1
|
Falahati H, Wu Y, Fang M, De Camilli P. Ectopic reconstitution of a spine-apparatus-like structure provides insight into mechanisms underlying its formation. Curr Biol 2025; 35:265-276.e4. [PMID: 39626668 PMCID: PMC11753949 DOI: 10.1016/j.cub.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/25/2024] [Accepted: 11/06/2024] [Indexed: 12/11/2024]
Abstract
The endoplasmic reticulum (ER) is a continuous cellular endomembrane network that displays focal specializations. Most notable examples of such specializations include the spine apparatus of neuronal dendrites and the cisternal organelle of axonal initial segments. Both organelles exhibit stacks of smooth ER sheets with a narrow lumen, interconnected by a dense protein matrix. The actin-binding protein synaptopodin is required for their formation, but the underlying mechanisms remain unknown. Here, we report that the spine apparatus and synaptopodin are conserved from flies to mammals and that a highly conserved region of this protein is necessary, but not sufficient, for its association with ER. We reveal a dual role of synaptopodin in generating actin bundles and in linking them to the ER. Expression of a synaptopodin construct constitutively anchored to the ER in non-neuronal cells is sufficient to generate stacked ER cisterns resembling the spine apparatus. Cisterns within these stacks are molecularly distinct from the surrounding ER and are connected to each other by an actin-based matrix that contains proteins also found at the spine apparatus of neuronal spines. Our findings shed light on mechanisms governing the biogenesis of this peculiar structure and represent a step toward understanding the elusive properties of this organelle.
Collapse
Affiliation(s)
- Hanieh Falahati
- Departments of Neuroscience and of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yumei Wu
- Departments of Neuroscience and of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mumu Fang
- Departments of Neuroscience and of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, CT 06510, USA
| | - Pietro De Camilli
- Departments of Neuroscience and of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
2
|
Wu PY, Inglebert Y, McKinney RA. Synaptopodin: a key regulator of Hebbian plasticity. Front Cell Neurosci 2024; 18:1482844. [PMID: 39569068 PMCID: PMC11576213 DOI: 10.3389/fncel.2024.1482844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/25/2024] [Indexed: 11/22/2024] Open
Abstract
Synaptopodin, an actin-associated protein found in a subset of dendritic spines in telencephalic neurons, has been described to influence both functional and morphological plasticity under various plasticity paradigms. Synaptopodin is necessary and sufficient for the formation of the spine apparatus, stacks of smooth endoplasmic reticulum cisternae. The spine apparatus is a calcium store that locally regulates calcium dynamics in response to different patterns of activity and is also thought to be a site for local protein synthesis. Synaptopodin is present in ~30% of telencephalic large dendritic spines in vivo and in vitro highlighting the heterogeneous microanatomy and molecular architecture of dendritic spines, an important but not well understood aspect of neuroplasticity. In recent years, it has become increasingly clear that synaptopodin is a formidable regulator of multiple mechanisms essential for learning and memory. In fact, synaptopodin appears to be the decisive factor that determines whether plasticity can occur, acting as a key regulator for synaptic changes. In this review, we summarize the current understanding of synaptopodin's role in various forms of Hebbian synaptic plasticity.
Collapse
Affiliation(s)
- Pei You Wu
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| | - Yanis Inglebert
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montreal, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA), Montreal, QC, Canada
| | - R Anne McKinney
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
Lenz M, Kruse P, Eichler A, Straehle J, Hemeling H, Stöhr P, Beck J, Vlachos A. Clinical parameters affect the structure and function of superficial pyramidal neurons in the adult human neocortex. Brain Commun 2024; 6:fcae351. [PMID: 39474044 PMCID: PMC11518857 DOI: 10.1093/braincomms/fcae351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/12/2024] [Accepted: 10/04/2024] [Indexed: 01/05/2025] Open
Abstract
The interplay between neuronal structure and function underpins the dynamic nature of neocortical networks. Despite extensive studies in animal models, our understanding of structure-function interrelations in the adult human brain remains incomplete. Recent methodological advances have facilitated the functional analysis of individual neurons within the human neocortex, providing a new understanding of fundamental brain processes. However, the factors contributing to patient-specific neuronal properties have not been thoroughly explored. In this observational study, we investigated the structural and functional variability of superficial pyramidal neurons in the adult human neocortex. Using whole-cell patch-clamp recordings and post hoc analyses of dendritic spine morphology in acute neocortical slice preparations from surgical resections of seven patients, we assessed age-related effects on excitatory neurotransmission, membrane properties and dendritic spine morphologies. These results specify age as an endogenous factor that might affect the structural and functional properties of superficial pyramidal neurons.
