1
|
Haghayegh S, Herzog R, Bennett DA, Redline S, Yaffe K, Stone KL, Ibáñez A, Hu K. Predicting future risk of developing cognitive impairment using ambulatory sleep EEG: Integrating univariate analysis and multivariate information theory approach. J Alzheimers Dis 2025:13872877251319742. [PMID: 40035493 DOI: 10.1177/13872877251319742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
BackgroundEarly identification of individuals at risk for cognitive impairment is crucial, as the preclinical phase offers an opportunity for interventions to slow disease progression and improve outcomes.ObjectiveWhile sleep electroencephalography (EEG) has shown significant promise in detecting cognitive impairment, this study aims to 1) develop and validate overnight EEG biomarkers for the prediction of future cognitive impairment risk, 2) assess their predictive performance within 5 years, and 3) explore the feasibility of using wearable, low-density EEG devices for convenient at-home monitoring.MethodsOvernight polysomnography was performed on 281 cognitively normal women in the Study of Osteoporotic Fractures (SOF). Cognitive reassessments were conducted approximately five years later. Features such as relative EEG power across different frequency bands and channel interactions, quantified using generalized mutual information measures, were extracted and used as inputs for machine learning models. Binary classification models distinguished participants who developed cognitive impairment from those who remained cognitively normal. Optimal feature subsets and frequency bands for classiffiation were identifed, with additional analyses testing the contribution of demographic data, sleep macrostructure, and APOE genotype.ResultsThe optimal model, utilizing univariate and multivariate EEG features, achieved an AUC of 0.76. Features from the N3 sleep stage and gamma band exhibited the largest effect sizes. Adding demographics, sleep macrostructure, and APOE genotype did not enhance performance.ConclusionsOvernight EEG analyses demonstrate a promising, cost-effective approach for early cognitive impairment risk assessment. Larger studies with more diverse populations are required to validate and expand these findings in diverse populations.
Collapse
Affiliation(s)
- Shahab Haghayegh
- Medical Biodynamics Center, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Departments of Neurology and Medicine, Brigham & Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Ruben Herzog
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Departments of Neurology and Medicine, Brigham & Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kristine Yaffe
- Departments of Psychiatry, Neurology and Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, CA, USA
- Global Brain Health Institute (GBHI), University of California, San Francisco, CA, USA
| | - Katie L Stone
- California Pacific Medical Center Research Institute, University of California, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Agustin Ibáñez
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Global Brain Health Institute (GBHI), University of California, San Francisco, CA, USA
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland
| | - Kun Hu
- Medical Biodynamics Center, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Departments of Neurology and Medicine, Brigham & Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| |
Collapse
|
2
|
Neri M, Brovelli A, Castro S, Fraisopi F, Gatica M, Herzog R, Mediano PAM, Mindlin I, Petri G, Bor D, Rosas FE, Tramacere A, Estarellas M. A Taxonomy of Neuroscientific Strategies Based on Interaction Orders. Eur J Neurosci 2025; 61:e16676. [PMID: 39906974 DOI: 10.1111/ejn.16676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/15/2024] [Accepted: 12/29/2024] [Indexed: 02/06/2025]
Abstract
In recent decades, neuroscience has advanced with increasingly sophisticated strategies for recording and analysing brain activity, enabling detailed investigations into the roles of functional units, such as individual neurons, brain regions and their interactions. Recently, new strategies for the investigation of cognitive functions regard the study of higher order interactions-that is, the interactions involving more than two brain regions or neurons. Although methods focusing on individual units and their interactions at various levels offer valuable and often complementary insights, each approach comes with its own set of limitations. In this context, a conceptual map to categorize and locate diverse strategies could be crucial to orient researchers and guide future research directions. To this end, we define the spectrum of orders of interaction, namely, a framework that categorizes the interactions among neurons or brain regions based on the number of elements involved in these interactions. We use a simulation of a toy model and a few case studies to demonstrate the utility and the challenges of the exploration of the spectrum. We conclude by proposing future research directions aimed at enhancing our understanding of brain function and cognition through a more nuanced methodological framework.
