1
|
Liang YP, Zhao YL, Yin ZW, Gong XW, Han XL, Wen ML. Conserved Local Structural Motifs in Glycoside Hydrolase Families Facilitate the Discovery of Functional Enzymes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11983-11997. [PMID: 40324897 DOI: 10.1021/acs.jafc.4c10554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Glycoside hydrolases (GHs) are vital for natural glycoside biotransformation, especially in enhancing the pharmacological effects of natural products like ginsenosides. In this study, we collected 67 microbial-derived ginsenoside-hydrolyzing enzymes from nine GH families. Despite differences in global structures, the key residues surrounding substrate binding in GH1 and GH3 exhibit conserved structural motifs. Leveraging these motifs, five GH genes from Cellulosimicrobium were cloned, and three enzymes (Cbgl496, Cbgl516, Cbgl766) were characterized. Experimental results demonstrated that Cbgl516, Cbgl766, and Cbgl841 specifically catalyzed the hydrolysis of the β(1-6) glycosidic bond in the C-20 sugar chain of ginsenoside Rb1 to yield Rd. Cbgl496 selectively catalyzed the hydrolysis of β(1-2) glycosidic bonds in the oligosaccharide chains at the C-3 position of ginsenosides Rb1, Rb2, Rb3, and Rc, thereby directionally producing the minor ginsenosides Gy XVII, Compound O, Compound Mx1, and Compound Mc1. Structural analysis of 109,994 GH1/GH3 models from AlphaFold database revealed conserved residues across various organisms, emphasizing evolutionary conservation in the 3D structure of the catalytic core region despite sequence diversity. This study underscores the importance of conserved local structural motifs in GHs, offering insights for functional enzyme screening and understanding enzyme diversity and industrial applications.
Collapse
Affiliation(s)
- Yu-Peng Liang
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650500, Yunnan, China
| | - Ya-Lan Zhao
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650500, Yunnan, China
| | - Zhong-Wei Yin
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650500, Yunnan, China
| | - Xiao-Wei Gong
- R&D Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming 650224, China
| | - Xiu-Lin Han
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650500, Yunnan, China
| | - Meng-Liang Wen
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650500, Yunnan, China
| |
Collapse
|
2
|
Sankar S, Vasudevan S, Chandra N. CRD: A de novo design algorithm for the prediction of cognate protein receptors for small molecule ligands. Structure 2024; 32:362-375.e4. [PMID: 38194962 DOI: 10.1016/j.str.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/20/2023] [Accepted: 12/13/2023] [Indexed: 01/11/2024]
Abstract
While predicting a ligand that binds to a protein is feasible with current methods, the opposite, i.e., the prediction of a receptor for a ligand remains challenging. We present an approach for predicting receptors of a given ligand that uses de novo design and structural bioinformatics. We have developed the algorithm CRD, comprising multiple modules combining fragment-based sub-site finding, a machine learning function to estimate the size of the site, a genetic algorithm that encodes knowledge on protein structures and a physics-based fitness scoring scheme. CRD includes a pseudo-receptor design component followed by a mapping component to identify proteins that might contain these sites. CRD recovers the sites and receptors of several natural ligands. It designs similar sites for similar ligands, yet to some extent can distinguish between closely related ligands. CRD correctly predicts receptor classes for several drugs and might become a valuable tool for drug discovery.
Collapse
Affiliation(s)
- Santhosh Sankar
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sneha Vasudevan
- IISc Mathematics Initiative, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India; Department of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| |
Collapse
|
3
|
Zhao Y, Liang Y, Luo G, Li Y, Han X, Wen M. Sequence-Structure Analysis Unlocking the Potential Functional Application of the Local 3D Motifs of Plant-Derived Diterpene Synthases. Biomolecules 2024; 14:120. [PMID: 38254720 PMCID: PMC10813164 DOI: 10.3390/biom14010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/31/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Plant-derived diterpene synthases (PdiTPSs) play a critical role in the formation of structurally and functionally diverse diterpenoids. However, the specificity or functional-related features of PdiTPSs are not well understood. For a more profound insight, we collected, constructed, and curated 199 functionally characterized PdiTPSs and their corresponding 3D structures. The complex correlations among their sequences, domains, structures, and corresponding products were comprehensively analyzed. Ultimately, our focus narrowed to the geometric arrangement of local structures. We found that local structural alignment can rapidly localize product-specific residues that have been validated by mutagenesis experiments. Based on the 3D motifs derived from the residues around the substrate, we successfully searched diterpene synthases (diTPSs) from the predicted terpene synthases and newly characterized PdiTPSs, suggesting that the identified 3D motifs can serve as distinctive signatures in diTPSs (I and II class). Local structural analysis revealed the PdiTPSs with more conserved amino acid residues show features unique to class I and class II, whereas those with fewer conserved amino acid residues typically exhibit product diversity and specificity. These results provide an attractive method for discovering novel or functionally equivalent enzymes and probing the product specificity in cases where enzyme characterization is limited.
