | - Aracely López-Monteon
- Edificio D, Facultad de Ciencias Químicas, LADISER Inmunología y Biología Molecular, Universidad Veracruzana, Orizaba, Veracruz, México
- Asociacion Chagas con Ciencia y Conocimiento A.C, Orizaba, Veracruz, México
| | - Jaime López-Domínguez
- Edificio D, Facultad de Ciencias Químicas, LADISER Inmunología y Biología Molecular, Universidad Veracruzana, Orizaba, Veracruz, México
- Laboratorio de Biotecnología, Universidad Politécnica de Huatusco, Huatusco de Chicuellar, Veracruz, México
| | - Rebeca Georgina Manning-Cela
- Asociacion Chagas con Ciencia y Conocimiento A.C, Orizaba, Veracruz, México
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Zacatenco. CDMX, México
| | - Angel Ramos-Ligonio
- Edificio D, Facultad de Ciencias Químicas, LADISER Inmunología y Biología Molecular, Universidad Veracruzana, Orizaba, Veracruz, México.
- Asociacion Chagas con Ciencia y Conocimiento A.C, Orizaba, Veracruz, México.
- Edificio D, Facultad de Ciencias Químicas, LADISER Inmunología y Biología Molecular, Universidad, Prolongación de Oriente 6 #1009; Colonia Rafael Alvarado, Orizaba, C.P. 94340; 86039, México.
| |
Collapse
|
2
|
Biswas K, Dey S, Singh A. Sequestration of gene products by decoys enhances precision in the timing of intracellular events. Sci Rep 2024; 14:27199. [PMID: 39516495 PMCID: PMC11549397 DOI: 10.1038/s41598-024-75505-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Expressed gene products often interact ubiquitously with binding sites at nucleic acids and macromolecular complexes, known as decoys. The binding of transcription factors (TFs) to decoys can be crucial in controlling the stochastic dynamics of gene expression. Here, we explore the impact of decoys on the timing of intracellular events, as captured by the time taken for the levels of a given TF to reach a critical threshold level, known as the first passage time (FPT). Although nonlinearity introduced by binding makes exact mathematical analysis challenging, employing suitable approximations and reformulating FPT in terms of an alternative variable, we analytically assess the impact of decoys. The stability of the decoy-bound TFs against degradation impacts FPT statistics crucially. Decoys reduce noise in FPT, and stable decoy-bound TFs offer greater timing precision with less expression cost than their unstable counterparts. Interestingly, when both bound and free TFs decay at the same rate, decoy binding does not directly alter FPT noise. We verify these results by performing exact stochastic simulations. These results have important implications for the precise temporal scheduling of events involved in the functioning of biomolecular clocks, development processes, cell-cycle control, and cell-size homeostasis.
Collapse
Affiliation(s)
- Kuheli Biswas
- Department of Chemical Engineering, Network Biology Research Lab, Technion, Israel Institute of Technology, Haifa, Israel.
| | - Supravat Dey
- Department of Physics and Department Computer Science and Engineering, SRM University - AP, Amaravati, Andhra Pradesh, 522240, India.
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, Biomedical Engineering, Mathematical Sciences, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
3
|
Ali MZ, Guharajan S, Parisutham V, Brewster RC. Regulatory properties of transcription factors with diverse mechanistic function. PLoS Comput Biol 2024; 20:e1012194. [PMID: 38857275 PMCID: PMC11192337 DOI: 10.1371/journal.pcbi.1012194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/21/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024] Open
Abstract
Transcription factors (TFs) regulate the process of transcription through the modulation of different kinetic steps. Although models can often describe the observed transcriptional output of a measured gene, predicting a TFs role on a given promoter requires an understanding of how the TF alters each step of the transcription process. In this work, we use a simple model of transcription to assess the role of promoter identity, and the degree to which TFs alter binding of RNAP (stabilization) and initiation of transcription (acceleration) on three primary characteristics: the range of steady-state regulation, cell-to-cell variability in expression, and the dynamic response time of a regulated gene. We find that steady state regulation and the response time of a gene behave uniquely for TFs that regulate incoherently, i.e that speed up one step but slow the other. We also find that incoherent TFs have dynamic implications, with one type of incoherent mode configuring the promoter to respond more slowly at intermediate TF concentrations. We also demonstrate that the noise of gene expression for these TFs is sensitive to promoter strength, with a distinct non-monotonic profile that is apparent under stronger promoters. Taken together, our work uncovers the coupling between promoters and TF regulatory modes with implications for understanding natural promoters and engineering synthetic gene circuits with desired expression properties.