Collapse
Affiliation(s)
- Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Pia Kruse
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Amelie Eichler
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Jakob Straehle
- Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center for Advanced Surgical Tissue Analysis (CAST), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Hanna Hemeling
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Phyllis Stöhr
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center for Advanced Surgical Tissue Analysis (CAST), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Center for Advanced Surgical Tissue Analysis (CAST), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, 79110 Freiburg, Germany
| |
Collapse
|
4
|
Akhgari A, Michel TM, Vafaee MS. Dendritic spines and their role in the pathogenesis of neurodevelopmental and neurological disorders. Rev Neurosci 2024; 35:489-502. [PMID: 38440811 DOI: 10.1515/revneuro-2023-0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/02/2024] [Indexed: 03/06/2024]
Abstract
Since Cajal introduced dendritic spines in the 19th century, they have attained considerable attention, especially in neuropsychiatric and neurologic disorders. Multiple roles of dendritic spine malfunction and pathology in the progression of various diseases have been reported. Thus, it is inevitable to consider these structures as new therapeutic targets for treating neuropsychiatric and neurologic disorders such as autism spectrum disorders, schizophrenia, dementia, Down syndrome, etc. Therefore, we attempted to prepare a narrative review of the literature regarding the role of dendritic spines in the pathogenesis of aforementioned diseases and to shed new light on their pathophysiology.
Collapse
Affiliation(s)
- Aisan Akhgari
- Student Research Committee, Tabriz University of Medical Sciences, Golgasht Street, Tabriz 5166616471, Iran
| | - Tanja Maria Michel
- Research Unit for Psychiatry, Odense University Hospital, J. B. Winsløws Vej 4, Odense 5000, Denmark
- Clinical Institute, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Manouchehr Seyedi Vafaee
- Research Unit for Psychiatry, Odense University Hospital, J. B. Winsløws Vej 4, Odense 5000, Denmark
- Clinical Institute, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| |
Collapse
|
5
|
Lee CT, Bell M, Bonilla-Quintana M, Rangamani P. Biophysical Modeling of Synaptic Plasticity. Annu Rev Biophys 2024; 53:397-426. [PMID: 38382115 DOI: 10.1146/annurev-biophys-072123-124954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Dendritic spines are small, bulbous compartments that function as postsynaptic sites and undergo intense biochemical and biophysical activity. The role of the myriad signaling pathways that are implicated in synaptic plasticity is well studied. A recent abundance of quantitative experimental data has made the events associated with synaptic plasticity amenable to quantitative biophysical modeling. Spines are also fascinating biophysical computational units because spine geometry, signal transduction, and mechanics work in a complex feedback loop to tune synaptic plasticity. In this sense, ideas from modeling cell motility can inspire us to develop multiscale approaches for predictive modeling of synaptic plasticity. In this article, we review the key steps in postsynaptic plasticity with a specific focus on the impact of spine geometry on signaling, cytoskeleton rearrangement, and membrane mechanics. We summarize the main experimental observations and highlight how theory and computation can aid our understanding of these complex processes.
