1
|
Li H, Playter C, Das P, McCord RP. Chromosome compartmentalization: causes, changes, consequences, and conundrums. Trends Cell Biol 2024; 34:707-727. [PMID: 38395734 PMCID: PMC11339242 DOI: 10.1016/j.tcb.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
The spatial segregation of the genome into compartments is a major feature of 3D genome organization. New data on mammalian chromosome organization across different conditions reveal important information about how and why these compartments form and change. A combination of epigenetic state, nuclear body tethering, physical forces, gene expression, and replication timing (RT) can all influence the establishment and alteration of chromosome compartments. We review the causes and implications of genomic regions undergoing a 'compartment switch' that changes their physical associations and spatial location in the nucleus. About 20-30% of genomic regions change compartment during cell differentiation or cancer progression, whereas alterations in response to a stimulus within a cell type are usually much more limited. However, even a change in 1-2% of genomic bins may have biologically relevant implications. Finally, we review the effects of compartment changes on gene regulation, DNA damage repair, replication, and the physical state of the cell.
Collapse
Affiliation(s)
- Heng Li
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Christopher Playter
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Priyojit Das
- University of Tennessee-Oak Ridge National Laboratory (UT-ORNL) Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Rachel Patton McCord
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
2
|
Yu H, Wu D, Mishra S, Shen G, Sun H, Hu M, Li Y. SnapFISH-IMPUTE: an imputation method for multiplexed DNA FISH data. Commun Biol 2024; 7:834. [PMID: 38982263 PMCID: PMC11233503 DOI: 10.1038/s42003-024-06428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Chromatin spatial organization plays a crucial role in gene regulation. Recently developed and prospering multiplexed DNA FISH technologies enable direct visualization of chromatin conformation in the nucleus. However, incomplete data caused by limited detection efficiency can substantially complicate and impair downstream analysis. Here, we present SnapFISH-IMPUTE that imputes missing values in multiplexed DNA FISH data. Analysis on multiple published datasets shows that the proposed method preserves the distribution of pairwise distances between imaging loci, and the imputed chromatin conformations are indistinguishable from the observed conformations. Additionally, imputation greatly improves downstream analyses such as identifying enhancer-promoter loops and clustering cells into distinct cell types. SnapFISH-IMPUTE is freely available at https://github.com/hyuyu104/SnapFISH-IMPUTE .
Collapse
Affiliation(s)
- Hongyu Yu
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Daiqing Wu
- Department of Statistics, University of Toronto, Ontario, Canada
| | - Shreya Mishra
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Guning Shen
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Huaigu Sun
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | - Yun Li
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Yu H, Wu D, Shen G, Hu M, Li Y. SnapFISH-IMPUTE: an imputation method for multiplexed DNA FISH data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575427. [PMID: 38293083 PMCID: PMC10827092 DOI: 10.1101/2024.01.12.575427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Chromatin spatial organization plays a crucial role in gene regulation. Recently developed and prospering multiplexed DNA FISH technologies enable direct visualization of chromatin conformation in nucleus. However, incomplete data caused by limited detection efficiency can substantially complicate and impair downstream analysis. Here, we present SnapFISH-IMPUTE that imputes missing values in multiplexed DNA FISH data. Analysis on multiple published datasets shows that the proposed method preserves the distribution of pairwise distances between imaging loci, and the imputed chromatin conformations are indistinguishable from the observed conformations. Additionally, imputation greatly improves downstream analyses such as identifying enhancer-promoter loops and clustering cells into distinct cell types. SnapFISH-IMPUTE is freely available at https://github.com/hyuyu104/SnapFISH-IMPUTE.
Collapse
Affiliation(s)
- Hongyu Yu
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Daiqing Wu
- Department of Mathematics, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Guning Shen
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Yun Li
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Alnukhali M, Altabbakh O, Farooqi AA, Pollack A, Daunert S, Deo S, Tao W. Activation of Stimulator of Interferon Genes (STING): Promising Strategy to Overcome Immune Resistance in Prostate Cancer. Curr Med Chem 2024; 31:6556-6571. [PMID: 38347787 PMCID: PMC11497144 DOI: 10.2174/0109298673273303231208071403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 10/19/2024]
Abstract
Prostate cancer (PCa) is the most frequent and second-lethal cancer among men. Despite considerable efforts to explore treatments like autologous cellular immunotherapy and immune checkpoint inhibitors, their success remains limited. The intricate tumor microenvironment (TME) and its interaction with the immune system pose significant challenges in PCa treatment. Consequently, researchers have directed their focus on augmenting the immune system's anti-tumor response by targeting the STimulator of the Interferon Genes (STING) pathway. The STING pathway is activated when foreign DNA is detected in the cytoplasm of innate immune cells, resulting in the activation of endoplasmic reticulum (ER) STING. This, in turn, triggers an augmentation of signaling, leading to the production of type I interferon (IFN) and other pro-inflammatory cytokines. Numerous studies have demonstrated that activation of the STING pathway induces immune system rejection and targeted elimination of PCa cells. Researchers have been exploring various methods to activate the STING pathway, including the use of bacterial vectors to deliver STING agonists and the combination of radiation therapy with STING agonists. Achieving effective radiation therapy with minimal side effects and optimal anti-tumor immune responses necessitates precise adjustments to radiation dosing and fractionation schedules. This comprehensive review discusses promising findings from studies focusing on activating the STING pathway to combat PCa. The STING pathway exhibits the potential to serve as an effective treatment modality for PCa, offering new hope for improving the lives of those affected by this devastating disease.
Collapse
Affiliation(s)
- Mohammed Alnukhali
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Omar Altabbakh
- College of Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL 33759, USA
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), National Institute for Genomics and Advanced Biotechnology, Islamabad 44000, Pakistan
| | - Alan Pollack
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Leonard M. Miller School of Medicine, Clinical and Translational Science Institute, University of Miami, Miami, FL 33136, USA
- The Dr. John T. McDonald Foundation Bionanotechnology Institute, University of Miami, Miami, FL 33136, USA
| | - Sapna Deo
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- The Dr. John T. McDonald Foundation Bionanotechnology Institute, University of Miami, Miami, FL 33136, USA
| | - Wensi Tao
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
5
|
Schaeffer M, Nollmann M. Contributions of 3D chromatin structure to cell-type-specific gene regulation. Curr Opin Genet Dev 2023; 79:102032. [PMID: 36893484 DOI: 10.1016/j.gde.2023.102032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 03/09/2023]
Abstract
Eukaryotic genomes are organized in 3D in a multiscale manner, and different mechanisms acting at each of these scales can contribute to transcriptional regulation. However, the large single-cell variability in 3D chromatin structures represents a challenge to understand how transcription may be differentially regulated between cell types in a robust and efficient manner. Here, we describe the different mechanisms by which 3D chromatin structure was shown to contribute to cell-type-specific transcriptional regulation. Excitingly, several novel methodologies able to measure 3D chromatin conformation and transcription in single cells in their native tissue context, or to detect the dynamics of cis-regulatory interactions, are starting to allow quantitative dissection of chromatin structure noise and relate it to how transcription may be regulated between different cell types and cell states.
Collapse
Affiliation(s)
- Marie Schaeffer
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U1054, Montpellier, France
| | - Marcelo Nollmann
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U1054, Montpellier, France.
| |
Collapse
|