Collapse
Affiliation(s)
- Matteo Neri
- Institut de Neurosciences de la Timone, Aix-Marseille Université, UMR 7289 CNRS, Marseille, France
| | - Andrea Brovelli
- Institut de Neurosciences de la Timone, Aix-Marseille Université, UMR 7289 CNRS, Marseille, France
| | - Samy Castro
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Strasbourg, France
- Institut de Neurosciences Des Systèmes (INS), Aix-Marseille Université, UMR 1106, Marseille, France
| | - Fausto Fraisopi
- Institute for Advanced Study, Aix-Marseille University, Marseille, France
| | - Marilyn Gatica
- NPLab, Network Science Institute, Northeastern University London, London, UK
| | - Ruben Herzog
- DreamTeam, Paris Brain Institute (ICM), Paris, France
| | - Pedro A M Mediano
- Department of Computing, Imperial College London, London, UK
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Ivan Mindlin
- DreamTeam, Paris Brain Institute (ICM), Paris, France
- PICNIC lab, Paris Brain Institute (ICM), Paris, France
| | - Giovanni Petri
- NPLab, Network Science Institute, Northeastern University London, London, UK
- Department of Physics, Northeastern University, Boston, Massachusetts, USA
- NPLab, CENTAI Institute, Turin, Italy
| | - Daniel Bor
- Department of Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Fernando E Rosas
- Sussex Centre for Consciousness Science and Sussex AI, Department of Informatics, University of Sussex, Brighton, UK
- Center for Psychedelic Research and Centre for Complexity Science, Department of Brain Science, Imperial College London, London, UK
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
- Principles of Intelligent Behavior in Biological and Social Systems (PIBBSS), Prague, Czechia
| | - Antonella Tramacere
- Department of Philosophy, Communication and Performing Arts, Roma Tre University, Rome, Italy
| | - Mar Estarellas
- Department of Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Li Q, Liu J, Pearlson GD, Chen J, Wang YP, Turner JA, Calhoun VD. Spatiotemporal Complexity in the Psychotic Brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.632764. [PMID: 39868241 PMCID: PMC11761638 DOI: 10.1101/2025.01.14.632764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Psychotic disorders, such as schizophrenia and bipolar disorder, pose significant diagnostic challenges with major implications on mental health. The measures of resting-state fMRI spatiotemporal complexity offer a powerful tool for identifying irregularities in brain activity. To capture global brain connectivity, we employed information-theoretic metrics, overcoming the limitations of pairwise correlation analysis approaches. This enables a more comprehensive exploration of higher-order interactions and multiscale intrinsic connectivity networks (ICNs) in the psychotic brain. In this study, we provide converging evidence suggesting that the psychotic brain exhibits states of randomness across both spatial and temporal dimensions. To further investigate these disruptions, we estimated brain network connectivity using redundancy and synergy measures, aiming to assess the integration and segregation of topological information in the psychotic brain. Our findings reveal a disruption in the balance between redundant and synergistic information, a phenomenon we term brainquake in this study, which highlights the instability and disorganization of brain networks in psychosis. Moreover, our exploration of higher-order topological functional connectivity reveals profound disruptions in brain information integration. Aberrant information interactions were observed across both cortical and subcortical ICNs. We specifically identified the most easily affected irregularities in the sensorimotor, visual, temporal, default mode, and fronto-parietal networks, as well as in the hippocampal and amygdalar regions, all of which showed disruptions. These findings underscore the severe impact of psychotic states on multiscale critical brain networks, suggesting a profound alteration in the brain's complexity and organizational states.
