1
|
Gordleeva S, Tsybina YA, Krivonosov MI, Tyukin IY, Kazantsev VB, Zaikin A, Gorban AN. Situation-Based Neuromorphic Memory in Spiking Neuron-Astrocyte Network. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025; 36:881-895. [PMID: 38048242 DOI: 10.1109/tnnls.2023.3335450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Mammalian brains operate in very special surroundings: to survive they have to react quickly and effectively to the pool of stimuli patterns previously recognized as danger. Many learning tasks often encountered by living organisms involve a specific set-up centered around a relatively small set of patterns presented in a particular environment. For example, at a party, people recognize friends immediately, without deep analysis, just by seeing a fragment of their clothes. This set-up with reduced "ontology" is referred to as a "situation." Situations are usually local in space and time. In this work, we propose that neuron-astrocyte networks provide a network topology that is effectively adapted to accommodate situation-based memory. In order to illustrate this, we numerically simulate and analyze a well-established model of a neuron-astrocyte network, which is subjected to stimuli conforming to the situation-driven environment. Three pools of stimuli patterns are considered: external patterns, patterns from the situation associative pool regularly presented to the network and learned by the network, and patterns already learned and remembered by astrocytes. Patterns from the external world are added to and removed from the associative pool. Then, we show that astrocytes are structurally necessary for an effective function in such a learning and testing set-up. To demonstrate this we present a novel neuromorphic computational model for short-term memory implemented by a two-net spiking neural-astrocytic network. Our results show that such a system tested on synthesized data with selective astrocyte-induced modulation of neuronal activity provides an enhancement of retrieval quality in comparison to standard spiking neural networks trained via Hebbian plasticity only. We argue that the proposed set-up may offer a new way to analyze, model, and understand neuromorphic artificial intelligence systems.
Collapse
|
2
|
Yu D, Li T, Ding Q, Wu Y, Fu Z, Zhan X, Yang L, Jia Y. Maintenance of delay-period activity in working memory task is modulated by local network structure. PLoS Comput Biol 2024; 20:e1012415. [PMID: 39226309 PMCID: PMC11398668 DOI: 10.1371/journal.pcbi.1012415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/13/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024] Open
Abstract
Revealing the relationship between neural network structure and function is one central theme of neuroscience. In the context of working memory (WM), anatomical data suggested that the topological structure of microcircuits within WM gradient network may differ, and the impact of such structural heterogeneity on WM activity remains unknown. Here, we proposed a spiking neural network model that can replicate the fundamental characteristics of WM: delay-period neural activity involves association cortex but not sensory cortex. First, experimentally observed receptor expression gradient along the WM gradient network is reproduced by our network model. Second, by analyzing the correlation between different local structures and duration of WM activity, we demonstrated that small-worldness, excitation-inhibition balance, and cycle structures play crucial roles in sustaining WM-related activity. To elucidate the relationship between the structure and functionality of neural networks, structural circuit gradients in brain should also be subject to further measurement. Finally, combining anatomical data, we simulated the duration of WM activity across different brain regions, its maintenance relies on the interaction between local and distributed networks. Overall, network structural gradient and interaction between local and distributed networks are of great significance for WM.
Collapse
Affiliation(s)
- Dong Yu
- Institute of Biophysics, Central China Normal University, Wuhan, China
- College of Physical Science and Technology, Central China Normal University, Wuhan, China
| | - Tianyu Li
- Institute of Biophysics, Central China Normal University, Wuhan, China
- College of Physical Science and Technology, Central China Normal University, Wuhan, China
| | - Qianming Ding
- Institute of Biophysics, Central China Normal University, Wuhan, China
- College of Physical Science and Technology, Central China Normal University, Wuhan, China
| | - Yong Wu
- Institute of Biophysics, Central China Normal University, Wuhan, China
- College of Physical Science and Technology, Central China Normal University, Wuhan, China
| | - Ziying Fu
- Institute of Biophysics, Central China Normal University, Wuhan, China
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xuan Zhan
- Institute of Biophysics, Central China Normal University, Wuhan, China
- College of Physical Science and Technology, Central China Normal University, Wuhan, China
| | - Lijian Yang
- Institute of Biophysics, Central China Normal University, Wuhan, China
- College of Physical Science and Technology, Central China Normal University, Wuhan, China
| | - Ya Jia
- Institute of Biophysics, Central China Normal University, Wuhan, China
- College of Physical Science and Technology, Central China Normal University, Wuhan, China
| |
Collapse
|
3
|
Gong L, Pasqualetti F, Papouin T, Ching S. Astrocytes as a mechanism for contextually-guided network dynamics and function. PLoS Comput Biol 2024; 20:e1012186. [PMID: 38820533 PMCID: PMC11168681 DOI: 10.1371/journal.pcbi.1012186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/12/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024] Open
Abstract
Astrocytes are a ubiquitous and enigmatic type of non-neuronal cell and are found in the brain of all vertebrates. While traditionally viewed as being supportive of neurons, it is increasingly recognized that astrocytes play a more direct and active role in brain function and neural computation. On account of their sensitivity to a host of physiological covariates and ability to modulate neuronal activity and connectivity on slower time scales, astrocytes may be particularly well poised to modulate the dynamics of neural circuits in functionally salient ways. In the current paper, we seek to capture these features via actionable abstractions within computational models of neuron-astrocyte interaction. Specifically, we engage how nested feedback loops of neuron-astrocyte interaction, acting over separated time-scales, may endow astrocytes with the capability to enable learning in context-dependent settings, where fluctuations in task parameters may occur much more slowly than within-task requirements. We pose a general model of neuron-synapse-astrocyte interaction and use formal analysis to characterize how astrocytic modulation may constitute a form of meta-plasticity, altering the ways in which synapses and neurons adapt as a function of time. We then embed this model in a bandit-based reinforcement learning task environment, and show how the presence of time-scale separated astrocytic modulation enables learning over multiple fluctuating contexts. Indeed, these networks learn far more reliably compared to dynamically homogeneous networks and conventional non-network-based bandit algorithms. Our results fuel the notion that neuron-astrocyte interactions in the brain benefit learning over different time-scales and the conveyance of task-relevant contextual information onto circuit dynamics.