Collapse
Affiliation(s)
- Christopher T Lee
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| | - Miriam Bell
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| | - Mayte Bonilla-Quintana
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| |
Collapse
|
6
|
Yang W, Chen C, Jiang X, Zhao Y, Wang J, Zhang Q, Zhang J, Feng Y, Cui S. CACNA1B protects naked mole-rat hippocampal neuron from apoptosis via altering the subcellular localization of Nrf2 after 60Co irradiation. Cell Biol Int 2024; 48:695-711. [PMID: 38389270 DOI: 10.1002/cbin.12140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/19/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
Although radiotherapy is the most effective treatment modality for brain tumors, it always injures the central nervous system, leading to potential sequelae such as cognitive dysfunction. Radiation induces molecular, cellular, and functional changes in neuronal and glial cells. The hippocampus plays a critical role in learning and memory; therefore, concerns about radiation-induced injury are widespread. Multiple studies have focused on this complex problem, but the results have not been fully elucidated. Naked mole rat brains were irradiated with 60Co at a dose of 10 Gy. On 7 days, 14 days, and 28 days after irradiation, hippocampi in the control groups were obtained for next-generation sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were subsequently performed. Venn diagrams revealed 580 differentially expressed genes (DEGs) that were common at different times after irradiation. GO and KEGG analyses revealed that the 580 common DEGs were enriched in molecular transducer activity. In particular, CACNA1B mediated regulatory effects after irradiation. CACNA1B expression increased significantly after irradiation. Downregulation of CACNA1B led to a reduction in apoptosis and reactive oxygen species levels in hippocampal neurons. This was due to the interaction between CACNA1B and Nrf2, which disturbed the normal nuclear localization of Nrf2. In addition, CACNA1B downregulation led to a decrease in the cognitive functions of naked mole rats. These findings reveal the pivotal role of CACNA1B in regulating radiation-induced brain injury and will lead to the development of a novel strategy to prevent brain injury after irradiation.
Collapse
Affiliation(s)
- Wenjing Yang
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| | - Chao Chen
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| | - Xiaolong Jiang
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| | - Yining Zhao
- Clinical Laboratory, Shanghai Yangpu district mental health center, Shanghai University of Medicine and Health Sciences Teaching Hospital, Shanghai, China
| | - Junyang Wang
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| | - Qianqian Zhang
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| | - Jingyuan Zhang
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| | - Yan Feng
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| | - Shufang Cui
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| |
Collapse
|
7
|
Li G, McLaughlin DW, Peskin CS. A biochemical description of postsynaptic plasticity-with timescales ranging from milliseconds to seconds. Proc Natl Acad Sci U S A 2024; 121:e2311709121. [PMID: 38324573 PMCID: PMC10873618 DOI: 10.1073/pnas.2311709121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/29/2023] [Indexed: 02/09/2024] Open
Abstract
Synaptic plasticity [long-term potentiation/depression (LTP/D)], is a cellular mechanism underlying learning. Two distinct types of early LTP/D (E-LTP/D), acting on very different time scales, have been observed experimentally-spike timing dependent plasticity (STDP), on time scales of tens of ms; and behavioral time scale synaptic plasticity (BTSP), on time scales of seconds. BTSP is a candidate for a mechanism underlying rapid learning of spatial location by place cells. Here, a computational model of the induction of E-LTP/D at a spine head of a synapse of a hippocampal pyramidal neuron is developed. The single-compartment model represents two interacting biochemical pathways for the activation (phosphorylation) of the kinase (CaMKII) with a phosphatase, with ion inflow through channels (NMDAR, CaV1,Na). The biochemical reactions are represented by a deterministic system of differential equations, with a detailed description of the activation of CaMKII that includes the opening of the compact state of CaMKII. This single model captures realistic responses (temporal profiles with the differing timescales) of STDP and BTSP and their asymmetries. The simulations distinguish several mechanisms underlying STDP vs. BTSP, including i) the flow of [Formula: see text] through NMDAR vs. CaV1 channels, and ii) the origin of several time scales in the activation of CaMKII. The model also realizes a priming mechanism for E-LTP that is induced by [Formula: see text] flow through CaV1.3 channels. Once in the spine head, this small additional [Formula: see text] opens the compact state of CaMKII, placing CaMKII ready for subsequent induction of LTP.