Collapse
Affiliation(s)
- Qiang Li
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, and Emory University, Atlanta, GA 30303, United States
| | - Jingyu Liu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, and Emory University, Atlanta, GA 30303, United States
- Department of Computer Science, Georgia State University, Atlanta, GA 30303, United States
| | - Godfrey D Pearlson
- Departments of Psychiatry and Neurobiology, Yale University, New Haven, CT 06511, United States
| | - Jiayu Chen
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, and Emory University, Atlanta, GA 30303, United States
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, United States
| | - Jessica A Turner
- Wexnar Medical Center, Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH 43210, United States
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, and Emory University, Atlanta, GA 30303, United States
- Department of Computer Science, Georgia State University, Atlanta, GA 30303, United States
| |
Collapse
|
4
|
Herzog R, Mediano PAM, Rosas FE, Luppi AI, Sanz-Perl Y, Tagliazucchi E, Kringelbach ML, Cofré R, Deco G. Neural mass modeling for the masses: Democratizing access to whole-brain biophysical modeling with FastDMF. Netw Neurosci 2024; 8:1590-1612. [PMID: 39735506 PMCID: PMC11674928 DOI: 10.1162/netn_a_00410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/20/2024] [Indexed: 12/31/2024] Open
Abstract
Different whole-brain computational models have been recently developed to investigate hypotheses related to brain mechanisms. Among these, the Dynamic Mean Field (DMF) model is particularly attractive, combining a biophysically realistic model that is scaled up via a mean-field approach and multimodal imaging data. However, an important barrier to the widespread usage of the DMF model is that current implementations are computationally expensive, supporting only simulations on brain parcellations that consider less than 100 brain regions. Here, we introduce an efficient and accessible implementation of the DMF model: the FastDMF. By leveraging analytical and numerical advances-including a novel estimation of the feedback inhibition control parameter and a Bayesian optimization algorithm-the FastDMF circumvents various computational bottlenecks of previous implementations, improving interpretability, performance, and memory use. Furthermore, these advances allow the FastDMF to increase the number of simulated regions by one order of magnitude, as confirmed by the good fit to fMRI data parcellated at 90 and 1,000 regions. These advances open the way to the widespread use of biophysically grounded whole-brain models for investigating the interplay between anatomy, function, and brain dynamics and to identify mechanistic explanations of recent results obtained from fine-grained neuroimaging recordings.
Collapse
Affiliation(s)
- Rubén Herzog
- Sorbonne Universite, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Pedro A. M. Mediano
- Department of Computing, Imperial College London, London, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Fernando E. Rosas
- Department of Informatics, University of Sussex, Brighton, UK
- Sussex Centre for Consciousness Science and Sussex AI, University of Sussex, Brighton, UK
- Centre for Psychedelic Research and Centre for Complexity Science, Department of Brain Science, Imperial College London, London, UK
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
| | - Andrea I. Luppi
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, UK
- St John’s College, University of Cambridge, Cambridge, UK
- Information Engineering Division, University of Cambridge, Cambridge, UK
| | - Yonatan Sanz-Perl
- Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Buenos Aires, Argentina
- Universidad de San Andres, Buenos Aires, Argentina
- Institut du Cerveau et de la Moelle epiniere (ICM), Paris, France
- Institucio Catalana de la Recerca i Estudis Avancats (ICREA), Barcelona, Spain
| | - Enzo Tagliazucchi
- Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Buenos Aires, Argentina
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile
| | - Morten L. Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rodrigo Cofré
- Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Gif-sur-Yvette, France
| | - Gustavo Deco
- Institucio Catalana de la Recerca i Estudis Avancats (ICREA), Barcelona, Spain
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
5
|
Luppi AI, Sanz Perl Y, Vohryzek J, Mediano PAM, Rosas FE, Milisav F, Suarez LE, Gini S, Gutierrez-Barragan D, Gozzi A, Misic B, Deco G, Kringelbach ML. Competitive interactions shape brain dynamics and computation across species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.19.619194. [PMID: 39484469 PMCID: PMC11526968 DOI: 10.1101/2024.10.19.619194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Adaptive cognition relies on cooperation across anatomically distributed brain circuits. However, specialised neural systems are also in constant competition for limited processing resources. How does the brain's network architecture enable it to balance these cooperative and competitive tendencies? Here we use computational whole-brain modelling to examine the dynamical and computational relevance of cooperative and competitive interactions in the mammalian connectome. Across human, macaque, and mouse we show that the architecture of the models that most faithfully reproduce brain activity, consistently combines modular cooperative interactions with diffuse, long-range competitive interactions. The model with competitive interactions consistently outperforms the cooperative-only model, with excellent fit to both spatial and dynamical properties of the living brain, which were not explicitly optimised but rather emerge spontaneously. Competitive interactions in the effective connectivity produce greater levels of synergistic information and local-global hierarchy, and lead to superior computational capacity when used for neuromorphic computing. Altogether, this work provides a mechanistic link between network architecture, dynamical properties, and computation in the mammalian brain.