Collapse
Affiliation(s)
- Lulu Gong
- Department of Electrical and Systems Engineering, Washington University, St. Louis, Missouri, United States of America
| | - Fabio Pasqualetti
- Department of Mechanical Engineering, University of California, Riverside, California, United States of America
| | - Thomas Papouin
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - ShiNung Ching
- Department of Electrical and Systems Engineering, Washington University, St. Louis, Missouri, United States of America
| |
Collapse
|
4
|
Wang J, Cheng P, Qu Y, Zhu G. Astrocytes and Memory: Implications for the Treatment of Memory-related Disorders. Curr Neuropharmacol 2024; 22:2217-2239. [PMID: 38288836 PMCID: PMC11337689 DOI: 10.2174/1570159x22666240128102039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/29/2023] [Indexed: 08/23/2024] Open
Abstract
Memory refers to the imprint accumulated in the brain by life experiences and represents the basis for humans to engage in advanced psychological activities such as thinking and imagination. Previously, research activities focused on memory have always targeted neurons. However, in addition to neurons, astrocytes are also involved in the encoding, consolidation, and extinction of memory. In particular, astrocytes are known to affect the recruitment and function of neurons at the level of local synapses and brain networks. Moreover, the involvement of astrocytes in memory and memory-related disorders, especially in Alzheimer's disease (AD) and post-traumatic stress disorder (PTSD), has been investigated extensively. In this review, we describe the unique contributions of astrocytes to synaptic plasticity and neuronal networks and discuss the role of astrocytes in different types of memory processing. In addition, we also explore the roles of astrocytes in the pathogenesis of memory-related disorders, such as AD, brain aging, PTSD and addiction, thus suggesting that targeting astrocytes may represent a potential strategy to treat memory-related neurological diseases. In conclusion, this review emphasizes that thinking from the perspective of astrocytes will provide new ideas for the diagnosis and therapy of memory-related neurological disorders.
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory of Xin’an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ping Cheng
- Key Laboratory of Xin’an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yan Qu
- Key Laboratory of Xin’an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Guoqi Zhu
- Key Laboratory of Xin’an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
5
|
Kozachkov L, Kastanenka KV, Krotov D. Building transformers from neurons and astrocytes. Proc Natl Acad Sci U S A 2023; 120:e2219150120. [PMID: 37579149 PMCID: PMC10450673 DOI: 10.1073/pnas.2219150120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/22/2023] [Indexed: 08/16/2023] Open
Abstract
Glial cells account for between 50% and 90% of all human brain cells, and serve a variety of important developmental, structural, and metabolic functions. Recent experimental efforts suggest that astrocytes, a type of glial cell, are also directly involved in core cognitive processes such as learning and memory. While it is well established that astrocytes and neurons are connected to one another in feedback loops across many timescales and spatial scales, there is a gap in understanding the computational role of neuron-astrocyte interactions. To help bridge this gap, we draw on recent advances in AI and astrocyte imaging technology. In particular, we show that neuron-astrocyte networks can naturally perform the core computation of a Transformer, a particularly successful type of AI architecture. In doing so, we provide a concrete, normative, and experimentally testable account of neuron-astrocyte communication. Because Transformers are so successful across a wide variety of task domains, such as language, vision, and audition, our analysis may help explain the ubiquity, flexibility, and power of the brain's neuron-astrocyte networks.
