1
|
Gattuso HC, van Hassel KA, Freed JD, Nuñez KM, de la Rea B, May CE, Ermentrout B, Victor JD, Nagel KI. Inhibitory control explains locomotor statistics in walking Drosophila. Proc Natl Acad Sci U S A 2025; 122:e2407626122. [PMID: 40244663 PMCID: PMC12037020 DOI: 10.1073/pnas.2407626122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 03/10/2025] [Indexed: 04/18/2025] Open
Abstract
In order to forage for food, many animals regulate not only specific limb movements but the statistics of locomotor behavior, switching between long-range dispersal and local search depending on resource availability. How premotor circuits regulate locomotor statistics is not clear. Here, we analyze and model locomotor statistics and their modulation by attractive food odor in walking Drosophila. Food odor evokes three motor regimes in flies: baseline walking, upwind running during odor, and search behavior following odor loss. During search, we find that flies adopt higher angular velocities and slower ground speeds and turn for longer periods in the same direction. We further find that flies adopt periods of different mean ground speed and that these state changes influence the length of odor-evoked runs. We next developed a simple model of neural locomotor control that suggests that contralateral inhibition plays a key role in regulating the statistical features of locomotion. As the fly connectome predicts decussating inhibitory neurons in the premotor lateral accessory lobe (LAL), we gained genetic access to a subset of these neurons and tested their effects on behavior. We identified one population whose activation induces all three signature of local search and that regulates angular velocity at odor offset. We identified a second population, including a single LAL neuron pair, that bidirectionally regulates ground speed. Together, our work develops a biologically plausible computational architecture that captures the statistical features of fly locomotion across behavioral states and identifies neural substrates of these computations.
Collapse
Affiliation(s)
- Hannah C. Gattuso
- Department of Neuroscience, Neuroscience Institute, New York University School of Medicine, New York, NY10016
| | - Karin A. van Hassel
- Department of Neuroscience, Neuroscience Institute, New York University School of Medicine, New York, NY10016
| | - Jacob D. Freed
- Department of Neuroscience, Neuroscience Institute, New York University School of Medicine, New York, NY10016
| | - Kavin M. Nuñez
- Department of Neuroscience, Neuroscience Institute, New York University School of Medicine, New York, NY10016
| | - Beatriz de la Rea
- Department of Neuroscience, Neuroscience Institute, New York University School of Medicine, New York, NY10016
| | - Christina E. May
- Department of Neuroscience, Neuroscience Institute, New York University School of Medicine, New York, NY10016
| | - Bard Ermentrout
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA15213
| | - Jonathan D. Victor
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY10065
| | - Katherine I. Nagel
- Department of Neuroscience, Neuroscience Institute, New York University School of Medicine, New York, NY10016
| |
Collapse
|
2
|
Brudner S, Zhou B, Jayaram V, Santana GM, Clark DA, Emonet T. Fly navigational responses to odor motion and gradient cues are tuned to plume statistics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646361. [PMID: 40235995 PMCID: PMC11996313 DOI: 10.1101/2025.03.31.646361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Odor cues guide animals to food and mates. Different environmental conditions can create differently patterned odor plumes, making navigation more challenging. Prior work has shown that animals turn upwind when they detect odor and cast crosswind when they lose it. Animals with bilateral olfactory sensors can also detect directional odor cues, such as odor gradient and odor motion. It remains unknown how animals use these two directional odor cues to guide crosswind navigation in odor plumes with distinct statistics. Here, we investigate this problem theoretically and experimentally. We show that these directional odor cues provide complementary information for navigation in different plume environments. We numerically analyzed real plumes to show that odor gradient cues are more informative about crosswind directions in relatively smooth odor plumes, while odor motion cues are more informative in turbulent or complex plumes. Neural networks trained to optimize crosswind turning converge to distinctive network structures that are tuned to odor gradient cues in smooth plumes and to odor motion cues in complex plumes. These trained networks improve the performance of artificial agents navigating plume environments that match the training environment. By recording Drosophila fruit flies as they navigated different odor plume environments, we verified that flies show the same correspondence between informative cues and plume types. Fly turning in the crosswind direction is correlated with odor gradients in smooth plumes and with odor motion in complex plumes. Overall, these results demonstrate that these directional odor cues are complementary across environments, and that animals exploit this relationship. Significance Many animals use smell to find food and mates, often navigating complex odor plumes shaped by environmental conditions. While upwind movement upon odor detection is well established, less is known about how animals steer crosswind to stay in the plume. We show that directional odor cues-gradients and motion-guide crosswind navigation differently depending on plume structure. Gradients carry more information in smooth plumes, while motion dominates in turbulent ones. Neural network trained to optimize crosswind navigation reflect this distinction, developing gradient sensitivity in smooth environments and motion sensitivity in complex ones. Experimentally, fruit flies adjust their turning behavior to prioritize the most informative cue in each context. These findings likely generalize to other animals navigating similarly structured odor plumes.