Collapse
Affiliation(s)
- Andrea I. Luppi
- University of Oxford, Oxford, UK
- St John’s College, Cambridge, UK
- Montreal Neurological Institute, Montreal, Canada
| | | | | | | | | | | | | | - Silvia Gini
- Italian Institute of Technology, Rovereto, Italy
- Centre for Mind/Brain Sciences, University of Trento, Italy
| | | | | | | | | | | |
Collapse
|
6
|
Varley TF, Bongard J. Evolving higher-order synergies reveals a trade-off between stability and information-integration capacity in complex systems. CHAOS (WOODBURY, N.Y.) 2024; 34:063127. [PMID: 38865092 DOI: 10.1063/5.0200425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024]
Abstract
There has recently been an explosion of interest in how "higher-order" structures emerge in complex systems comprised of many interacting elements (often called "synergistic" information). This "emergent" organization has been found in a variety of natural and artificial systems, although at present, the field lacks a unified understanding of what the consequences of higher-order synergies and redundancies are for systems under study. Typical research treats the presence (or absence) of synergistic information as a dependent variable and report changes in the level of synergy in response to some change in the system. Here, we attempt to flip the script: rather than treating higher-order information as a dependent variable, we use evolutionary optimization to evolve boolean networks with significant higher-order redundancies, synergies, or statistical complexity. We then analyze these evolved populations of networks using established tools for characterizing discrete dynamics: the number of attractors, the average transient length, and the Derrida coefficient. We also assess the capacity of the systems to integrate information. We find that high-synergy systems are unstable and chaotic, but with a high capacity to integrate information. In contrast, evolved redundant systems are extremely stable, but have negligible capacity to integrate information. Finally, the complex systems that balance integration and segregation (known as Tononi-Sporns-Edelman complexity) show features of both chaosticity and stability, with a greater capacity to integrate information than the redundant systems while being more stable than the random and synergistic systems. We conclude that there may be a fundamental trade-off between the robustness of a system's dynamics and its capacity to integrate information (which inherently requires flexibility and sensitivity) and that certain kinds of complexity naturally balance this trade-off.
Collapse
Affiliation(s)
- Thomas F Varley
- Department of Computer Science, University of Vermont, Burlington, Vermont 05405, USA
- Vermont Complex Systems Center, University of Vermont, Burlington, Vermont 05405, USA
| | - Josh Bongard
- Department of Computer Science, University of Vermont, Burlington, Vermont 05405, USA
- Vermont Complex Systems Center, University of Vermont, Burlington, Vermont 05405, USA
| |
Collapse
|
7
|
Coronel‐Oliveros C, Gómez RG, Ranasinghe K, Sainz‐Ballesteros A, Legaz A, Fittipaldi S, Cruzat J, Herzog R, Yener G, Parra M, Aguillon D, Lopera F, Santamaria‐Garcia H, Moguilner S, Medel V, Orio P, Whelan R, Tagliazucchi E, Prado P, Ibañez A. Viscous dynamics associated with hypoexcitation and structural disintegration in neurodegeneration via generative whole-brain modeling. Alzheimers Dement 2024; 20:3228-3250. [PMID: 38501336 PMCID: PMC11095480 DOI: 10.1002/alz.13788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 03/20/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) lack mechanistic biophysical modeling in diverse, underrepresented populations. Electroencephalography (EEG) is a high temporal resolution, cost-effective technique for studying dementia globally, but lacks mechanistic models and produces non-replicable results. METHODS We developed a generative whole-brain model that combines EEG source-level metaconnectivity, anatomical priors, and a perturbational approach. This model was applied to Global South participants (AD, bvFTD, and healthy controls). RESULTS Metaconnectivity outperformed pairwise connectivity and revealed more viscous dynamics in patients, with altered metaconnectivity patterns associated with multimodal disease presentation. The biophysical model showed that connectome disintegration and hypoexcitability triggered altered metaconnectivity dynamics and identified critical regions for brain stimulation. We replicated the main results in a second subset of participants for validation with unharmonized, heterogeneous recording settings. DISCUSSION The results provide a novel agenda for developing mechanistic model-inspired characterization and therapies in clinical, translational, and computational neuroscience settings.