Collapse
Affiliation(s)
- Guanchun Li
- Courant Institute and Center for Neural Science, Department of Mathematics, New York University, New York, NY10012
| | - David W. McLaughlin
- Courant Institute and Center for Neural Science, Department of Mathematics, New York University, New York, NY10012
- Center for Neural Science, Department of Neural Science, New York University, New York, NY10012
- Institute of Mathematical Science, Mathematics Department, New York University-Shanghai, Shanghai200122, China
- Neuroscience Institute of New York University Langone Health, New York University, New York, NY10016
| | - Charles S. Peskin
- Courant Institute and Center for Neural Science, Department of Mathematics, New York University, New York, NY10012
- Center for Neural Science, Department of Neural Science, New York University, New York, NY10012
| |
Collapse
|
8
|
Reyes-Lizaola S, Luna-Zarate U, Tendilla-Beltrán H, Morales-Medina JC, Flores G. Structural and biochemical alterations in dendritic spines as key mechanisms for severe mental illnesses. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110876. [PMID: 37863171 DOI: 10.1016/j.pnpbp.2023.110876] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
Severe mental illnesses (SMI) collectively affect approximately 20% of the global population, as estimated by the World Health Organization (WHO). Despite having diverse etiologies, clinical symptoms, and pharmacotherapies, these diseases share a common pathophysiological characteristic: the misconnection of brain areas involved in reality perception, executive control, and cognition, including the corticolimbic system. Dendritic spines play a crucial role in excitatory neurotransmission within the central nervous system. These small structures exhibit remarkable plasticity, regulated by factors such as neurotransmitter tone, neurotrophic factors, and innate immunity-related molecules, and other mechanisms - all of which are associated with the pathophysiology of SMI. However, studying dendritic spine mechanisms in both healthy and pathological conditions in patients is fraught with technical limitations. This is where animal models related to these diseases become indispensable. They have played a pivotal role in elucidating the significance of dendritic spines in SMI. In this review, the information regarding the potential role of dendritic spines in SMI was summarized, drawing from clinical and animal model reports. Also, the implications of targeting dendritic spine-related molecules for SMI treatment were explored. Specifically, our focus is on major depressive disorder and the neurodevelopmental disorders schizophrenia and autism spectrum disorder. Abundant clinical and basic research has studied the functional and structural plasticity of dendritic spines in these diseases, along with potential pharmacological targets that modulate the dynamics of these structures. These targets may be associated with the clinical efficacy of the pharmacotherapy.
Collapse
Affiliation(s)
- Sebastian Reyes-Lizaola
- Departamento de Ciencias de la Salud, Licenciatura en Medicina, Universidad Popular del Estado de Puebla (UPAEP), Puebla, Mexico
| | - Ulises Luna-Zarate
- Departamento de Ciencias de la Salud, Licenciatura en Medicina, Universidad de las Américas Puebla (UDLAP), Puebla, Mexico
| | - Hiram Tendilla-Beltrán
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Julio César Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico.
| |
Collapse
|
9
|
Mohrmann L, Seebach J, Missler M, Rohlmann A. Distinct Alterations in Dendritic Spine Morphology in the Absence of β-Neurexins. Int J Mol Sci 2024; 25:1285. [PMID: 38279285 PMCID: PMC10817056 DOI: 10.3390/ijms25021285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Dendritic spines are essential for synaptic function because they constitute the postsynaptic compartment of the neurons that receives the most excitatory input. The extracellularly shorter variant of the presynaptic cell adhesion molecules neurexins, β-neurexin, has been implicated in various aspects of synaptic function, including neurotransmitter release. However, its role in developing or stabilizing dendritic spines as fundamental computational units of excitatory synapses has remained unclear. Here, we show through morphological analysis that the deletion of β-neurexins in hippocampal neurons in vitro and in hippocampal tissue in vivo affects presynaptic dense-core vesicles, as hypothesized earlier, and, unexpectedly, alters the postsynaptic spine structure. Specifically, we observed that the absence of β-neurexins led to an increase in filopodial-like protrusions in vitro and more mature mushroom-type spines in the CA1 region of adult knockout mice. In addition, the deletion of β-neurexins caused alterations in the spine head dimension and an increase in spines with perforations of their postsynaptic density but no changes in the overall number of spines or synapses. Our results indicate that presynaptic β-neurexins play a role across the synaptic cleft, possibly by aligning with postsynaptic binding partners and glutamate receptors via transsynaptic columns.