Collapse
|
3
|
Gou T, Matulis CA, Clark DA. Adaptation to visual sparsity enhances responses to isolated stimuli. Curr Biol 2024; 34:5697-5713.e8. [PMID: 39577424 PMCID: PMC11834764 DOI: 10.1016/j.cub.2024.10.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/17/2024] [Accepted: 10/18/2024] [Indexed: 11/24/2024]
Abstract
Sensory systems adapt their response properties to the statistics of their inputs. For instance, visual systems adapt to low-order statistics like mean and variance to encode stimuli efficiently or to facilitate specific downstream computations. However, it remains unclear how other statistical features affect sensory adaptation. Here, we explore how Drosophila's visual motion circuits adapt to stimulus sparsity, a measure of the signal's intermittency not captured by low-order statistics alone. Early visual neurons in both ON and OFF pathways alter their responses dramatically with stimulus sparsity, responding positively to both light and dark sparse stimuli but linearly to dense stimuli. These changes extend to downstream ON and OFF direction-selective neurons, which are activated by sparse stimuli of both polarities but respond with opposite signs to light and dark regions of dense stimuli. Thus, sparse stimuli activate both ON and OFF pathways, recruiting a larger fraction of the circuit and potentially enhancing the salience of isolated stimuli. Overall, our results reveal visual response properties that increase the fraction of the circuit responding to sparse, isolated stimuli.
Collapse
Affiliation(s)
- Tong Gou
- Department of Electrical Engineering, Yale University, New Haven, CT 06511, USA
| | | | - Damon A Clark
- Department of Physics, Yale University, New Haven, CT 06511, USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Neuroscience, Yale University, New Haven, CT 06511, USA; Quantitative Biology Institute, Yale University, New Haven, CT 06511, USA; Wu Tsai Institute, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
4
|
Gattuso HC, van Hassel KA, Freed JD, Nuñez KM, de la Rea B, May CE, Ermentrout GB, Victor JD, Nagel KI. Inhibitory control of locomotor statistics in walking Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589655. [PMID: 38659800 PMCID: PMC11042290 DOI: 10.1101/2024.04.15.589655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In order to forage for food, many animals regulate not only specific limb movements but the statistics of locomotor behavior over time, switching between long-range dispersal and localized search depending on resource availability. How pre-motor circuits regulate such locomotor statistics is not clear. Here we analyze and model locomotor statistics in walking Drosophila, and their modulation by attractive food odor. Odor evokes three motor regimes in flies: baseline walking, upwind running during odor, and search behavior following odor loss. During search behavior, we find that flies adopt higher angular velocities and slower ground speeds, and tend to turn for longer periods of time in one direction. We further find that flies spontaneously adopt periods of different mean ground speed, and that these changes in state influence the length of odor-evoked runs. We next developed a simple model of neural locomotor control that suggests that contralateral inhibition plays a key role in regulating the statistical features of locomotion. As the fly connectome predicts decussating inhibitory neurons in the lateral accessory lobe (LAL), a pre-motor structure, we gained genetic access to a subset of these neurons and tested their effects on behavior. We identified one population of neurons whose activation induces all three signature of search and that bi-directionally regulates angular velocity at odor offset. We identified a second group of neurons, including a single LAL neuron pair, that bi-directionally regulate ground speed. Together, our work develops a biologically plausible computational architecture that captures the statistical features of fly locomotion across behavioral states and identifies potential neural substrates of these computations.