Collapse
Affiliation(s)
- Carlos Coronel‐Oliveros
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
- Global Brain Health Institute (GBHI)University of California San Francisco (UCSFA)San FranciscoCaliforniaUSA
- Trinity College DublinDublinIreland
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV)Universidad de ValparaísoValparaísoChile
| | - Raúl Gónzalez Gómez
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
- Center for Social and Cognitive NeuroscienceSchool of Psychology, Universidad Adolfo IbáñezSantiagoChile
| | - Kamalini Ranasinghe
- Memory and Aging CenterDepartment of NeurologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | | | - Agustina Legaz
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Provincia de Buenos AiresVictoriaArgentina
| | - Sol Fittipaldi
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
- Global Brain Health Institute (GBHI)University of California San Francisco (UCSFA)San FranciscoCaliforniaUSA
- Trinity College DublinDublinIreland
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Provincia de Buenos AiresVictoriaArgentina
| | - Josephine Cruzat
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
| | - Rubén Herzog
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
| | - Gorsev Yener
- Izmir University of Economics, Faculty of Medicine, Fevzi Çakmak, Balçova/İzmirSakaryaTurkey
- Dokuz Eylül University, Brain Dynamics Multidisciplinary Research Center, KonakAlsancakTurkey
| | - Mario Parra
- School of Psychological Sciences and HealthUniversity of StrathclydeGlasgowScotland
| | - David Aguillon
- Neuroscience Research Group, University of AntioquiaBogotáColombia
| | - Francisco Lopera
- Neuroscience Research Group, University of AntioquiaBogotáColombia
| | - Hernando Santamaria‐Garcia
- Pontificia Universidad Javeriana, PhD Program of NeuroscienceBogotáColombia
- Hospital Universitario San Ignacio, Center for Memory and Cognition IntellectusBogotáColombia
| | - Sebastián Moguilner
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Provincia de Buenos AiresVictoriaArgentina
| | - Vicente Medel
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
- Brain and Mind Centre, The University of SydneySydneyNew South WalesAustralia
- Department of NeuroscienceUniversidad de Chile, IndependenciaSantiagoChile
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV)Universidad de ValparaísoValparaísoChile
- Instituto de NeurocienciaFacultad de Ciencias, Universidad de Valparaíso, Playa AnchaValparaísoChile
| | - Robert Whelan
- Global Brain Health Institute (GBHI)University of California San Francisco (UCSFA)San FranciscoCaliforniaUSA
- Trinity College DublinDublinIreland
| | - Enzo Tagliazucchi
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
- Buenos Aires Physics Institute and Physics DepartmentUniversity of Buenos Aires, Intendente Güiraldes 2160 – Ciudad UniversitariaBuenos AiresArgentina
| | - Pavel Prado
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la RehabilitaciónUniversidad San Sebastián, Región MetropolitanaSantiagoChile
| | - Agustín Ibañez
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
- Global Brain Health Institute (GBHI)University of California San Francisco (UCSFA)San FranciscoCaliforniaUSA
- Trinity College DublinDublinIreland
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Provincia de Buenos AiresVictoriaArgentina
- Trinity College Institute of NeuroscienceTrinity College DublinDublinIreland
| |
Collapse
|
8
|
Coronel-Oliveros C, Medel V, Whitaker GA, Astudillo A, Gallagher D, Z-Rivera L, Prado P, El-Deredy W, Orio P, Weinstein A. Elevating understanding: Linking high-altitude hypoxia to brain aging through EEG functional connectivity and spectral analyses. Netw Neurosci 2024; 8:275-292. [PMID: 38562297 PMCID: PMC10927308 DOI: 10.1162/netn_a_00352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/17/2023] [Indexed: 04/04/2024] Open
Abstract
High-altitude hypoxia triggers brain function changes reminiscent of those in healthy aging and Alzheimer's disease, compromising cognition and executive functions. Our study sought to validate high-altitude hypoxia as a model for assessing brain activity disruptions akin to aging. We collected EEG data from 16 healthy volunteers during acute high-altitude hypoxia (at 4,000 masl) and at sea level, focusing on relative changes in power and aperiodic slope of the EEG spectrum due to hypoxia. Additionally, we examined functional connectivity using wPLI, and functional segregation and integration using graph theory tools. High altitude led to slower brain oscillations, that is, increased δ and reduced α power, and flattened the 1/f aperiodic slope, indicating higher electrophysiological noise, akin to healthy aging. Notably, functional integration strengthened in the θ band, exhibiting unique topographical patterns at the subnetwork level, including increased frontocentral and reduced occipitoparietal integration. Moreover, we discovered significant correlations between subjects' age, 1/f slope, θ band integration, and observed robust effects of hypoxia after adjusting for age. Our findings shed light on how reduced oxygen levels at high altitudes influence brain activity patterns resembling those in neurodegenerative disorders and aging, making high-altitude hypoxia a promising model for comprehending the brain in health and disease.