Collapse
Affiliation(s)
| | | | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, University Münster, 48149 Münster, Germany; (L.M.); (J.S.)
| | - Astrid Rohlmann
- Institute of Anatomy and Molecular Neurobiology, University Münster, 48149 Münster, Germany; (L.M.); (J.S.)
| |
Collapse
|
10
|
Torres R, Hidalgo C. Subcellular localization and transcriptional regulation of brain ryanodine receptors. Functional implications. Cell Calcium 2023; 116:102821. [PMID: 37949035 DOI: 10.1016/j.ceca.2023.102821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Ryanodine receptors (RyR) are intracellular Ca2+ channels localized in the endoplasmic reticulum, where they act as critical mediators of Ca2+-induced Ca2+ calcium release (CICR). In the brain, mammals express in both neurons, and non-neuronal cells, a combination of the three RyR-isoforms (RyR1-3). Pharmacological approaches, which do not distinguish between isoforms, have indicated that RyR-isoforms contribute to brain function. However, isoform-specific manipulations have revealed that RyR-isoforms display different subcellular localizations and are differentially associated with neuronal function. These findings raise the need to understand RyR-isoform specific transcriptional regulation, as this knowledge will help to elucidate the causes of neuronal dysfunction for a growing list of brain disorders that show altered RyR channel expression and function.
Collapse
Affiliation(s)
- Rodrigo Torres
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Lago Panguipulli 1390, 5501842, Puerto Montt, Chile.
| | - Cecilia Hidalgo
- Department of Neurosciences. Biomedical Neuroscience Institute, Physiology and Biophysics Program, Institute of Biomedical Sciences, Center for Exercise, Metabolism and Cancer Studies, Faculty of Medicine, Universidad de Chile, Santiago, 8380000, Chile
| |
Collapse
|
11
|
Jędrzejewska-Szmek J, Dorman DB, Blackwell KT. Making time and space for calcium control of neuron activity. Curr Opin Neurobiol 2023; 83:102804. [PMID: 37913687 PMCID: PMC10842147 DOI: 10.1016/j.conb.2023.102804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023]
Abstract
Calcium directly controls or indirectly regulates numerous functions that are critical for neuronal network activity. Intracellular calcium concentration is tightly regulated by numerous molecular mechanisms because spatial domains and temporal dynamics (not just peak amplitude) are critical for calcium control of synaptic plasticity and ion channel activation, which in turn determine neuron spiking activity. The computational models investigating calcium control are valuable because experiments achieving high spatial and temporal resolution simultaneously are technically unfeasible. Simulations of calcium nanodomains reveal that specific calcium sources can couple to specific calcium targets, providing a mechanism to determine the direction of synaptic plasticity. Cooperativity of calcium domains opposes specificity, suggesting that the dendritic branch might be the preferred computational unit of the neuron.
Collapse
Affiliation(s)
- Joanna Jędrzejewska-Szmek
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Science, 3 Pasteur Street, Warsaw, 02-093, Poland.
| | - Daniel B Dorman
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, 21218, MD, USA
| | - Kim T Blackwell
- Bioengineering Department and Interdisciplinary Program in Neuroscience, George Mason University, 4400 University Drive, Fairfax, 22031, VA, USA
| |
Collapse
|
12
|
Straehle J, Ravi VM, Heiland DH, Galanis C, Lenz M, Zhang J, Neidert NN, El Rahal A, Vasilikos I, Kellmeyer P, Scheiwe C, Klingler JH, Fung C, Vlachos A, Beck J, Schnell O. Technical report: surgical preparation of human brain tissue for clinical and basic research. Acta Neurochir (Wien) 2023; 165:1461-1471. [PMID: 37147485 DOI: 10.1007/s00701-023-05611-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND The study of the distinct structure and function of the human central nervous system, both in healthy and diseased states, is becoming increasingly significant in the field of neuroscience. Typically, cortical and subcortical tissue is discarded during surgeries for tumors and epilepsy. Yet, there is a strong encouragement to utilize this tissue for clinical and basic research in humans. Here, we describe the technical aspects of the microdissection and immediate handling of viable human cortical access tissue for basic and clinical research, highlighting the measures needed to be taken in the operating room to ensure standardized procedures and optimal experimental results. METHODS In multiple rounds of experiments (n = 36), we developed and refined surgical principles for the removal of cortical access tissue. The specimens were immediately immersed in cold carbogenated N-methyl-D-glucamine-based artificial cerebrospinal fluid for electrophysiology and electron microscopy experiments or specialized hibernation medium for organotypic slice cultures. RESULTS The surgical principles of brain tissue microdissection were (1) rapid preparation (<1 min), (2) maintenance of the cortical axis, (3) minimization of mechanical trauma to sample, (4) use of pointed scalpel blade, (5) avoidance of cauterization and blunt preparation, (6) constant irrigation, and (7) retrieval of the sample without the use of forceps or suction. After a single round of introduction to these principles, multiple surgeons adopted the technique for samples with a minimal dimension of 5 mm spanning all cortical layers and subcortical white matter. Small samples (5-7 mm) were ideal for acute slice preparation and electrophysiology. No adverse events from sample resection were observed. CONCLUSION The microdissection technique of human cortical access tissue is safe and easily adoptable into the routine of neurosurgical procedures. The standardized and reliable surgical extraction of human brain tissue lays the foundation for human-to-human translational research on human brain tissue.