Collapse
Affiliation(s)
- Hannah C. Gattuso
- Neuroscience Institute, NYU School of Medicine, 435 E
30 St. New York, NY 10016, USA
| | - Karin A. van Hassel
- Neuroscience Institute, NYU School of Medicine, 435 E
30 St. New York, NY 10016, USA
| | - Jacob D. Freed
- Neuroscience Institute, NYU School of Medicine, 435 E
30 St. New York, NY 10016, USA
| | - Kavin M. Nuñez
- Neuroscience Institute, NYU School of Medicine, 435 E
30 St. New York, NY 10016, USA
| | - Beatriz de la Rea
- Neuroscience Institute, NYU School of Medicine, 435 E
30 St. New York, NY 10016, USA
| | - Christina E. May
- Neuroscience Institute, NYU School of Medicine, 435 E
30 St. New York, NY 10016, USA
| | - G. Bard Ermentrout
- Department of Mathematics, University of Pittsburgh, Pittsburgh,
PA, USA
| | - Jonathan D. Victor
- Feil Family Brain and Mind Research Institute, Weill Cornell
Medicine, New York, NY, USA
| | - Katherine I. Nagel
- Neuroscience Institute, NYU School of Medicine, 435 E
30 St. New York, NY 10016, USA
| |
Collapse
|
5
|
Choi K, Rosenbluth W, Graf IR, Kadakia N, Emonet T. Bifurcation enhances temporal information encoding in the olfactory periphery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.596086. [PMID: 38853849 PMCID: PMC11160621 DOI: 10.1101/2024.05.27.596086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Living systems continually respond to signals from the surrounding environment. Survival requires that their responses adapt quickly and robustly to the changes in the environment. One particularly challenging example is olfactory navigation in turbulent plumes, where animals experience highly intermittent odor signals while odor concentration varies over many length- and timescales. Here, we show theoretically that Drosophila olfactory receptor neurons (ORNs) can exploit proximity to a bifurcation point of their firing dynamics to reliably extract information about the timing and intensity of fluctuations in the odor signal, which have been shown to be critical for odor-guided navigation. Close to the bifurcation, the system is intrinsically invariant to signal variance, and information about the timing, duration, and intensity of odor fluctuations is transferred efficiently. Importantly, we find that proximity to the bifurcation is maintained by mean adaptation alone and therefore does not require any additional feedback mechanism or fine-tuning. Using a biophysical model with calcium-based feedback, we demonstrate that this mechanism can explain the measured adaptation characteristics of Drosophila ORNs.
Collapse
|
6
|
Choi K, Rosenbluth W, Graf IR, Kadakia N, Emonet T. Bifurcation enhances temporal information encoding in the olfactory periphery. ARXIV 2024:arXiv:2405.20135v3. [PMID: 38855541 PMCID: PMC11160886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Living systems continually respond to signals from the surrounding environment. Survival requires that their responses adapt quickly and robustly to the changes in the environment. One particularly challenging example is olfactory navigation in turbulent plumes, where animals experience highly intermittent odor signals while odor concentration varies over many length- and timescales. Here, we show theoretically that Drosophila olfactory receptor neurons (ORNs) can exploit proximity to a bifurcation point of their firing dynamics to reliably extract information about the timing and intensity of fluctuations in the odor signal, which have been shown to be critical for odor-guided navigation. Close to the bifurcation, the system is intrinsically invariant to signal variance, and information about the timing, duration, and intensity of odor fluctuations is transferred efficiently. Importantly, we find that proximity to the bifurcation is maintained by mean adaptation alone and therefore does not require any additional feedback mechanism or fine-tuning. Using a biophysical model with calcium-based feedback, we demonstrate that this mechanism can explain the measured adaptation characteristics of Drosophila ORNs.