Collapse
Affiliation(s)
- Carlos Coronel-Oliveros
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Global Brain Health Institute (GBHI), University of California, San Francisco (UCSF), San Francisco, CA, USA and Trinity College Dublin, Dublin, Ireland
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | - Vicente Medel
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
- Department of Neuroscience, Universidad de Chile, Santiago, Chile
| | - Grace Alma Whitaker
- Advanced Center for Electrical and Electronics Engineering (AC3E), Federico Santa María Technical University, Valparaíso, Chile
- Chair of Acoustics and Haptics, Technische Universität Dresden, Dresden, Germany
| | - Aland Astudillo
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
- Centro de Investigación y Desarrollo en Ingeniería en Salud, Universidad de Valparaíso, Valparaíso, Chile
- NICM Health Research Institute, Western Sydney University, Penrith, New South Wales, Australia
| | - David Gallagher
- School of Psychology, Liverpool John Moores University, Liverpool, England
| | - Lucía Z-Rivera
- Advanced Center for Electrical and Electronics Engineering (AC3E), Federico Santa María Technical University, Valparaíso, Chile
| | - Pavel Prado
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| | - Wael El-Deredy
- Advanced Center for Electrical and Electronics Engineering (AC3E), Federico Santa María Technical University, Valparaíso, Chile
- Centro de Investigación y Desarrollo en Ingeniería en Salud, Universidad de Valparaíso, Valparaíso, Chile
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Alejandro Weinstein
- Advanced Center for Electrical and Electronics Engineering (AC3E), Federico Santa María Technical University, Valparaíso, Chile
- Centro de Investigación y Desarrollo en Ingeniería en Salud, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
9
|
Hindriks R, Broeders TAA, Schoonheim MM, Douw L, Santos F, van Wieringen W, Tewarie PKB. Higher-order functional connectivity analysis of resting-state functional magnetic resonance imaging data using multivariate cumulants. Hum Brain Mapp 2024; 45:e26663. [PMID: 38520377 PMCID: PMC10960559 DOI: 10.1002/hbm.26663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 02/12/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
Blood-level oxygenation-dependent (BOLD) functional magnetic resonance imaging (fMRI) is the most common modality to study functional connectivity in the human brain. Most research to date has focused on connectivity between pairs of brain regions. However, attention has recently turned towards connectivity involving more than two regions, that is, higher-order connectivity. It is not yet clear how higher-order connectivity can best be quantified. The measures that are currently in use cannot distinguish between pairwise (i.e., second-order) and higher-order connectivity. We show that genuine higher-order connectivity can be quantified by using multivariate cumulants. We explore the use of multivariate cumulants for quantifying higher-order connectivity and the performance of block bootstrapping for statistical inference. In particular, we formulate a generative model for fMRI signals exhibiting higher-order connectivity and use it to assess bias, standard errors, and detection probabilities. Application to resting-state fMRI data from the Human Connectome Project demonstrates that spontaneous fMRI signals are organized into higher-order networks that are distinct from second-order resting-state networks. Application to a clinical cohort of patients with multiple sclerosis further demonstrates that cumulants can be used to classify disease groups and explain behavioral variability. Hence, we present a novel framework to reliably estimate genuine higher-order connectivity in fMRI data which can be used for constructing hyperedges, and finally, which can readily be applied to fMRI data from populations with neuropsychiatric disease or cognitive neuroscientific experiments.