Collapse
Affiliation(s)
- J Straehle
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Advanced Surgical Tissue Analysis (CAST), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - V M Ravi
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Freiburg Institute of Advanced Studies (FRIAS), Freiburg, Germany
| | - D H Heiland
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Advanced Surgical Tissue Analysis (CAST), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - C Galanis
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - M Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Junyi Zhang
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - N N Neidert
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Advanced Surgical Tissue Analysis (CAST), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - A El Rahal
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - I Vasilikos
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Advanced Surgical Tissue Analysis (CAST), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - P Kellmeyer
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - C Scheiwe
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - J H Klingler
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - C Fung
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - A Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Advanced Surgical Tissue Analysis (CAST), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center Brain Links - Brain Tools, University of Freiburg, Freiburg, Germany
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - J Beck
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Advanced Surgical Tissue Analysis (CAST), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - O Schnell
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Center for Advanced Surgical Tissue Analysis (CAST), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
13
|
Ghasemi S, Babaloo A, Sadighi M, Torab Z, Mohammadi H, Khodadust E. Effect of vitamin B complex administration on pain and sensory problems related to inferior alveolar nerve damage following mandibular implant placement surgery. JOURNAL OF ADVANCED PERIODONTOLOGY & IMPLANT DENTISTRY 2022; 14:13-19. [PMID: 35919449 PMCID: PMC9339724 DOI: 10.34172/japid.2022.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 05/24/2022] [Indexed: 11/09/2022]
Abstract
Background. Inferior alveolar nerve damage can lead to mild to severe paresthesia and even facial pain. One of the treatments considered today for the reconstruction and treatment of damaged peripheral nerves is the use of vitamin supplements. This study aimed to evaluate the effect of vitamin B complex supplementation on pain and sensory problems following mandibular implant placement surgery. Methods. In this single-blind clinical trial, 46 patients applying for implant placement, who were eligible for the study, were evaluated. All the patients were examined for sensory facial injury and inferior alveolar nerve injury within 24 hours after implant placement. The nerve damage was recorded by AI (asymmetry index) in the initial examination. Patients who reported clinical and radiographic signs of nerve damage due to implant or drill impingement of the nerve canal were excluded from the study and promptly treated with anti-inflammatory protocols. Then the patients were randomly divided into control (n=23) and intervention (n=23) groups. Patients in the control group received routine treatment after implantation, and patients in the intervention group received vitamin B complex pills in addition to routine treatment. A placebo was used to eliminate the inductive effect of the drug in the control group. Follow-up of patients was performed at intervals of 14 days and 1, 2, and 3 months after treatment. Data analysis was performed using SPSS 24 and Kruskal-Wallis, Wilcoxon, and chi-squared tests. Results. In both groups, a decreasing trend in pain intensity was observed for up to three months. There were no significant differences between the mean pain intensity in the intervention and control groups at all the follow-up intervals. In both groups, a decrease in the rate of paresthesia was observed during the 3-month follow-up. The mean of paresthesia in the two groups was not significantly different at any follow-up interval. Conclusion. Vitamin B complex might not affect pain intensity and paresthesia after implant surgery.
Collapse
Affiliation(s)
- Shima Ghasemi
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirreza Babaloo
- Department of Periodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrnoosh Sadighi
- Department of Periodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Torab
- Department of Pediatric Dentistry, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Mohammadi
- Department of Periodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|