Collapse
Affiliation(s)
- Kiri Choi
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA
- Quantitative Biology Institute, Yale University, New Haven, Connecticut 06511, USA
- Swartz Foundation for Theoretical Neuroscience, Yale University, New Haven, Connecticut 06511, USA
| | - Will Rosenbluth
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Isabella R. Graf
- Quantitative Biology Institute, Yale University, New Haven, Connecticut 06511, USA
- Department of Physics, Yale University, New Haven, Connecticut 06511, USA
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Nirag Kadakia
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA
- Quantitative Biology Institute, Yale University, New Haven, Connecticut 06511, USA
- Swartz Foundation for Theoretical Neuroscience, Yale University, New Haven, Connecticut 06511, USA
| | - Thierry Emonet
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA
- Quantitative Biology Institute, Yale University, New Haven, Connecticut 06511, USA
- Department of Physics, Yale University, New Haven, Connecticut 06511, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
7
|
Raiser G, Galizia CG, Szyszka P. Olfactory receptor neurons are sensitive to stimulus onset asynchrony: implications for odor source discrimination. Chem Senses 2024; 49:bjae030. [PMID: 39133054 PMCID: PMC11408607 DOI: 10.1093/chemse/bjae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Indexed: 08/13/2024] Open
Abstract
In insects, olfactory receptor neurons (ORNs) are localized in sensilla. Within a sensillum, different ORN types are typically co-localized and exhibit nonsynaptic reciprocal inhibition through ephaptic coupling. This inhibition is hypothesized to aid odor source discrimination in environments where odor molecules (odorants) are dispersed by wind, resulting in turbulent plumes. Under these conditions, odorants from a single source arrive at the ORNs synchronously, while those from separate sources arrive asynchronously. Ephaptic inhibition is expected to be weaker for asynchronous arriving odorants from separate sources, thereby enhancing their discrimination. Previous studies have focused on ephaptic inhibition of sustained ORN responses to constant odor stimuli. This begs the question of whether ephaptic inhibition also affects transient ORN responses and if this inhibition is modulated by the temporal arrival patterns of different odorants. To address this, we recorded co-localized ORNs in the fruit fly Drosophila melanogaster and exposed them to dynamic odorant mixtures. We found reciprocal inhibition, strongly suggesting the presence of ephaptic coupling. This reciprocal inhibition does indeed modulate transient ORN responses and is sensitive to the relative timing of odor stimuli. Notably, the strength of inhibition decreases as the synchrony and correlation between arriving odorants decrease. These results support the hypothesis that ephaptic inhibition aids odor source discrimination.
Collapse
Affiliation(s)
- Georg Raiser
- Department of Neurobiology, University Konstanz, Konstanz, Germany
- International Max-Planck Research School for Organismal Biology, Konstanz, Germany
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | | | - Paul Szyszka
- Department of Neurobiology, University Konstanz, Konstanz, Germany
- Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
8
|
Szyszka P, Emonet T, Edwards TL. Extracting spatial information from temporal odor patterns: insights from insects. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101082. [PMID: 37419251 PMCID: PMC10878403 DOI: 10.1016/j.cois.2023.101082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023]
Abstract
Extracting spatial information from temporal stimulus patterns is essential for sensory perception (e.g. visual motion direction detection or concurrent sound segregation), but this process remains understudied in olfaction. Animals rely on olfaction to locate resources and dangers. In open environments, where odors are dispersed by turbulent wind, detection of wind direction seems crucial for odor source localization. However, recent studies showed that insects can extract spatial information from the odor stimulus itself, independently from sensing wind direction. This remarkable ability is achieved by detecting the fine-scale temporal pattern of odor encounters, which contains information about the location and size of an odor source, and the distance between different odor sources.
Collapse
Affiliation(s)
- Paul Szyszka
- Department of Zoology, University of Otago, Dunedin, New Zealand.
| | - Thierry Emonet
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, USA
| | | |
Collapse
|