Collapse
Affiliation(s)
- Yalan Zhao
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yupeng Liang
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Gan Luo
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yi Li
- College of Mathematics and Computer Science, Dali University, Dali 671003, China
| | - Xiulin Han
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Mengliang Wen
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
4
|
Sankar S, Preeti P, Ravikumar K, Kumar A, Prasad Y, Pal S, Rao DN, Savithri HS, Chandra N. Structural similarities between SAM and ATP recognition motifs and detection of ATP binding in a SAM binding DNA methyltransferase. Curr Res Struct Biol 2023; 6:100108. [PMID: 38106461 PMCID: PMC10724544 DOI: 10.1016/j.crstbi.2023.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/05/2023] [Accepted: 10/24/2023] [Indexed: 12/19/2023] Open
Abstract
S-adenosylmethionine (SAM) is a ubiquitous co-factor that serves as a donor for methylation reactions and additionally serves as a donor of other functional groups such as amino and ribosyl moieties in a variety of other biochemical reactions. Such versatility in function is enabled by the ability of SAM to be recognized by a wide variety of protein molecules that vary in their sequences and structural folds. To understand what gives rise to specific SAM binding in diverse proteins, we set out to study if there are any structural patterns at their binding sites. A comprehensive analysis of structures of the binding sites of SAM by all-pair comparison and clustering, indicated the presence of 4 different site-types, only one among them being well studied. For each site-type we decipher the common minimum principle involved in SAM recognition by diverse proteins and derive structural motifs that are characteristic of SAM binding. The presence of the structural motifs with precise three-dimensional arrangement of amino acids in SAM sites that appear to have evolved independently, indicates that these are winning arrangements of residues to bring about SAM recognition. Further, we find high similarity between one of the SAM site types and a well known ATP binding site type. We demonstrate using in vitro experiments that a known SAM binding protein, HpyAII.M1, a type 2 methyltransferase can bind and hydrolyse ATP. We find common structural motifs that explain this, further supported through site-directed mutagenesis. Observation of similar motifs for binding two of the most ubiquitous ligands in multiple protein families with diverse sequences and structural folds presents compelling evidence at the molecular level in favour of convergent evolution.
Collapse
Affiliation(s)
- Santhosh Sankar
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Preeti Preeti
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Kavya Ravikumar
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Amrendra Kumar
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Yedu Prasad
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Sukriti Pal
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Desirazu N. Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Handanahal S. Savithri
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
- Department of BioEngineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| |
Collapse
|
5
|
Sankar S, Chandran Sakthivel N, Chandra N. Fast Local Alignment of Protein Pockets (FLAPP): A System-Compiled Program for Large-Scale Binding Site Alignment. J Chem Inf Model 2022; 62:4810-4819. [PMID: 36122166 DOI: 10.1021/acs.jcim.2c00967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein function is a direct consequence of its sequence, structure, and the arrangement at the binding site. Bioinformatics using sequence analysis is typically used to gain a first insight into protein function. Protein structures, on the other hand, provide a higher resolution platform into understanding functions. As the protein structural information is increasingly becoming available through experimental structure determination and through advances in computational methods for structure prediction, the opportunity to utilize these data is also increasing. Structural analysis of small molecule ligand binding sites in particular provides a direct and more accurate window to infer protein function. However, it remains a poorly utilized resource due to the huge computational cost of existing methods that make large-scale structural comparisons of binding sites prohibitive. Here, we present an algorithm called FLAPP that produces very rapid atomic level alignments. By combining clique matching in graphs and the power of modern CPU architectures, FLAPP aligns a typical pair of binding sites at ∼12.5 ms using a single CPU core, ∼1 ms using 12 cores on a standard desktop machine, and performs a PDB-wide scan in 1-2 min. We perform rigorous validation of the algorithm at multiple levels of complexity and show that FLAPP provides accurate alignments. We also present a case study involving vitamin B12 binding sites to showcase the usefulness of FLAPP for performing an exhaustive alignment-based PDB-wide scan. We expect that this tool will be invaluable to the scientific community to quickly align millions of site pairs on a normal desktop machine to gain insights into protein function and drug discovery for drug target and off-target identification and polypharmacology.
Collapse
Affiliation(s)
- Santhosh Sankar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | | | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India.,BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|