Collapse
Affiliation(s)
- Md Zulfikar Ali
- Department of Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Geology, Physics and Environmental Science, University of Southern Indiana, Evansville, Indiana, United States of America
| | - Sunil Guharajan
- Department of Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Vinuselvi Parisutham
- Department of Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Robert C. Brewster
- Department of Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
4
|
Fu Z, Shi Y, Yu S, Zhao Q, Mo H, Yang P. Variation of gene expression of fatty acid acyl CoA reductase associated with wax secretion of a scale insect, Ericerus pela, and identification of its regulation factors through the accessible chromatin analyses and yeast one-hybrid. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22101. [PMID: 38500444 DOI: 10.1002/arch.22101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/11/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
The Chinese white wax scale insect (CWWSI), Ericerus pela, can secret an amount of wax equivalent to their body weight. Previous studies demonstrated the fatty acyl-CoA reductase (far3) plays a pivotal role in wax secretion of CWWSI. The high expression of far3 is crucial for the massive wax secretion. However, the transcription regulation of far3 was not clear. To identify regulatory factors that control the expression of far3, the assay for transposase-accessible chromatin (ATAC) and yeast one-hybrid (Y1H) were carried out in this study. The ATAC sequencing of the CWWSI at the early wax-secretion stage ATAC-seq resulted in 22.75 GB raw data, generated 75,827,225 clean reads and revealed 142,771 peaks. There was one significant peak in the 3 kb upstream regulation regions. The peak sequence is located between -1000 and -670 bp upstream of the far3 transcription start site, spanning a length of 331 bp. This peak sequence served as bait for creating the pAbAi-peak recombinant vector, used in Y1H screenings to identify proteins interacting with far3 gene. The results indicate a successful CWWSI cDNA library construction with a capacity of 1.2 × 107 colony forming unit, a 95.8% recombination rate, and insert sizes between 1,000 and 2,000 bp. Self-activation tests established that 100 ng/mL of AbA effectively inhibited bait vector self-activation. Finally, a total of 88 positive clones were selected. After sequencing and removal of duplication, 63 unique clones were obtained from these screened colonies. By aligning the clone sequences with full-length transcriptome and genome of CWWSI, the full-length coding sequences of these clones were obtained. BlastX analysis identified a transcription factor, nuclear transcription factor Y beta, and two co-activators, cAMP-response-element-binding-protein-binding protein and WW domain binding protein 2. Reverse transcription quantitative polymerase chain reaction analysis confirmed that their expression patterns were consistent with the developmental stages preceding wax secretion and matched the wax secretion characteristics during ovulation periods. These results are beneficial for further research into the regulatory mechanisms of wax secretion of CWWSI.
Collapse
Affiliation(s)
- Zuoyi Fu
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- Nanjing Forestry University, Nanjing, China
| | - Yuanchong Shi
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
| | - Shuhui Yu
- College of Agriculture and Life Sciences, Kunming University, Kunming, China
| | - Qiuyu Zhao
- College of Agriculture and Life Sciences, Kunming University, Kunming, China
| | - Haifeng Mo
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
| | - Pu Yang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Kunming, China
| |
Collapse
|
5
|
Boe RH, Ayyappan V, Schuh L, Raj A. Allelic correlation is a marker of trade-offs between barriers to transmission of expression variability and signal responsiveness in genetic networks. Cell Syst 2022; 13:1016-1032.e6. [PMID: 36450286 PMCID: PMC9811561 DOI: 10.1016/j.cels.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/28/2022] [Accepted: 10/28/2022] [Indexed: 12/03/2022]
Abstract
Genetic networks should respond to signals but prevent the transmission of spontaneous fluctuations. Limited data from mammalian cells suggest that noise transmission is uncommon, but systematic claims about noise transmission have been limited by the inability to directly measure it. Here, we build a mathematical framework modeling allelic correlation and noise transmission, showing that allelic correlation and noise transmission correspond across model parameters and network architectures. Limiting noise transmission comes with the trade-off of being unresponsive to signals, and within responsive regimes, there is a further trade-off between response time and basal noise transmission. Analysis of allele-specific single-cell RNA-sequencing data revealed that genes encoding upstream factors in signaling pathways and cell-type-specific factors have higher allelic correlation than downstream factors, suggesting they are more subject to regulation. Overall, our findings suggest that some noise transmission must result from signal responsiveness, but it can be minimized by trading off for a slower response. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Ryan H Boe
- Genetics and Epigenetics, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vinay Ayyappan
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Lea Schuh
- Institute of AI for Health, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; Department of Mathematics, Technical University of Munich, Garching 85748, Germany
| | - Arjun Raj
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Gao R, Brokaw SE, Li Z, Helfant LJ, Wu T, Malik M, Stock AM. Exploring the mono-/bistability range of positively autoregulated signaling systems in the presence of competing transcription factor binding sites. PLoS Comput Biol 2022; 18:e1010738. [PMID: 36413575 PMCID: PMC9725139 DOI: 10.1371/journal.pcbi.1010738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/06/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
Binding of transcription factor (TF) proteins to regulatory DNA sites is key to accurate control of gene expression in response to environmental stimuli. Theoretical modeling of transcription regulation is often focused on a limited set of genes of interest, while binding of the TF to other genomic sites is seldom considered. The total number of TF binding sites (TFBSs) affects the availability of TF protein molecules and sequestration of a TF by TFBSs can promote bistability. For many signaling systems where a graded response is desirable for continuous control over the input range, biochemical parameters of the regulatory proteins need be tuned to avoid bistability. Here we analyze the mono-/bistable parameter range for positively autoregulated two-component systems (TCSs) in the presence of different numbers of competing TFBSs. TCS signaling, one of the major bacterial signaling strategies, couples signal perception with output responses via protein phosphorylation. For bistability, competition for TF proteins by TFBSs lowers the requirement for high fold change of the autoregulated transcription but demands high phosphorylation activities of TCS proteins. We show that bistability can be avoided with a low phosphorylation capacity of TCSs, a high TF affinity for the autoregulated promoter or a low fold change in signaling protein levels upon induction. These may represent general design rules for TCSs to ensure uniform graded responses. Examining the mono-/bistability parameter range allows qualitative prediction of steady-state responses, which are experimentally validated in the E. coli CusRS system.
Collapse
Affiliation(s)
- Rong Gao
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Samantha E. Brokaw
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Zeyue Li
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Libby J. Helfant
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Ti Wu
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Muhammad Malik
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Ann M. Stock
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| |
Collapse
|