Collapse
Affiliation(s)
- Rikkert Hindriks
- Department of Mathematics, Faculty of ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Tommy A. A. Broeders
- Department of Anatomy and Neurosciences, Amsterdam NeuroscienceAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Menno M. Schoonheim
- Department of Anatomy and Neurosciences, Amsterdam NeuroscienceAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Linda Douw
- Department of Anatomy and Neurosciences, Amsterdam NeuroscienceAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Fernando Santos
- Dutch Institute for Emergent Phenomena (DIEP)Institute for Advanced Studies, University of AmsterdamAmsterdamThe Netherlands
- Korteweg de Vries Institute for MathematicsUniversity of AmsterdamAmsterdamthe Netherlands
| | - Wessel van Wieringen
- Department of Epidemiology and BiostatisticsAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Prejaas K. B. Tewarie
- Sir Peter Mansfield Imaging CenterSchool of Physics, University of NottinghamNottinghamUnited Kingdom
- Clinical Neurophysiology GroupUniversity of TwenteEnschedeThe Netherlands
| |
Collapse
|
10
|
Luppi AI, Rosas FE, Mediano PAM, Menon DK, Stamatakis EA. Information decomposition and the informational architecture of the brain. Trends Cogn Sci 2024; 28:352-368. [PMID: 38199949 DOI: 10.1016/j.tics.2023.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 01/12/2024]
Abstract
To explain how the brain orchestrates information-processing for cognition, we must understand information itself. Importantly, information is not a monolithic entity. Information decomposition techniques provide a way to split information into its constituent elements: unique, redundant, and synergistic information. We review how disentangling synergistic and redundant interactions is redefining our understanding of integrative brain function and its neural organisation. To explain how the brain navigates the trade-offs between redundancy and synergy, we review converging evidence integrating the structural, molecular, and functional underpinnings of synergy and redundancy; their roles in cognition and computation; and how they might arise over evolution and development. Overall, disentangling synergistic and redundant information provides a guiding principle for understanding the informational architecture of the brain and cognition.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Fernando E Rosas
- Department of Informatics, University of Sussex, Brighton, UK; Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, UK; Centre for Complexity Science, Imperial College London, London, UK; Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
| | - Pedro A M Mediano
- Department of Computing, Imperial College London, London, UK; Department of Psychology, University of Cambridge, Cambridge, UK
| | - David K Menon
- Department of Medicine, University of Cambridge, Cambridge, UK; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
11
|
Jimenez-Marin A, Diez I, Erramuzpe A, Stramaglia S, Bonifazi P, Cortes JM. Open datasets and code for multi-scale relations on structure, function and neuro-genetics in the human brain. Sci Data 2024; 11:256. [PMID: 38424112 PMCID: PMC10904384 DOI: 10.1038/s41597-024-03060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
The human brain is an extremely complex network of structural and functional connections that operate at multiple spatial and temporal scales. Investigating the relationship between these multi-scale connections is critical to advancing our comprehension of brain function and disorders. However, accurately predicting structural connectivity from its functional counterpart remains a challenging pursuit. One of the major impediments is the lack of public repositories that integrate structural and functional networks at diverse resolutions, in conjunction with modular transcriptomic profiles, which are essential for comprehensive biological interpretation. To mitigate this limitation, our contribution encompasses the provision of an open-access dataset consisting of derivative matrices of functional and structural connectivity across multiple scales, accompanied by code that facilitates the investigation of their interrelations. We also provide additional resources focused on neuro-genetic associations of module-level network metrics, which present promising opportunities to further advance research in the field of network neuroscience, particularly concerning brain disorders.