Collapse
Affiliation(s)
- Leo Kozachkov
- Massachusetts Institute of Technology-International Business Machines, Watson Artificial Intelligence Laboratory, IBM Research, Cambridge, MA02142
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Ksenia V. Kastanenka
- Department of Neurology, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA02115
| | - Dmitry Krotov
- Massachusetts Institute of Technology-International Business Machines, Watson Artificial Intelligence Laboratory, IBM Research, Cambridge, MA02142
| |
Collapse
|
6
|
Cohen T, Shomron N. Can RNA Affect Memory Modulation? Implications for PTSD Understanding and Treatment. Int J Mol Sci 2023; 24:12908. [PMID: 37629089 PMCID: PMC10454422 DOI: 10.3390/ijms241612908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Memories are a central aspect of our lives, but the mechanisms underlying their formation, consolidation, retrieval, and extinction remain poorly understood. In this review, we explore the molecular mechanisms of memory modulation and investigate the effects of RNA on these processes. Specifically, we examine the effects of time and location on gene expression alterations. We then discuss the potential for harnessing these alterations to modulate memories, particularly fear memories, to alleviate post-traumatic stress disorder (PTSD) symptoms. The current state of research suggests that transcriptional changes play a major role in memory modulation and targeting them through microRNAs may hold promise as a novel approach for treating memory-related disorders such as PTSD.
Collapse
Affiliation(s)
- Tehila Cohen
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Noam Shomron
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Tel Aviv University Innovation Labs (TILabs), Tel Aviv 6997801, Israel
| |
Collapse
|
7
|
Ekelmans P, Kraynyukovas N, Tchumatchenko T. Targeting operational regimes of interest in recurrent neural networks. PLoS Comput Biol 2023; 19:e1011097. [PMID: 37186668 DOI: 10.1371/journal.pcbi.1011097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/25/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Neural computations emerge from local recurrent neural circuits or computational units such as cortical columns that comprise hundreds to a few thousand neurons. Continuous progress in connectomics, electrophysiology, and calcium imaging require tractable spiking network models that can consistently incorporate new information about the network structure and reproduce the recorded neural activity features. However, for spiking networks, it is challenging to predict which connectivity configurations and neural properties can generate fundamental operational states and specific experimentally reported nonlinear cortical computations. Theoretical descriptions for the computational state of cortical spiking circuits are diverse, including the balanced state where excitatory and inhibitory inputs balance almost perfectly or the inhibition stabilized state (ISN) where the excitatory part of the circuit is unstable. It remains an open question whether these states can co-exist with experimentally reported nonlinear computations and whether they can be recovered in biologically realistic implementations of spiking networks. Here, we show how to identify spiking network connectivity patterns underlying diverse nonlinear computations such as XOR, bistability, inhibitory stabilization, supersaturation, and persistent activity. We establish a mapping between the stabilized supralinear network (SSN) and spiking activity which allows us to pinpoint the location in parameter space where these activity regimes occur. Notably, we find that biologically-sized spiking networks can have irregular asynchronous activity that does not require strong excitation-inhibition balance or large feedforward input and we show that the dynamic firing rate trajectories in spiking networks can be precisely targeted without error-driven training algorithms.
Collapse
Affiliation(s)
- Pierre Ekelmans
- Theory of Neural Dynamics group, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| | - Nataliya Kraynyukovas
- Theory of Neural Dynamics group, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
- Institute of Experimental Epileptology and Cognition Research, Life and Brain Center, Universitätsklinikum Bonn, Bonn, Germany
| | - Tatjana Tchumatchenko
- Theory of Neural Dynamics group, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
- Institute of Experimental Epileptology and Cognition Research, Life and Brain Center, Universitätsklinikum Bonn, Bonn, Germany
- Institute of physiological chemistry, Medical center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
8
|
Delgado L, Navarrete M. Shining the Light on Astrocytic Ensembles. Cells 2023; 12:1253. [PMID: 37174653 PMCID: PMC10177371 DOI: 10.3390/cells12091253] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
While neurons have traditionally been considered the primary players in information processing, the role of astrocytes in this mechanism has largely been overlooked due to experimental constraints. In this review, we propose that astrocytic ensembles are active working groups that contribute significantly to animal conduct and suggest that studying the maps of these ensembles in conjunction with neurons is crucial for a more comprehensive understanding of behavior. We also discuss available methods for studying astrocytes and argue that these ensembles, complementarily with neurons, code and integrate complex behaviors, potentially specializing in concrete functions.
Collapse
Affiliation(s)
| | - Marta Navarrete
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain
| |
Collapse
|
9
|
Postle BR. Get Stoke(s)d! Introduction to the Special Focus. J Cogn Neurosci 2022; 35:1-3. [PMID: 36306255 PMCID: PMC10023139 DOI: 10.1162/jocn_e_01938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Multiple forms of working memory emerge from synapse-astrocyte interactions in a neuron-glia network model. Proc Natl Acad Sci U S A 2022; 119:e2207912119. [PMID: 36256810 PMCID: PMC9618090 DOI: 10.1073/pnas.2207912119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Persistent activity in populations of neurons, time-varying activity across a neural population, or activity-silent mechanisms carried out by hidden internal states of the neural population have been proposed as different mechanisms of working memory (WM). Whether these mechanisms could be mutually exclusive or occur in the same neuronal circuit remains, however, elusive, and so do their biophysical underpinnings. While WM is traditionally regarded to depend purely on neuronal mechanisms, cortical networks also include astrocytes that can modulate neural activity. We propose and investigate a network model that includes both neurons and glia and show that glia-synapse interactions can lead to multiple stable states of synaptic transmission. Depending on parameters, these interactions can lead in turn to distinct patterns of network activity that can serve as substrates for WM.
Collapse
|