Collapse
Affiliation(s)
- Antonio Jimenez-Marin
- Computational Neuroimaging Lab, Biobizkaia HRI, Barakaldo, Spain
- Biomedical Research Doctorate Program, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Ibai Diez
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, United States of America
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| | - Asier Erramuzpe
- Computational Neuroimaging Lab, Biobizkaia HRI, Barakaldo, Spain
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| | - Sebastiano Stramaglia
- Dipartamento Interateneo di Fisica, Universita Degli Studi di Bari Aldo Moro, INFN, Bari, Italy
| | - Paolo Bonifazi
- Computational Neuroimaging Lab, Biobizkaia HRI, Barakaldo, Spain
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| | - Jesus M Cortes
- Computational Neuroimaging Lab, Biobizkaia HRI, Barakaldo, Spain.
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain.
- Department of Cell Biology and Histology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
12
|
Varley TF. Generalized decomposition of multivariate information. PLoS One 2024; 19:e0297128. [PMID: 38315691 PMCID: PMC10843128 DOI: 10.1371/journal.pone.0297128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/28/2023] [Indexed: 02/07/2024] Open
Abstract
Since its introduction, the partial information decomposition (PID) has emerged as a powerful, information-theoretic technique useful for studying the structure of (potentially higher-order) interactions in complex systems. Despite its utility, the applicability of the PID is restricted by the need to assign elements as either "sources" or "targets", as well as the specific structure of the mutual information itself. Here, I introduce a generalized information decomposition that relaxes the source/target distinction while still satisfying the basic intuitions about information. This approach is based on the decomposition of the Kullback-Leibler divergence, and consequently allows for the analysis of any information gained when updating from an arbitrary prior to an arbitrary posterior. As a result, any information-theoretic measure that can be written as a linear combination of Kullback-Leibler divergences admits a decomposition in the style of Williams and Beer, including the total correlation, the negentropy, and the mutual information as special cases. This paper explores how the generalized information decomposition can reveal novel insights into existing measures, as well as the nature of higher-order synergies. We show that synergistic information is intimately related to the well-known Tononi-Sporns-Edelman (TSE) complexity, and that synergistic information requires a similar integration/segregation balance as a high TSE complexity. Finally, I end with a discussion of how this approach fits into other attempts to generalize the PID and the possibilities for empirical applications.
Collapse
Affiliation(s)
- Thomas F. Varley
- Department of Computer Science, University of Vermont, Burlington, VT, United States of America
- Vermont Complex Systems Center, University of Vermont, Burlington, VT, United States of America
| |
Collapse
|
13
|
Whole-brain modeling explains the context-dependent effects of cholinergic neuromodulation. Neuroimage 2023; 265:119782. [PMID: 36464098 DOI: 10.1016/j.neuroimage.2022.119782] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/08/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
Integration and segregation are two fundamental principles of brain organization. The brain manages the transitions and balance between different functional segregated or integrated states through neuromodulatory systems. Recently, computational and experimental studies suggest a pro-segregation effect of cholinergic neuromodulation. Here, we studied the effects of the cholinergic system on brain functional connectivity using both empirical fMRI data and computational modeling. First, we analyzed the effects of nicotine on functional connectivity and network topology in healthy subjects during resting-state conditions and during an attentional task. Then, we employed a whole-brain neural mass model interconnected using a human connectome to simulate the effects of nicotine and investigate causal mechanisms for these changes. The drug effect was modeled decreasing both the global coupling and local feedback inhibition parameters, consistent with the known cellular effects of acetylcholine. We found that nicotine incremented functional segregation in both empirical and simulated data, and the effects are context-dependent: observed during the task, but not in the resting state. In-task performance correlates with functional segregation, establishing a link between functional network topology and behavior. Furthermore, we found in the empirical data that the regional density of the nicotinic acetylcholine α4β2 correlates with the decrease in functional nodal strength by nicotine during the task. Our results confirm that cholinergic neuromodulation promotes functional segregation in a context-dependent fashion, and suggest that this segregation is suited for simple visual-attentional tasks.
Collapse
|